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Observation of cnoidal wave localization in nonlinear topolectric circuits
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We observe a localized cnoidal (LCn) state in an electric circuit network. Its formation derives from the
interplay of nonlinearity and the topology inherent to a Su-Schrieffer-Heeger (SSH) chain of inductors. Varicap
diodes act as voltage-dependent capacitors, and create a nonlinear on-site potential. For a sinusoidal voltage
excitation around midgap frequency, we show that the voltage response in the nonlinear SSH circuit follows the
Korteweg-de Vries equation. The topological SSH boundary state, which relates to a midgap impedance peak
in the linearized limit is distorted into the LCn state in the nonlinear regime, where the cnoidal eccentricity
decreases from edge to bulk.
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Introduction. Since the first observation of a solitary wave
in a canal near Edinburgh by Russel in 1834, solitons as
special solutions to nonlinear equations of motion have been
studied extensively [1–3]. The phenomenon has subsequently
gained relevance for a multitude of mathematical, biolog-
ical, and physical domains [4–7]. It includes, but is not
exhausted by, hydrodynamic waves in oceans, rivers, and
the atmosphere [8–10], ion-acoustic solitons in plasma [11],
and DNA fluctuations [5]. The ability to analytically retrace
the soliton has stimulated new developments in optical fiber
communications [12–14] and solid-state physics [15], which
culminated in the modeling of electrical conductance in poly-
mers through the Su-Schrieffer-Heeger (SSH) model [16].
There, the conductivity of trans-polyacetylene derives from
charged solitons, propagating as domain walls between two
allowed energy configurations [17,18]. Initially investigated
in the nonlinear soliton regime, a linearized description of the
dimerized SSH model (cf. Supplemental B [19]) subsequently
gained importance as a toy model and building block for
symmetry-protected boundary modes and topological phases.
In some aspects, the SSH model can be thought of as the
cradle of topological classifications, which has substantially
deepened the understanding of topological states of matter
[20,21]. Physical implications of dimerization are not limited
to boundary obstructed topological phases [22] but play a
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major role in a variety of physical systems such as quantum
antiferromagnets [23–25] and fullerenes [26–28].

Many of the topological phases known to date are not
reserved to quantum systems, but rather have additionally
or exclusively been realized in classical metamaterials [29],
such as mechanic [30], acoustic [31,32], photonic [33,34],
and electric [35,36] setups. Furthermore, metamaterials have
been employed to investigate effects caused by nonlinearity,
which is either inherent to the platform, e.g., Kerr nonlin-
earity in optical materials [37], or added to the setup by
nonlinear components [38,39]. Here, topolectric circuits [40]
stand out in terms of versatility and accessibility, as they
are capable of realizing both discrete (lattice type) and con-
tinuous (transmission line) systems in the short and long
wavelength limit, respectively. Both regimes have been ex-
plored experimentally, from topological phases [41,42] and
band structures [43,44] to solitons [38,39,45,46] and cnoidal
waves as periodic soliton-like solutions of the Korteweg-de
Vries (KdV) equation [2,47,48]. Moreover, the availability of
commercially refined nonlinear electronic components, such
as nonlinear resistors [49] or varicap diodes [38], renders elec-
tric circuits ideally suited to study the interplay of topology
and nonlinearity [50–54].

