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Magnetically tuned continuous transition from weak to strong coupling
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Depending on the relative rates of coupling and dissipation, a light-matter coupled system is either in the weak-
or strong-coupling regime. Here, we present a unique system where the coupling rate continuously increases with
an externally applied magnetic field while the dissipation rate remains constant, allowing us to monitor a weak-
to-strong coupling transition as a function of magnetic field. We observed a Rabi splitting of a terahertz magnon
mode in yttrium orthoferrite above a threshold magnetic field of ∼14 T. Based on a microscopic theoretical
model, we show that with increasing magnetic field the magnons transition into magnon polaritons through an
exceptional point, which will open up new opportunities for in situ control of non-Hermitian systems.
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Understanding and harnessing the interplay of driving and
dissipation in open quantum systems is an important contem-
porary problem in technology and science. Many quantum
technologies, including quantum computation, sensing, and
transduction, are enabled by coherent light-matter coupling,
but the coherence can be easily washed out when the mat-
ter interacts with dissipative environments. On the other
hand, dissipation can be engineered for dissipative quantum
error correction schemes as well as for stabilizing qubits
against decoherence [1–4]. Further, driven-dissipative many-
body systems can exhibit exotic nonequilibrium phenomena
and phases [5–7].

In a strongly coupled light-matter system, the coupling
rate g exceeds the rates of dissipation for light (κ) and
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matter (γ ), satisfying C = 4g2/κγ > 1, where C is called
the cooperativity [8–10]. Typically, the matter is placed
in a small-mode-volume photonic cavity to enhance g.
Such cavity-quantum-electrodynamic systems have recently
attracted much theoretical attention as controllable open quan-
tum systems, in which the physics of exceptional points,
non-Hermitian Hamiltonians, and parity-time symmetry can
be explored [11–17]. In particular, exceptional points, which
are spectral singularities where the eigenvalues and eigenvec-
tors coalesce [18], are expected to be useful for manipulating
light via nontrivial topological effects [19–21].

Experimentally, several physical platforms have shown
a transition from the weak-coupling regime (C < 1) to the
strong-coupling regime (C > 1), including intersubband po-
laritons in quantum wells through gating [22] or ultrafast
optical excitation [23], microcavity exciton polaritons in
aligned carbon nanotubes through polarization rotation [24],
a metal–semiconductor hybrid resonator through spacer thick-
ness variation [25], magnon-polaritons in yttrium iron garnet
through position tuning inside a microwave cavity [26,27],
and by controlling the relative phase and amplitude ratio
between the cavity field and the corresponding field of a
microwave drive [28]. Also, a transition from coherent to dis-
sipative coupling has been observed by changing the magnon
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dissipation rate [29,30]. However, continuous facile tuning of
g, γ , or κ by an external field in a single sample has not been
achieved.

Here, we demonstrate in situ tuning of g by an external
magnetic field (H) for propagating bulk magnon-polaritons in
the antiferromagnetic state of yttrium orthoferrite (YFeO3).
We used single-shot terahertz (THz) time-domain spec-
troscopy [31,32] in high magnetic fields up to 30 T and
observed a field-induced peak splitting of a THz magnon
mode in YFeO3. The magnon peak in transmission spectra
remains a single peak until a critical field (∼14 T) is reached,
where it splits into two, and the two-peak spectrum persists
up to 30 T. Our microscopic model quantitatively explains the
experimental data. The model shows that the coupling rate g
continuously increases with increasing H , and exact coupling-
dissipation compensation (C = 1) occurs at the critical field,
which is the exceptional point in this system. The magnitude
of splitting also increased with increasing sample thickness,
in proportion to the square root of the thickness.

