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A Hessian-based state-to-state optimal control method in Liouville space is presented to mitigate previously
undesirable polynomial scaling of Hessian computation time. This method, an improvement to the state-of-the-
art Newton-Raphson gradient ascent pulse engineering (GRAPE) method, is derived with respect to two exact
time-propagator derivative calculation techniques, auxiliary matrix and efficient spin control using analytical Lie
algebraic derivatives (ESCALADE) methods. We observed that compared to the best current implementation
of the Newton-Raphson GRAPE method, for an ensemble of two-level systems, with realistic conditions, our
auxiliary matrix and ESCALADE Hessians can be 4–200 and 70–600 times faster, respectively. Additionally,
the Newton-Raphson GRAPE method using ESCALADE is presented in a Liouville space for higher-level
systems and with the derivation of x-, y-, and z-control propagator derivatives, also extending the application
of ESCALADE and the recent quantum optimal control by adaptive low-cost algorithm (QOALA) method for
coupled systems.
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I. INTRODUCTION

The problem of transferring the state of a dynamical sys-
tem to a desired target state while minimizing the remaining
distance and costs is often solved with optimal control theory
[1–3]. Applications include quantum sensing [4–7], quantum
computing [8–10], and nuclear magnetic resonance (NMR).
spectroscopy [11–14] and imaging (MRI) [15,16].

A number of different approaches to optimal control (OC)
has led to the development of different methods: Lagrangian
methods [17–20]; minimal-time OC [11]; gradient ascent
pulse engineering (GRAPE) [13]; sophisticated gradient-free
searches [21,22]; Krylov-Newton methods [23]; OC with
a basis of analytic controls [24,25]; and a tensor product
approach for large quantum systems [26]. The method out-
lined in this Letter is based on a piecewise-constant control
pulse approximation [27–30] of GRAPE [13,31,32] using a
gradient-following numerical optimization.

Although finding an optimal solution to the problem of
controlling a single two-level system from a defined ini-
tial system state to a desired target state, a state-to-state
problem, is considered straightforward and computationally
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inexpensive with modern methods and computing power, an
OC problem can become numerically and computationally
arduous [33,34], particularly for applications that account for
practical hardware configurations and limitations [12,35,36].
Additionally, the computational expense can increase dramat-
ically when optimizing over an ensemble of systems, such as
the case in solid-state NMR [14,37,38], where the ensemble
also includes crystalline orientations of a powder average [39].
The particular application of OC of interest to the authors
is that of a neural network-based method for MRI [40–42]
and a method of morphic OC [43,44], requiring hundreds of
thousands of optimized pulse shapes to form their optimal
libraries.

Keeping the example of MRI, the utility of OC is high-
lighted when considering the legal constraints of power
deposition safeguards [45] and the obvious financial rewards
of reducing the time a patient stays inside the MRI machine.

Modern techniques can mitigate protracted numerical
convergence with a quadratically convergent optimization
method, requiring the calculation of a Hessian matrix, giving
large savings in the number of required serial optimization
iterations [32,37,46]. However, it is known within the com-
munity that calculation of the Hessian matrix does not scale
well to a control problem with a large number of controllable
amplitudes [47] (also shown in Fig. 1).

This Letter presents a jump in computational efficiency of
multiple orders of magnitude with a reworking of the orig-
inal method, devised to calculate the exact Hessian matrix
[32,37,48], and the recently published flavor of GRAPE with
exact, matrix-free calculations, named efficient spin control
using analytical Lie algebraic derivatives (ESCALADE) [46].
This Letter will present the mathematical formulation of these
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FIG. 1. Average wall-clock time of fidelity, gradient, and Hessian
for increasing N . Solid lines show the Newton-Raphson GRAPE
method [32] and dashed lines show the proposed accelerated
Newton-Raphson GRAPE method. Both methods use the auxiliary
matrix method [48] to calculate propagator derivatives.

exact Newton-Raphson GRAPE methods in the irreducible
spherical-tensor basis of a Liouville space and show an al-
ternative method to calculate the Hessian matrix with O(N )
scaling, compared to the previous O(N2) scaling (see Fig. 1).
Results show the comparative speedup of this method to
the original in the context of state-to-state MRI problems,
including a generalization of the ESCALADE method with
calculations of optimal z controls, desired by a practical im-
plementation in modern optimal MRI [42,49,50], and with
formulas for three-level systems.