In this Letter, we investigate a nonlinear SSH circuit.
In contrast to previous works, where the nonlinearity en-
ters in the kinetic term [50–53], we introduce it as a local
potential. As a response to a sinusoidal voltage excitation
at midgap frequencies fed into the edge of the circuit, we
measure the localized cnoidal (LCn) state. Originating from
the intertwining of topological localization and nonlinear-
ity, the LCn state shows an exponential decay of its root
mean square (RMS) amplitude towards the bulk, whereas the
nonlinearity manifests itself in a temporal distortion of the
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FIG. 1. (a) Schematic of the nSSH circuit. Alternating inductances L1 and L2 connect the voltage nodes, reverse-biased varicap diodes to
ground act as nonlinear capacitances and the parallel capacitor Cp takes the parasitic influence of the measurement setup into account [19].
C̃ � C(Voffset ) blocks the dc voltage offset. The gray rectangle depicts one unit cell. (b) Measurement of the voltage dependence of the four
Siemens BB512 varicap diodes in parallel configuration and Cp. (c) One unit cell of the nSSH circuit on the PCB with [1] inductors of nominal
values L1,nom = 330 µH and L2,nom = 180 µH, and [2] varicap diodes. (d) (left) Theoretical (blue curve) and measured (gray crosses) dispersion
relation for PBC in the linear limit at the operating point Voffset = 2.5 V. (right) Small signal impedance analysis between nodes 1A, 1B, 2A,
3A and ground for OBC. An impedance peak at the midgap frequency f0 = 430 kHz indicates the localized SSH boundary state.

sinusoidal character of the input. We develop an approach to
theoretically describe the LCn state by separating the chain
into decoupled LC resonators, which are described by the
KdV equation and its cnoidal wave solutions. Our findings
establish circuit networks as the platform of choice to explore
nonlinear topological matter.

Nonlinear SSH circuit. We create a nonlinear SSH (nSSH)
circuit, schematically depicted in Fig. 1(a), in which alternat-
ing inductances L1 and L2 connect the circuit nodes. Each
node in the two-site unit cell is grounded by a parallel con-
figuration of four varicap diodes of type Siemens BB512 in
reverse-bias setting and a linear capacitor Cp. They realize
a nonlinear on-site capacitance and extend the linear SSH
model to the nonlinear regime. Cp is added to the theoret-
ical model to account for parasitic capacitances induced by
the measurement setup. In a topolectric circuit, the elements
connecting the nodes correspond to hopping terms in a tight-
binding model, while the connections to ground mimic an
on-site energy. From the actual printed circuit board (PCB)
with a total of 25 unit cells and 50 voltage nodes, a cutout of
one unit cell is shown in Fig. 1(c). Since the varicap diodes
would be conductive for negative node voltages, we operate
the circuit at positive voltages in the depletion region. This is
achieved by applying a dc voltage offset Voffset to all nodes,
which defines the operating point of the nonlinear capaci-
tance C0 = C(Voffset ). In order to experimentally stabilize the
voltage offset, the nodes at the edges are decoupled from
ground by a large additional capacitor C̃ � C0, which does
not affect the dynamical behavior of the system. The total
differential capacitance C(V ) from each node to ground de-
creases nonlinearly as a function of the reverse biased voltage
V , measured in Fig. 1(b). In addition to the voltage offset,

we excite the nSSH circuit with an ac voltage signal yield-
ing a total input voltage V (t ) = Voffset + A0 sin(ωt ). In this
passive circuit, the effect of the nonlinearity on the voltages
and currents increases with larger excitation amplitudes A0.
This allows us to employ the amplitude of the ac input signal
as a tuning parameter for the influence of the nonlinear on-site
capacitance on the circuit.

Linear limit of the nSSH circuit. To connect the spatial
character of the LCn state to the description of the nSSH
circuit in its linear limit, we employ a small amplitude signal
analysis. For small ac input signals (A0 � Voffset), we assume
the on-site capacitance to be constant, C(V ) ≈ C0, and lin-
earize the equations of motion (EOM) around the operating
point Voffset to obtain an effective description in the linear
limit. The linearized EOM are diagonal in frequency space
and their solutions are characterized by the dispersion relation.

The effective linear model is equivalent to the SSH chain,
and the dispersion relation ω(k) for periodic boundary condi-
tions (PBC) is given by

ω2
±(k) = ω2

0 ± 1

C0

√
1

L2
1

+ 1

L2
2

+ 2

L1 L2
cos(k), (1)

with ω2
0 = C−1

0 (L−1
1 + L−1

2 ) ≡ (2π f0)2. We set L1 > L2 to
tune the circuit into the topological regime.