The YFeO3 samples we studied were c-cut single crystals
grown in an optical floating zone furnace. The samples were
elliptical plates of 6 mm×4 mm with thicknesses of 1.5, 1.9,
and 2.97 mm. The main results are presented for the 2.97-
mm-thick sample. We performed THz magnetospectroscopy
measurements on these samples using the Rice Advanced
Magnet with Broadband Optics (RAMBO) [33], which com-
bines single-shot THz detection and pulsed high magnetic
fields up to 30 T [31] [see Fig. 1(a)]. Bursts of THz radia-
tion were generated through optical rectification by passing
the output beam of an amplified Ti:sapphire laser (1 kHz,
150 fs, 775 nm, 0.8 mJ, Clark-MXR, Inc., CPA-2001) through
a LiNbO3 crystal. We recorded the time-domain waveform
of the THz pulses that transmitted through the sample by
electro-optic sampling in ZnTe in a single-shot manner using
a reflective echelon [31,32].

YFeO3 is a canted antiferromagnet and hosts two
magnon modes: the quasiferromagnetic (qFM) mode and the
quasiantiferromagnetic (qAFM) mode. The spin motion of the
qFM mode is depicted in Fig. 1(b), where �S1 and �S2 represent
Fe3+ spins in the two Fe sublattices, and �M is the net magne-
tization as a result of canting. In the present work, we were
primarily interested in the coupling between the magnetic
field component of the incident THz radiation, �HTHz, and the
qFM mode. Figure 1(c) schematically shows the experimen-
tal configuration we employed. The two spins lie in the a-c
plane, which are shown by blue solid arrows. The Cartesian
coordinates x, y, and z are parallel to the crystal a, b, and c
axes, respectively. The electric field component of the incident
THz radiation, �ETHz, was along the b axis, and the magnetic
field component, �HTHz, was along the a axis, respectively. In
this geometry, only the qFM mode can be excited through
the Zeeman torque [34]. The external millisecond-long pulsed
magnetic field generated by the RAMBO system was applied
parallel to the c axis; it was essentially constant for the dura-
tion of the picosecond-long THz pulse, and therefore, it can
be safely considered to be a dc magnetic field, �Hdc, shown by
a black arrow.

Figure 2(a) shows a series of time-domain traces of
THz electric fields transmitted through the sample at var-
ious selected dc magnetic fields from 9.2 to 26.6 T. For

FIG. 1. (a) Schematic of the experimental setup, showing a table-
top minicoil pulse magnet with optical access (RAMBO). (b) Spin
motion of the quasiferromagnetic (qFM) magnon mode in YFeO3.
�S1 and �S2 are spins in the two respective sublattices with a small
canting angle, which produces a net magnetization �M. (c) Experi-
mental geometry. The two sublattice spins lie in the a-c plane with a
canting angle β. The Cartesian coordinates, x, y, and z, are parallel
to the crystal a, b, and c axes, respectively. The electric (magnetic)
field component of the THz radiation, �ETHz ( �HTHz), was parallel to
the b axis (a axis). The black arrow on the right shows the external
millimeter-long pulsed magnetic field produced by the RAMBO
magnet, which can be considered to be a dc field �Hdc, during the
picosecond-long THz pulse. In this configuration, only the qFM
mode is excited through the Zeeman torque.

FIG. 2. (a) Magnetic-field-induced changes in the transmitted
THz electric field as a function of time at various magnetic fields
from 9.2 to 26.6 T. (b) Fourier transforms of the time-domain wave-
forms in (a). The traces are vertically offset for clarity both in (a) and
in (b).
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each magnetic field, we subtracted the THz electric-field
waveform at zero magnetic field, ETHz(t, Hdc = 0), from the
THz electric-field waveform recorded at the magnetic field,
ETHz(t, Hdc). This differentiation procedure allows us to fo-
cus on the magnetic-field-induced changes in the material’s
THz response. At low magnetic fields (<14 T), we observe
long-lived coherent oscillations, with monotonically decaying
amplitude, due to the qFM magnon mode excited by the
incident THz pulse, as expected for this configuration [35].
Above 14 T, however, the data start showing beating behav-
ior, indicating the existence of two oscillation modes with
different but similar frequencies. The corresponding Fourier
transforms of the data into the frequency domain corroborate
this description, as shown in Fig. 2(b). At 9.2 and 14.1 T, there
is a single peak observed, whose center frequency increases
with the magnetic field. Above 14 T, the peak splits into
two, and the splitting magnitude increases with increasing
magnetic field.