II. EXACT NEWTON-RAPHSON OPTIMAL CONTROL

A. Optimal control in Liouville space

A quantum system can be described by a density operator
ρ̂(t ), a time-dependent system state. The evolution of this state
is dictated by the Liouville–von Neumann equation,

∂

∂t
ρ̂(t ) = −i[Ĥ (t ), ρ̂(t )], (1)

where Ĥ (t ) is a time-dependent Hamiltonian, an operator in a
Hilbert space with a spectrum of allowed energy levels. The
usual factor of h̄ is dropped here, resulting in the eigenspec-
trum of Ĥ expressed in angular frequency units. The methods
presented in this Letter are particular to a Liouville space,
also named the adjoint representation [31,32,37], although
it is only the matrix-vector mathematics of Liouville space
that is required. Other matrix-vector OC problems include
optimizing pure states in a Hilbert space [5] and magnetization
vectors in the real 3d space of the Bloch equation [15]. A
system state in a Liouville space is represented by a vector
|ρ̂〉, obtained by stacking columns of the density operator ρ̂

with Eq. (1) becoming

∂

∂t
|ρ̂(t )〉 = −i ˆ̂L(t )|ρ̂(t )〉, ˆ̂L � 1 ⊗ Ĥ − Ĥᵀ ⊗ 1, (2)

where ˆ̂L is a Liouvillian, and the identity matrix 1 and the
Hamiltonian have the same dimension.

A bilinear control problem splits that which is controllable,
the controls, from that which is not, the drift. The Liouvillian
for a control problem with x, y, and z controls on a two-level

system can be written as

ˆ̂L(t ) = ω ˆ̂Lz︸︷︷︸
drift

+ cx(t ) ˆ̂Lx + cy(t ) ˆ̂Ly + cz(t ) ˆ̂Lz︸ ︷︷ ︸
controls

, (3)

where the angular frequency ω is the time-independent res-
onant frequency offset, cx,y,z(t ) are time-dependent control

amplitudes, and ˆ̂Lx,y,z are Pauli matrices of a Liouville space.
The OC method of GRAPE [13] uses piecewise constant

control pulses, where control pulses are constant over a small
time interval �t [29,30],

ck (t ) → [ck,1 ck,2 · · · ck,N ], k ∈ {x, y, z}, (4)

using the notation ck,n ≡ ck (tn) for convenience, and tN =
N�t . This discrete formulation allows a numerical solution
to Eq. (2), given an initial state of the system |ρ̂0〉, through
time-ordered propagation

|ρ̂N 〉 = ˆ̂PN
ˆ̂PN−1 · · · ˆ̂P2

ˆ̂P1|ρ̂0〉, (5)

where ˆ̂Pn are time propagators of an isolated time slice and
are defined through the exponential map

|ρ̂n〉 = ˆ̂Pn|ρ̂n−1〉, ˆ̂Pn = e−i ˆ̂Ln�t . (6)

The matrix exponential of Eq. (6) is usually calculated with
the Padé approximant, Taylor series, or Krylov propagation
[37].

As a notational convenience for what follows, the follow-
ing effective propagators are defined as the effect of the pulse
between time slices m and n,

Un
m � ˆ̂Pn

ˆ̂Pn−1 · · · ˆ̂Pm+1
ˆ̂Pm, ∀(1 � m � n � N ), (7)

where a backward (time-reversed) propagation can be denoted
by Um

n = Un
m

†.
Optimal control requires a metric to optimize, in this case

termed the fidelity [13,51] F , a measure of how well the
pulses perform a desired control task. The task of the OC
problem is to find a set of control amplitudes cx,y,z(t ) that
maximize the fidelity, e.g., the real part of an inner product:

max
cx,y,z (t )

(F ) = max
cx,y,z (t )

(
Re

〈
σ̂
∣∣UN

1 |ρ̂0

〉)
. (8)

This form of the fidelity metric is defined in terms of
state-to-state problems, where a system is in a defined initial
state, |ρ̂0〉, and the control task is to take this state to a desired
one, |σ̂ 〉. With the notation introduced in Eq. (7), UN