We measure the dispersion relation ω(k) in the nSSH cir-
cuit by reading out one wavelength of the real-space voltage
distribution resulting from a small signal excitation with fre-
quency ω [cf. left part of Fig. 1(d)]. Due to the finite resolution
in real space, the precision decreases for k → π . In the right
part of Fig. 1(d) we depict a frequency-resolved small-signal
impedance measurement between nodes close to the boundary
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FIG. 2. ac measurement of the LCn state at Voffset = 2.5 V. (top)
Sinusoidal input signal with frequency f0 = 430 kHz and amplitude
A0 = 2.5 V fed into node 1A. (left) Steady-state voltage response at
nodes 2A, 3A, and 4A starting at t ≈ 18 µs. The sinusoidal input
is deformed into the LCn state, where amplitude and eccentricity
decrease from edge to bulk. (right) Phase space plot of one period
of the voltage signal [indicated by the gray area in (a)], visualizing
its deformation.

and ground for open boundary conditions (OBC). Within the
two branches of the dispersion relation, we identify several
impedance peaks corresponding to the individual bulk modes
of the finite circuit network. Our measurements reveal the
boundary state of the SSH model at the midgap frequency
f0, featuring localization on sublattice A at the edge and
exponential decay towards the bulk.

Continuum limit: Nonlinear transmission line. The com-
plete nonlinear circuit EOM at large input amplitudes A0 on
the order of Voffset can not be solved exactly. A standard
approach is to apply a continuum approximation by placing
oneself in the lower branch of the dispersion in Fig. 1(d)
close to k = 0 with no phase shift between sublattice sites.
In this low-energy, long-wavelength limit, the dimerization
and discrete lattice character are no longer relevant and
the circuit setup realizes a nonlinear transmission line [45].
The EOM resemble the KdV equation (cf. Supplemental A
[19]), for which a bell-shaped excitation leads to the for-
mation of a pulse soliton [39]. It propagates with constant
shape and velocity through the transmission line, because
the defocusing effect of the dispersion relation is compen-
sated by the nonlinearity. This approach fails for regions
close to the band gap. The phase shift of π between adja-
cent unit cells as well as the suppressed signal on sublattice
B in the topological midgap state invalidate the continuum
approximation.

Dimerized nSSH circuit: Localized cnoidal state. We ex-
cite the nSSH circuit with a sinusoidal signal of midgap
frequency f0 at the boundary and measure the voltage re-
sponse once a steady state is reached. With the localization
on sublattice A in the linear topological edge state, nonlinear
effects are strongly suppressed at sublattice B, resulting in
their on-site amplitudes to remain small even for large A0 (cf.
Supplemental C [19]). Figure 2 shows the voltage response
of sublattice nodes A to a sinusoidal excitation at node 1A in

the nonlinear regime (A0 = 2.5 V). We identify this voltage
configuration with spatial localization at the boundary in the
nonlinear regime as the LCn state. The effect of nonlinearity
manifests itself in the temporal distortion of the sinusoidal
signal at nodes of sublattice A: The phase space plots on
the right side of Fig. 2 show how the voltage response is
deformed as compared to the elliptic shape of the input sig-
nal. The eccentricity, a parameter characterizing the signal
distortion with respect to a sinusoidal wave, decreases towards
the bulk.

As the frequency f0 of the driving sets the period of the
voltage response in the whole circuit, each waveform is com-
posed of higher harmonics at integer multiples of this base
frequency. Due to the band gap around f0 and since there are
no dispersive states at higher harmonics of f0, it is the LCn
mode that is excited predominantly.