To understand our experimental data quantitatively, we
developed a microscopic theoretical model. Complete deriva-
tions are reported in the Supplemental Material [36]. First, we
derive the relative permeability in the c-cut crystal configu-
ration, following the Herrmann model [34]. We consider two
sublattices with spins �S1 and �S2, as depicted in Figs. 1(b) and
1(c). The free energy of this system is given by

V = E �S1 · �S2 − D(S1xS2z − S2xS1z ) − Axx
(
S2

1x + S2
2x

)

− Azz
(
S2

1z + S2
2z

) − μ0 �Hdc · (�S1 + �S2), (1)

which contains the isotropic exchange interaction (the first
term with coefficient E ), the Dzyaloshinskii-Moriya inter-
action (the second term with coefficient D), the anisotropy
energies (the third and fourth terms with coefficients Axx

and Azz, respectively), and the Zeeman interaction with the
external dc magnetic field (the last term); μ0 is the vacuum
permeability.

The equation of motion for the ith component of the spins
can be written as

1

γr

�̇Ri = �Ri × ∇iV − α

γr

�Ri × �̇Ri, (2)

where �Ri = �Si/|�Si| are the normalized spins with |�Si| = 5/2,
γr is the gyromagnetic ratio, and α is the dimensionless
Gilbert damping coefficient. By solving Eq. (2) with the free
energy V given by Eq. (1), we can obtain the resonance fre-
quency, ω0, and the magnetic susceptibility tensor for the qFM
and qAFM modes without any fitting parameters. Because the
THz magnetic field is along the a axis, we focus on the xx
element of the magnetic susceptibility tensor,

χxx = �μxx

ω2
0 − ω2 − iωγ

ω2
0, �μxx ∝ 〈R1z + R2z〉2

ω2
0

, (3)

where γ is the matter decay rate, which includes Gilbert
damping and interactions. All necessary physical quantities
are taken from the literature (see Supplemental Material [36]).

Next, we calculated THz transmittance spectra by the scat-
tering matrix method using the relative permeability obtained
from the microscopic model (see Supplemental Material [36])
and deduced the resonance frequencies. Figure 3(a) summa-
rizes the frequencies (ω) of the peaks normalized by the

FIG. 3. (a) The frequency ω of the qFM mode, normalized by
the center frequency ω0, as a function of magnetic field. At high
fields, the qFM resonance splits into two, which is attributed to
the formation of a bulk magnon polariton. The color map is our
simulated spectra. The open circles are obtained from experimental
data, and the dashed lines are square-root function fits. (b) Calculated
magnon polariton spectra for three values of magnetic field –0, 15,
and 30 T. (c) Calculated coupling strength g as a function of magnetic
field. The dashed line indicates the loss

√
κγ /2. (d) The magnitude

of splitting �ω versus sample thickness.

center magnon frequency (ω0) determined both from the ex-
periment and the calculation. The numerical data is presented
as a color map, while open circles indicate the experimental
data. Dashed lines are square-root fits. Figure 3(b) shows
theoretical traces at 0 T, 15 T, and 30 T obtained from the
color map in Fig. 3(a). Theory and experimental data are
in good agreement. As the applied magnetic field increases,
the splitting between the two peaks increases. The transition
from weak coupling to strong coupling occurs through the
exceptional point (a spectral singularity where the eigenvalues
and eigenvectors coalesce [18]).

Here, the eigenvalues are the complex frequencies ω± that
satisfy Eq. (26) of the Supplemental Material [36]. The eigen-
vectors are the electric field (Ex, Ey)T with components in the
x and y directions. Our system shows the conservative-type
coupling, where the two complex eigenfrequencies form a
real-valued coupling strength. Thus, opposite to the case of
dissipative coupling [29], the two peaks do not collapse again
with further increasing magnetic field, but the gap monotoni-
cally increases as plotted by the gray dashed line in Fig. 3(a)
due to the real-valued coupling strength. The abrupt aspect of
the exceptional point seen in Fig. 3(a) occurs when the cou-
pling strength equals losses in the system (see Supplemental
Material [36]).