1 is
interpreted as the effective propagator over the shaped pulse.
In addition to Eq. (5), the system is propagated backwards
from the desired target state,

|χ̂n〉 = ˆ̂P
†

n
ˆ̂P

†

n+1 · · · ˆ̂P
†

N−1
ˆ̂P

†

N |σ̂ 〉, (9)

which is termed the adjoint state of the control problem [37].
GRAPE is a gradient-following numerical optimization

method and requires derivatives of the fidelity with respect to
the controls. In turn, this requires the directional propagator
derivatives Da

k,n, with the subscripts k denoting the derivative

in the direction of ˆ̂Lk and n denoting the derivative operating
on the time propagator ˆ̂Pn. For each time slice n, and for each
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control direction ˆ̂Lk ∈ { ˆ̂Lx,
ˆ̂Ly,

ˆ̂Lz}, the ath-order derivative
takes the form

∇aF (ck,n) = Re 〈χ̂n+1︸ ︷︷ ︸
N times

|
N times︷ ︸︸ ︷

Da
k,nρ̂n−1〉, (10)

where bra-ket notation explicitly shows vector structures, i.e.,
|Da

k,nρ̂n−1〉 = Da
k,n|ρ̂n−1〉. The number of forward and back-

ward propagations is indicated for each control channel to
produce a gradient vector ∇F or the diagonal elements of a
Hessian matrix ∇2F .

This is sufficient for a fidelity gradient, scaling lin-
early with N , but a fidelity Hessian also requires mixed
second-order derivatives [32], where the off-diagonal Hessian
elements are

∇2F (ck,n, c j,m ) = Re 〈χ̂n+1Dk,n︸ ︷︷ ︸
N times

|
1
2 N (N−1) times︷ ︸︸ ︷

Un−1
m+1|Dj,mρ̂m−1〉 . (11)

Clearly, the form of Eq. (11) has a central propagator that
cannot be absorbed into the bra or ket because it depends on
both tn and tm, and therefore the computation scales polynomi-
ally with 1

2 N (N − 1) (the factor 1
2 comes from the symmetric

property of a Hessian [37]). This is known within the OC com-
munity [47] and is highlighted in Fig. 1. The linear plots of the
fidelity and gradient, on log-log axes, show these calculations
are efficient with increasing N , whereas the Hessian calcula-
tion time is not linear on these log-log axes. The subject of
this Letter is to mitigate this undesirable scaling, resulting in
a linearly scaling Hessian calculation (dashed lines in Fig. 1),
after the following section outlines the calculation of direc-
tional propagator derivatives.

B. Directional propagator derivatives with auxiliary matrices

As has been published previously [32,37,48], exact prop-
agator derivatives required by Eqs. (10) and (11) can be
calculated by exponentiating an auxiliary matrix (AUXMAT),
resulting in an upper triangular block matrix [52] with a
time propagator on the block diagonal, and with a directional
derivative of that propagator in the upper triangular block. The
propagator and propagator derivatives are extracted from

⎡
⎢⎣

ˆ̂Pn Dj,n
1
2 D2

jk,n

0 ˆ̂Pn Dk,n

0 0 ˆ̂Pn

⎤
⎥⎦ = exp

⎛
⎝

⎡
⎣An C j 0

0 An Ck

0 0 An

⎤
⎦

⎞
⎠, (12)

where the block matrix is formed from An = −i ˆ̂Ln�t , as in
Eq. (6), and Ck = −i ˆ̂Lk�t are functions of the control opera-
tors with j, k ∈ {x, y, z}.

C. Directional propagator derivatives with ESCALADE

An additional method to calculate the time propagators of
a two-level system is by explicitly calculating elements of
the matrix. In a spherical-tensor basis this is the Wigner D

matrix [53],

ˆ̂Pn = D(1) =

⎡
⎢⎣

α2
√

2αβ β2

−√
2αβ∗ αα∗ − ββ∗ √

2α∗β
β∗2 −√

2α∗β∗ α∗2

⎤
⎥⎦, (13)

which is formulated in terms of the complex elements

α = cos φ − i
z

r
sin φ, β = −y

r
sin φ − i

x

r
sin φ, (14)

where the convenient and compact notation x = cx,n, y = cy,n,
and z = cz,n + ω are used, φ = 1

2 r�t is a polar angle of rota-

tion, and r =
√

x2 + y2 + z2 is the polar radius.
Whereas Eq. (12) is exact, the matrix exponential is expen-

sive. Foroozandeh and Singh recently derived a method that is
free from this expensive matrix exponential calculation, in the
propagator derivative calculation method of efficient spin con-
trol using analytical Lie algebraic derivatives (ESCALADE)
[46]. This method can also be extended with interaction prop-
agator splitting [54].