Theoretical description of the LCn state. Given the small
ac amplitude of sublattice nodes B in the midgap state, we can
approximate them as being replaced by ac ground, as shown
in Fig. 3(a). This decouples the chain into a set of indepen-
dent single resonators, reducing the full nonlinear differential
equations to a local homogeneous subset (cf. Supplemental
C, D [19]). The amplitude remains as an undetermined pa-
rameter in the solution of the reduced EOM and is specified
by the spatial voltage profile of the LCn state. Exemplified in
Fig. 3(a) for node 2A, each single resonator can be recast as an
LC circuit with inductance L = (L−1

1 + L−1
2 )−1 and nonlinear

capacitance C(V ).
In the linear limit, the resonance frequency of the single

resonator matches that of the midgap SSH edge state with
f0 = 1/(2π

√
LC0). This originates from the dimerized regime

of the tight-binding model, where the topological state resides
at zero energy within the band gap. The analogous scale of
zero energy in electric circuits is given by the midgap fre-
quency f0.

To analytically trace the nonlinear differential equations of
the single resonator, we model the voltage-dependent differ-
ential capacitance by the equation for an abrupt p-n junction.
The varicap capacitance is given by the voltage-dependent
size of the depletion region between p- and n-doped area of
the diode (cf. Supplemental D [19]). At voltages V close to
Voffset this results in an inverted square root law [55]

C(V ) ≈ C√
1 + V −ν

φ

, (2)

where φ, C, and ν are fitted to resemble the measured ca-
pacitance in Fig. 1(b) (cf. Supplemental D [19]). C can be
interpreted as the zero bias junction capacitance and φ as the
total potential difference across the junction.

Since we are only interested in its ac contribution, we
decompose the voltage as V (t ) = Voffset + u(t ). The nonlinear
relation Q[u(t )] between the charge Q(t ) accumulated on the
capacitor and the voltage u(t ) across it is obtained by inte-
grating Eq. (2) using dQ = C(V )dV . Inserting the inverted
function u[Q(t )] into the standard differential equation for the
LC resonator, we find that the charge Q(t ) follows the KdV
equation in its stationary limit [56]. The periodic solutions for
Q(t ) are given by cnoidal waves [57], which can be regarded
as a periodic arrangement of single solitons. With the relation
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FIG. 3. (a) Transformation of a segment of the nSSH circuit to a nonlinear LC resonator by treating the sublattice nodes B as virtual ground,
due to their negligible amplitude in the LCn state. (b) Discrete Fourier transformation of the measured voltage response in the LCn state at
first three sublattice A nodes (color encoded), normalized with respect to the peak to peak voltage Vpp. The crosses mark the evaluated values,
guided by solid lines and with triangles at multiples of the base frequency f0. Due to nonlinear effects, higher harmonics of the fundamental
frequency f0 = 430 kHz are excited. The inset compares the Fourier components for different excitation amplitudes A0 (marker encoded), and
nodes 2A, 3A, and 4A, with the analytical solution in Eq. (3), depicted as gray lines. (c) Logarithmic plot of the normalized RMS voltage for
the linear and nonlinear case with respective linear fits. The ratio � between subsequent RMS values together with the theoretically expected
value in gray is shown below. (d) Logarithmic plot of the eccentricity m for different excitation amplitudes A0 with linear fits.

u[Q(t )], we obtain the analytic description of the ac voltage

u(t ) = 1

4 C2 φ

[
η (η + 2�) + 2AQ (η + �) cn2(μt | m)

+ A2
Q cn4(μt | m)

]
, (3)

where cn(x | m) denotes the Jacobi elliptic cosine function,
m ∈ [0, 1] the eccentricity of the wave, and � a system-
dependent constant. For the functional dependencies of the
valley elevation η(m), the peak to peak amplitude AQ(m)
of the cnoidal wave solution Q(t ), the elliptic frequency
µ(m) on the parameter m, and a full derivation refer to
Supplemental Material D [19]. The period of cn2(μt | m)
is T = 2K (m)/µ(m) and fixed by the external input fre-
quency f0. K (m) denotes the complete elliptic integral
of the first kind. For eccentricities up to m ≈ 0.3, the
eigenfrequency of the single resonator f (m) = 1/T (m) is ap-
proximately constant and matches the excitation frequency
(cf. Supplemental D [19]). Hence, the solution Eq. (3) applies
to the driven setup.