The dependence of the splitting on the magnetic field can
be explained by the magnetic field dependence of the effective
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oscillator strength, �μxx. For the case of scalar susceptibility
and zero damping it can be shown (see Supplemental Material
[36]) that the frequency splitting, �ω, depends on the effec-
tive oscillator strength, �μxx as

�ω = ω0

√
�μxx. (4)

We see that the effective oscillator strength and magnon
frequency contribute to the frequency splitting of the magnon-
polariton. Equation (3) shows that �μxx depends on the
average of the z components of the two spins 〈R1z + R2z〉,
which increases continuously with increasing magnetic field
applied along the z axis. Thus, the frequency splitting in-
creases with magnetic field.

With further theoretical analysis, we can obtain the light-
matter coupling strength, g, as a function of the magnetic field,
which is plotted in Fig. 3(c), where the dashed line indicates
the light and matter losses,

√
κγ /2. The existence of an ex-

ceptional point can be naturally explained as the competition
between the matter dissipation rate (γ ) and light effective
loss rate (κ), which are independent of the magnetic field,
and the light-matter coupling strength (g), which increases
with the field. At low magnetic fields, the dissipation wins,
while at high magnetic fields, the coupling wins. Thus, in
this system, the external magnetic field induces an in situ
continuous transition between the weak-coupling regime (at
low fields) and the strong-coupling regime (at high fields).
At the exceptional point (14 T), the loss and the coupling
strength are equal. Therefore, the effective loss rate of light
can be calculated κ = 11 THz with γ = 0.035 THz. Such
relatively high effective loss rate (escape rate) of light reflects
the absence of the cavity structure.

Finally, we also found that the magnitude of splitting also
increases with the sample thickness, d [see Fig. 3(d)]. A sim-
ilar splitting of THz magnon polaritons has been previously
observed as a function of temperature at zero magnetic field
[37,38], but only qualitative explanations were given. Here,
we demonstrated that the splitting shows a

√
d dependence at

a fixed magnetic field, as shown in Fig. 3(d). The dashed line,
which is proportional to

√
d , was obtained from calculations

using our microscopic model (see Supplemental Material
[36]), as detailed below, and agrees well with the experimental
data. The coupling strength, g, is known to be proportional
to the density of two-level objects, ρ, i.e., g ∝ √

ρ [8,39,40].
Usually, such a dependence is discussed in the context of

light-matter coupling in a cavity [41,42], where the volume is
kept constant, and the density dependence is replaced with the
dependence on the number of spins, g ∝ √

N [24,39,43,44].
In our case, this cannot be true, as the density of spins is
constant as a function of thickness. However, the splitting as a
function of thickness also follows the square-root dependence,
�ω ∝ √

d , as summarized in Fig. 3(d). Such behavior instead
can be understood as arising from the boundary conditions of
Maxwell equations for the THz wave propagation, similar to
exciton-polaritons in a finite system [45].

In conclusion, we investigated YFeO3 crystals with dif-
ferent thicknesses using single-shot THz time-domain spec-
troscopy in high magnetic fields up to 30 T. We observed
that above about 14 T the quasiferromagnetic magnon mode
splits into two peaks and the frequency splitting keeps in-
creasing with increasing magnetic field. This behavior can
be explained by the formation of bulk magnon polaritons.
Our theoretical model based on the microscopic permeability
tensor and scattering matrix method agrees well with the ex-
perimental data. From the model, it follows that the frequency
splitting dependence on magnetic fields arises from the de-
pendence of the effective oscillator strength on the magnetic
field. Furthermore, we show that the coupling strength can be
continuously tuned by the applied magnetic field. Thus, our
results demonstrate that the strong photon-magnon coupling
can be controlled by the magnetic field. This adds bulk THz
magnon polaritons in antiferromagnets to other systems sup-
porting exceptional points, which are promising for further
exploration of non-Hermitian physics and advanced sensing.
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