The calculation of directional derivatives in Eqs. (10) and
(11), in this single-spin model, can proceed with ESCALADE
by constructing a matrix with rows containing all elements
needed to construct the propagator derivatives,⎡

⎣�x
�y
�z

⎤
⎦ = vec[1] + sin2 φ

φr
vec[S] + 2φ − sin 2φ

2φr2
vec[S2],

(15)
where vec[1] is a vectorized identity matrix, with a vector-
ization operation on a matrix A such that A = vec−1[vec[A]].
The skew-symmetric matrix S is

S =
⎡
⎣ 0 z −y

−z 0 x
y −x 0

⎤
⎦, (16)

and the symmetric matrix S2 is calculated algebraically. In
turn, the directional propagator derivatives can be written as

Dk,n = ˆ̂Pn[vec−1[��k]], (17)

D2
jk,n = ˆ̂Pn[vec−1[�� jk]] + ˆ̂Pn[vec−1[�� j]][vec−1[��k]],

(18)

where � = [vec[Cx] vec[Cy] vec[Cz]] is a three-column
matrix to be multiplied with the three-row matrix of �k . Using
notation similar to Eq. (15), the � jk matrices required by the
second-order derivatives in Eq. (18) are⎡
⎣� jx

� jy
� jz

⎤
⎦ = cos(2φ) − 1

r2
vec

[
S

dS
d j

+ dS
d j

S
]

+ 2φ − sin(2φ)

r3
vec

[
dS
d j

]

+ 2k(1 − cos(2φ) − φ sin(2φ))
r3

vec[S]

+ 3k sin(2φ) − 2kφ(2 + cos(2φ))
r4

vec[S2], (19)
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where three such equations are required for j ∈ {x, y, z} and
the derivatives of S are derived algebraically from Eq. (16).

Since the directional derivatives of Eqs. (17) and (18),
together with the time propagators of Eq. (13), do not involve
any matrix operations, other than a few trivial multiplications,
ESCALADE offers substantial computational gains relative to
the AUXMAT method in Eq. (12).

D. Propagators of ESCALADE for higher-level systems

Only two-level systems are considered so far in ES-
CALADE [46] and its extension to interacting two-level
systems [54]. One route to using these methods for higher-
level systems is to consider the control with the offset part of
the Liouvillian, as in this Letter in Eq. (3), and then to split the
interaction part of the Liouvillian, e.g., for a spin-1, three-level
system this would correspond to quadrupolar terms. This is

detailed in the quantum optimal control by adaptive low-cost
algorithm (QOALA) paper [54] and not reproduced here. In
terms of the complex elements in Eq. (14), propagators can be
formulated in the spherical-tensor basis with Wigner D matri-
ces [55]; for a three-level system (ignoring those quadrupolar
terms) this is

ˆ̂Pn =
[
D(1) 0

0 D(2)

]
, (20)

which is formulated in terms of the Wigner D matrix in
Eq. (13) and a second-rank Wigner matrix. It should be em-
phasized that the quadrupolar part of the Liouvillian needs to
be included and that this should use propagator splitting meth-
ods recently presented by Goodwin et al. [54]. The elements
of the second-rank Wigner D matrix can be formulated as

D(2) =

⎡
⎢⎢⎢⎢⎢⎣

α4 2α3β
√

6α2β2 2αβ3 β4

−2α3β∗ α2(2(αα∗ − ββ∗) − 1)
√

6αβ(αα∗ − ββ∗) β2(2(αα∗ − ββ∗) + 1) 2α∗β3√
6α2β∗2 −√

6αβ∗(αα∗ − ββ∗) 1
2 (3(αα∗ − ββ∗)2 − 1)

√
6α∗β(αα∗ − ββ∗)

√
6α∗2β2

−2αβ∗3 β∗2(2(αα∗ − ββ∗) + 1) −√
6α∗β∗(αα∗ − ββ∗) α∗2(2(αα∗ − ββ∗) − 1) 2α∗3β

β∗4 −2α∗β∗3
√

6α∗2β∗2 −2α∗3β∗ α∗4

⎤
⎥⎥⎥⎥⎥⎦. (21)

III. ACCELERATED NEWTON-RAPHSON
OPTIMAL CONTROL

Moving away from a chosen calculation method of direc-
tional propagator derivatives, the remaining bottleneck of the
Newton-Raphson methods presented above is the off-diagonal
Hessian elements, the mixed derivatives of Eq. (11).