In Fig. 3(b) we perform a discrete Fourier transforma-
tion of the measured steady state for an input amplitude A0

of 2.5 V. Due to the nonlinearity, higher harmonics of the
fundamental frequency f0 are excited, albeit with smaller
amplitude. In agreement with the time scale induced by the
driving, the EOM for the single resonator allow for solutions,
which are composed of excitations at multiples of the base
frequency f0. As shown in the inset of Fig. 3(b), the measured
data agrees with the Fourier coefficients of the theoretical ac
voltage solution in Eq. (3) depicted in gray. The spatially re-
solved normalized RMS value uRMS of the LCn state is shown
in Fig. 3(c) and compared to the linear limit. It decreases
exponentially towards the bulk with uRMS ∝ �x with the
same attenuation factor � in the linear and nonlinear regime,
where x denotes the number of unit cells counted from the

edge. The mean experimental values are �lin = 0.5237(17)
and �n-lin = 0.5226(16), 0.5230(17), 0.5227(18) for A0 =
0.1 V and A0 = 1.5V, 2.0V, 2.5V, respectively. The nominal
value is in the range of �nom = L2/L1 = 0.513 . . . 0.551 re-
sulting from the precharacterization of inductors with L1 =
334 . . . 343 µH and L2 = 176 . . . 184 µH measured at f =
430 kHz. The experimentally obtained values for the atten-
uation factor agree with the theoretical expectation of the
linear limit. We hence confirm that the LCn state inherits
the spatial behavior, and thus its topological character, from
the boundary state in the linearized SSH limit. In contrast
to the peak-to-peak voltage, the spatial profile of the RMS
value, and accordingly the reactive power at each node, re-
mains invariant upon the introduction of nonlinearity (cf.
Supplemental C [19]). Locally at each node, the RMS value
determines the parameter m of the cnoidal wave solution in
Eq. (3) and traces all parameters back to the input. Figure 3(d)
shows the spatial decay of the eccentricity m towards the bulk
obtained by solving the peak-to-peak voltage of the signal
upp = u(0) − u(T/2) for m. With larger voltage amplitudes
close to the boundary of the circuit the influence of the non-
linearity is stronger, and we expect a greater deformation
of the wave. In agreement with Fig. 2, as m increases to-
wards the boundary, the peaks of the wave become sharper
while the valleys get wider. This is reflected in the attenua-
tion factor of the exponential decay of m, which is measured
to be �m = 0.5249(25), 0.5221(33), 0.5209(65) for excita-
tion amplitudes of A0 = 1.5V, 2.0V, 2.5V, respectively, and
matches with the decay factor of uRMS.

Conclusion. Our one-dimensional periodic circuit net-
work with Su-Schrieffer-Heeger type dimerization and on-site
nonlinearity exhibits an unprecedented topological voltage
configuration, which we denote as the localized cnoidal state.
The interplay of topological edge modes and nonlinearity
is probed within an experimental framework of excep-
tional accessibility and tunability. Using a single-resonator
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approximation, we find that the Korteweg-de Vries equa-
tion with cnoidal wave solutions determines the waveform in
the time domain. Intriguingly, the eccentricity, i.e., the defor-
mation of the waveform due to the nonlinearity, also decays
exponentially from edge to bulk. The topological character of
the boundary mode in the strongly nonlinear SSH regime sug-
gests itself for further analysis, and might allow us to acquire
a deeper understanding of nonlinear topological matter.
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York, 2012), Chap. 9, pp. 275–299.

[8] A. R. Osborne and T. L. Burch, Internal solitons in the Andaman
sea, Science 208, 451 (1980).

[9] D. K. Lynch, Tidal bores, Sci. Am. 247, 146 (1982).
[10] J. P. Boyd, Equatorial solitary waves. Part I: Rossby solitons,

J. Phys. Oceanogr. 10, 1699 (1980).
[11] K. E. Lonngren, Soliton experiments in plasmas, Plasma Phys.

25, 943 (1983).
[12] A. Hasegawa and F. Tappert, Transmission of stationary nonlin-

ear optical pulses in dispersive dielectric fibers. I. Anomalous
dispersion, Appl. Phys. Lett. 23, 142 (1973).

[13] P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A.
Barthelemy, Picosecond steps and dark pulses through nonlin-
ear single mode fibers, Opt. Commun. 62, 374 (1987).

[14] H. A. Haus and W. S. Wong, Solitons in optical communica-
tions, Rev. Mod. Phys. 68, 423 (1996).

[15] J. Denschlag, J. E. Simsarian, D. L. Feder, C. W. Clark, L. A.
Collins, J. Cubizolles, L. Deng, E. W. Hagley, K. Helmerson,
W. P. Reinhardt, S. L. Rolston, B. I. Schneider, and W. D.
Phillips, Generating solitons by phase engineering of a Bose-
Einstein condensate, Science 287, 97 (2000).

[16] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Poly-
acetylene, Phys. Rev. Lett. 42, 1698 (1979).

[17] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Soliton excitations
in polyacetylene, Phys. Rev. B 22, 2099 (1980).

[18] A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Solitons
in conducting polymers, Rev. Mod. Phys. 60, 781 (1988).

[19] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.5.L012041 for a revision of the
Korteweg-de Vries equation, and the topological Su-Schrieffer-
Heeger model, a detailed analysis of the spatial character of
the LCn state, a derivation of the single resonator model, and
a description of the experimental circuit setup

[20] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[21] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[22] E. Khalaf, W. A. Benalcazar, T. L. Hughes, and R. Queiroz,
Boundary-obstructed topological phases, Phys. Rev. Res. 3,
013239 (2021).

[23] S. Sachdev and R. N. Bhatt, Bond-operator representation
of quantum spins: Mean-field theory of frustrated quantum
Heisenberg antiferromagnets, Phys. Rev. B 41, 9323 (1990).

[24] B. Sriram Shastry and B. Sutherland, Exact ground state of a
quantum mechanical antiferromagnet, Physica B+C 108, 1069
(1981).

[25] P. Ghosh, T. Müller, and R. Thomale, Another exact ground
state of a two-dimensional quantum antiferromagnet, Phys. Rev.
B 105, L180412 (2022).

[26] Y. Hasegawa, Y. Ling, S. Yamazaki, T. Hashizume, H.
Shinohara, A. Sakai, H. W. Pickering, and T. Sakurai, STM
study of one-dimensional cluster formation of fullerenes:
Dimerization of Y@C82, Phys. Rev. B 56, 6470 (1997).

[27] G. Gumbs, A. Iurov, A. Balassis, and D. Huang, Anisotropic
plasmon-coupling dimerization of a pair of spherical electron
gases, J. Phys.: Condens. Matter 26, 135601 (2014).

[28] R. Zhang, M. Murata, T. Aharen, A. Wakamiya, T. Shimoaka,
T. Hasegawa, and Y. Murata, Synthesis of a distinct water dimer
inside fullerene C70, Nat. Chem. 8, 435 (2016).

[29] F. D. M. Haldane and S. Raghu, Possible Realization of Di-
rectional Optical Waveguides in Photonic Crystals with Broken
Time-Reversal Symmetry, Phys. Rev. Lett. 100, 013904 (2008).

[30] R. Süsstrunk and S. D. Huber, Observation of phononic helical
edge states in a mechanical topological insulator, Science 349,
47 (2015).

[31] A. Khanikaev, R. Fleury, S. Mousavi, and A. Alù, Topologi-
cally robust sound propagation in an angular-momentum-biased
graphene-like resonator lattice, Nat. Commun. 6, 8260 (2015).