As a starting point, the ESCALADE paper [46] includes
an additional efficiency of Newton-Raphson GRAPE where
the central effective propagator in Eq. (11) can be split into
Un−1

m+1 = Un−1
m+1Um

1 U1
m = Un−1

1 U1
m so Eq. (11) becomes

∇2F (ck,n, c j,m ) = Re〈χ̂n+1Dk,n|Un−1
1 U1

m|Dj,mρ̂m−1〉. (22)

An interpretation of these two central effective propagators
is as follows: The right-hand side, 〈χ̂n+1Dk,n|, is multiplied
by the effective propagator Un−1

1 , presenting the directional
derivative at tn to now be evaluated at t0; the left-hand side,
|Dj,mρ̂m−1〉, is multiplied by the time-reversed effective prop-
agator U1

m, presenting the directional derivative at tm to also
now be evaluated at t0.

To outline how the bottleneck of Newton-Raphson GRAPE
can be avoided, a representation of a trajectory is introduced,

[ρ]n
m � [|ρ̂n〉 |ρ̂n−1〉 · · · |ρ̂m+1〉 |ρ̂m〉], (23)

which is an array of a column vector. The whole trajectory
from the dynamics in Eq. (3) is contained in [ρ]N

0 and its
analysis is useful for visualizing pulse dynamics [56]. Taking
this concept a step further, a directional derivative trajectory,
evaluated at t0 as with the right-hand side of Eq. (22), is
defined as[
∂

[0]
j ρ

]n

0 �
[∣∣U1

nDj,nρ̂n−1

〉 · · · ∣∣U1
2Dj,2ρ̂1

〉 ∣∣U†
1Dj,1ρ̂0

〉]
,

(24)
where the superscript [0] is used to indicate evaluation at t0.

With the realization that a directional derivative trajectory
in Eq. (24) is a matrix in itself, n Hessian elements can be
calculated with a one matrix-vector product with⎡

⎢⎢⎢⎣
∇2F (ck,n, c j,n)

...

∇2F (ck,n, c j,2)
∇2F (ck,n, c j,1)

⎤
⎥⎥⎥⎦

ᵀ

= Re
〈
χ̂n+1Dk,nUn−1

1︸ ︷︷ ︸
N times backward

∣∣
N times forward︷ ︸︸ ︷[

∂
[0]
j ρ

]n

0 . (25)

Given that the total effective propagator UN
1 can be calcu-

lated with forward propagation, Un−1
1 can be updated during

subsequent backward propagation with Un−1
1 = ˆ̂P

†

n−1Un
1. The

single vector-matrix product of Eq. (25), per time slice, is ex-
pected to be much more efficient than the n − 1 vector-vector
products, per time slice, in Eq. (11).

In contrast to Eq. (11), using an arrangement for calcu-
lating the mixed derivatives in Eq. (25) allows the central
propagators to be split and absorbed into the bra and ket
involving each of the directional derivatives, which reduces
the computational complexity to that of the gradient calcu-
lations and nonmixed second-order directional derivatives of
Eq. (10). The reason this can be done is because one of the
directional derivatives is evaluated at t0 using Eq. (22).

IV. ACCELERATION OF A BROADBAND MRI EXAMPLE

The authors choose to set the test of the method presented
above in the context of MRI because there is a very real need
to have computationally fast OC methods to run on the fly with
a need for patient-specific solutions. Often, OC-facilitated
MRI exploits simultaneous/parallel control systems, e.g.,
eight radio-frequency channels (x and y controls) [15,49] and
three magnetic field gradients and/or numerous local shims (z
controls) [42,49,50].
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(a) (b) (c)

FIG. 2. The average speedup of the accelerated ESCALADE method (acc-ESCALADE) and the accelerated auxiliary matrix method
(acc-AUXMAT), compared to the auxiliary matrix method. The number of time steps N , the time-slice width �t , and the pulse duration T are
parameters affecting computation time. In each of the three plots one parameter is kept constant: (a) N = 128, (b) �t = 7.8125 µs, and (c)
T = 1 ms. The dotted lines in each plot show the speedup of acc-ESCALADE relative to acc-AUXMAT.