[32] X. Zhang, M. Xiao, Y. Cheng, M.-H. Lu, and J. Christensen,
Topological sound, Commun. Phys. 1, 97 (2018).

L012041-5

https://doi.org/10.1080/14786449508620739
https://doi.org/10.1109/PROC.1973.9296
https://doi.org/10.1103/PhysRevA.27.2120
https://doi.org/10.1073/pnas.0503823102
https://doi.org/10.1126/science.208.4443.451
https://doi.org/10.1038/scientificamerican1082-146
https://doi.org/10.1175/1520-0485(1980)010<1699:ESWPIR>2.0.CO;2
https://doi.org/10.1088/0032-1028/25/9/001
https://doi.org/10.1063/1.1654836
https://doi.org/10.1016/0030-4018(87)90003-4
https://doi.org/10.1103/RevModPhys.68.423
https://doi.org/10.1126/science.287.5450.97
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevB.22.2099
https://doi.org/10.1103/RevModPhys.60.781
http://link.aps.org/supplemental/10.1103/PhysRevResearch.5.L012041
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevResearch.3.013239
https://doi.org/10.1103/PhysRevB.41.9323
https://doi.org/10.1016/0378-4363(81)90838-X
https://doi.org/10.1103/PhysRevB.105.L180412
https://doi.org/10.1103/PhysRevB.56.6470
https://doi.org/10.1088/0953-8984/26/13/135601
https://doi.org/10.1038/nchem.2464
https://doi.org/10.1103/PhysRevLett.100.013904
https://doi.org/10.1126/science.aab0239
https://doi.org/10.1038/ncomms9260
https://doi.org/10.1038/s42005-018-0094-4


HENDRIK HOHMANN et al. PHYSICAL REVIEW RESEARCH 5, L012041 (2023)

[33] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu,
M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I.
Carusotto, Topological photonics, Rev. Mod. Phys. 91, 015006
(2019).

[34] R. Li, P. Li, Y. Jia, and Y. Liu, Self-localized topological states
in three dimensions, Phys. Rev. B 105, L201111 (2022).

[35] V. V. Albert, L. I. Glazman, and L. Jiang, Topological Properties
of Linear Circuit Lattices, Phys. Rev. Lett. 114, 173902 (2015).

[36] J. Ningyuan, C. Owens, A. Sommer, D. Schuster, and J. Simon,
Time- and Site-Resolved Dynamics in a Topological Circuit,
Phys. Rev. X 5, 021031 (2015).

[37] H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and
J. S. Aitchison, Discrete Spatial Optical Solitons in Waveguide
Arrays, Phys. Rev. Lett. 81, 3383 (1998).

[38] D. Jäger, Experiments on KdV solitons, J. Phys. Soc. Jpn. 51,
1686 (1982).

[39] G. Sebastiano, P. Pantano, and P. Tucci, An electrical model
for the Korteweg-de Vries equation, Am. J. Phys. 52, 238
(1984).

[40] C. H. Lee, S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W.
Molenkamp, T. Kiessling, and R. Thomale, Topolectrical cir-
cuits, Commun. Phys. 1, 39 (2018).

[41] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp,
T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert,
and R. Thomale, Topolectrical-circuit realization of topological
corner modes, Nat. Phys. 14, 925 (2018).

[42] T. Hofmann, T. Helbig, C. H. Lee, M. Greiter, and R. Thomale,
Chiral Voltage Propagation and Calibration in a Topolectrical
Chern Circuit, Phys. Rev. Lett. 122, 247702 (2019).

[43] T. Helbig, T. Hofmann, C. H. Lee, R. Thomale, S. Imhof, L. W.
Molenkamp, and T. Kiessling, Band structure engineering and
reconstruction in electric circuit networks, Phys. Rev. B 99,
161114(R) (2019).

[44] Y. Lu, N. Jia, L. Su, C. Owens, G. Juzeliūnas, D. I. Schuster,
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