The optimization is set as robust for an ensemble
of 101 spin- 1

2 systems, with an offset bandwidth ω
2π

∈
[− 1

2 ,+ 1
2 ] kHz, simulated using a single block-diagonal Li-

ouvillian with each block operating on a single ensemble
member [39,43]. Although this work does not present pulses
robust to control field imperfections, this optimization can
be simulated in the same way as the previous control field
robustness [36] where fidelity and fidelity derivatives are av-
eraged from a distribution of control amplitudes [44]. This
part of the OC algorithm can be computed efficiently in
parallel.

The time slice �t is often fixed to the hardware digital-
ization dwell time, typically a few μs. Modern MRI systems
handle N > 1000, but the pulse duration, T = N�t , is usually
kept around a few ms to avoid degradation of pulse perfor-
mance due to transverse relaxation. As a set of speed tests,
these three variables are incremented and set as a range of OC
problems and are shown in Fig. 2. The vertical dashed lines
indicate a set of variables physically relevant to MRI.

Figure 2 shows the average speedup of the accelerated
auxiliary matrix method (acc-AUXMAT) and the accelerated
ESCALADE method (acc-ESCALADE), both relative to the
standard auxiliary matrix method. A separate fidelity, gradi-
ent, and Hessian calculation is performed for each method
from a random control pulse shape, with cx, cy, and cz con-
trols in the order of 2π × 103 rads−1. The average is over 84
different random control pulses, run in parallel on 28 CPU
cores. The parallel computation is the same form as that which
would be used for control field robustness.

Figure 2(a) shows that the effect of increasing T while
also increasing �t is, approximately, a constant speedup of
acc-AUXMAT and acc-ESCALADE Hessians. This can be
attributed to the effective propagator splitting of Eq. (22).
The small speedup of acc-AUXMAT fidelity and gradient
calculations is due to an algorithmic efficiency from coding
in a way that lends itself to the accelerated Hessian methods.

The main result of this Letter is the speedup of Hes-
sian calculations of the acc-AUXMAT and acc-ESCALADE
methods, with speedup increasing as N increases, in Figs. 2(b)
and 2(c), to over ×100 when a large N is used. Furthermore,
this trend does not appear to dampen, indicating a further
speedup when N � 1000.

From the evidence in Figs. 2(b) and 2(c), the accelerated
Hessian calculations of Eq. (25) do indeed remove the O(N2)
scaling of the original Newton-Raphson method [32], reduc-
ing to a linear scaling O(N ).

V. CONCLUSION

An alternative mathematical formulation of the Newton-
Raphson GRAPE method [32] has been presented in Liouville
space and applies to OC problems with unitary evolution.
The ESCALADE method [46] recast the cumbersome prob-
lem of finding derivatives—using trigonometric evaluations of
vectorized arrays rather than matrix-matrix products together
with computationally expensive matrix exponentials—and
factorized the central propagator to avoid O(N2) scaling, now
reduced to O(N ), in the computation of the Hessian. The
ESCALADE method is shown in a different light of Liouville
space, with the additional derivation of z controls, which
are important to MRI, and also extends ESCALADE and its
related method [46,54] to systems with more than two levels.

The main result is a different formulation of the Newton-
Raphson GRAPE method in Liouville space, being an
optimization method with quadratic convergence to an op-
timal solution, reducing the expensive polynomial scaling
of the control problem to a linear scaling when increas-
ing the number of piecewise-constant pulses in an optimal
solution. Speedup increases as the number of time slices
N increases: ×4 to ×200, for N = 100 and N = 1000, re-
spectively. Furthermore, employing ESCALADE within this
Hessian calculation method shows a further speedup of ×70
to ×600, for N = 100 and N = 1000, respectively, when com-
pared to the original Newton-Raphson GRAPE method.
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