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We study the full counting statistics (FCS) of quantum gases in samples of thousands of interacting bosons,
detected atom by atom after a long free-fall expansion. In this far-field configuration, the FCS reveals the
many-body coherence from which we characterize iconic states of interacting lattice bosons by deducing their
normalized correlations g(n)(0) up to the order n = 6. In Mott insulators, we find a thermal FCS characterized
by perfectly contrasted correlations g(n)(0) = n!. In interacting Bose superfluids, we observe small deviations to
the Poisson FCS and to the ideal values g(n)(0) = 1 expected for a pure condensate. These deviations become
larger as we increase the interaction strength and reveal the role of the quantum depletion of the condensate
on many-body coherence. The approach to many-body correlations demonstrated here is readily extendable to
characterize a large variety of interacting quantum states and phase transitions.
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The dispersion of a physical quantity contains important
information, beyond that obtained from its average value. The
analysis of quantum and thermal noise is central in various
systems, ranging from quantum electronics [1] and quantum
optics [2] to quantum gases [3–5]. The ultimate precision on
the measurement of noise is given by the full counting statis-
tics (FCS) [6], which is obtained with single-particle-resolved
detection methods that provide the number of particles de-
tected in a given time and/or space interval. These methods
yield high-order moments of the particle number beyond the
variance. Probing high-order moments is a means to study
quantum phase transitions [7–9], universality [10,11], entan-
glement properties [12], or out-of-equilibrium dynamics [13].
The FCS has successfully characterized various phenomena in
mesoscopic conductors [1,6,14,15] and Rydberg [16–18] and
noninteracting [19,20] atomic gases.

From a quantum information perspective, the FCS holds
great promise for large ensembles of particles. In contrast to a
full-state tomography [21], the FCS is accessible even in large
systems as it probes information only about the diagonal part
of the n-body density matrices, i.e., populations. Although it
does not contain the total information about the quantum state,
the FCS is sufficient to identify many quantum states without
resorting to a consuming tomography. A similar idea was in-
troduced by Glauber to characterize light sources from photon
correlations at any order [22]. For Gaussian states, for which
the Wigner function is positive [2], measuring the FCS or the
magnitudes of correlation functions is indeed equivalent.
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In strongly correlated quantum states characterized by
non-Gaussian Wigner functions, measuring the FCS and
many-body correlations is expected to reveal the nontrivial
nature of such states [5,23–25]. Moreover, recent works have
shown that applying random unitary transformations before
measuring the FCS provides access to nondiagonal correlators
[26,27], further motivating the development of experimen-
tal approaches to the FCS in strongly interacting quantum
systems.

In this Letter, we report the measurement of the full
counting statistics in large three-dimensional (3D) ensembles
(≈5 × 103 atoms) of interacting lattice bosons after a free-
fall expansion [see Fig. 1(a)]. The FCS is obtained from the
statistics (over many experimental runs) of the atom number
N� falling in small volumes V� (see below). This allows us
to extract two quantities of interest, the probability distribu-
tion P(N�) and the magnitudes g(n)(0) of n-body correlation
functions. We measure these quantities in a configuration
analogous to the far-field regime of light propagation during
which interferences take place, and after which the FCS iden-
tifies quantum states through their many-body coherence [28].

In quantum gases, far-field—or momentum—correlations
have been measured with single-atom detection in nonin-
teracting and nondegenerate bosonic [29,30] and fermionic
[31,32] gases and in Bose-Einstein condensates (BECs) [33].
More recently momentum correlations in interacting bosons
[34–36] and interacting fermions [37] were studied. However,
high-order correlations have thus far been measured only in
one-dimensional (1D) noninteracting bosons [30]. Here, we
study various regimes of interacting 3D lattice bosons across
the superfluid-to-Mott transition, extending the measurement
of many-body correlations to the strongly interacting regime.
This allows us to reveal the role of the depletion of the
condensate in the coherence properties of interacting Bose
superfluids.
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FIG. 1. (a) Free-fall expansion of interacting quantum gases of metastable helium-4 atoms from a three-dimensional optical lattice, yielding
the 3D positions of individual atoms in momentum space. The FCS describes the statistics of the atom number N� detected in a voxel of
volume V� ∼ (δk)3 (red cube). To reveal the many-body coherence properties of the trapped gas of size L, δk is chosen such that δk � 2π/L.
(b) Magnitudes g(n)(0) of n-body correlations as a function of the order n, measured in a Mott insulator (black squares) and a superfluid (blue
circles). The black solid line is the prediction for thermal states, g(n)(0) = n!. (c) g(n)(0) in the superfluid (blue circles) and in a randomized set
(orange squares, see main text). A deviation from the prediction for a pure coherent state, g(n)(0) = 1, is observed.

Bose-Einstein condensation is associated with the break-
ing of a phase symmetry [38] whose complex order
parameter defines a coherent state describing the BEC. Co-
herent states have a Poisson counting statistics, P(N�) =
〈N�〉N� exp[−〈N�〉]/N�! where N� is the number of detected
bosons in the considered volume V�, and a full coherence
g(n) = 1 at any order n of normalized correlations [22]. The
equilibrium state of trapped noninteracting bosons at zero
temperature is a pure BEC, described by such a coherent state.
In an ensemble of interacting bosons, the BEC is depleted by
the quantum depletion, whose momentum-space FCS is not
that of a coherent state. The quantum depletion is indeed a
superposition of two-mode squeezed states at opposite mo-
menta [36] with a thermal-like statistics in small volumes of
the momentum space [35]. The FCS of an interacting Bose
superfluid, i.e., a superposition of a BEC and of the quantum
depletion, can thus be expected to deviate from that of a
perfect coherent state. Similar modifications to the properties
of pure BECs are expected at finite temperature due to the
thermal depletion. A central result of our Letter is to reveal
these deviations, which had not been observed previously
[33], in our experiment.

We probe quantum gases of metastable helium-4 atoms
(4He∗) adiabatically loaded in the lowest energy band of
a 3D optical lattice [39]. The lattice implements the 3D
Bose-Hubbard Hamiltonian whose main parameters are the
tunneling amplitude J and the on-site (repulsive) interaction
U . Our measurement of the FCS in the far field exploits the
3D atom-by-atom detection of 4He∗ after a long free-fall ex-

pansion [40,41] [see Fig. 1(a)]. A crucial asset of our Letter is
the ability to probe many-body coherence in volumes smaller
than the one occupied by one mode in momentum space,
i.e., V� � (2π/L)3 with L the in-trap size of the gas. This
possibility is given by the large quantum efficiency of our
detector [η = 0.53(2)] [36]. From the statistics of the atom
number N� falling in small voxels V�, we measure the proba-
bility distribution P(N�) of N� and the magnitudes g(n)(0) of
correlation functions:

g(n)(0) = g(n)(k, k, . . . , k) = 〈[a†(k)]n[a(k)]n〉
〈a†(k)a(k)〉n

, (1)

where k is the momentum where the volume V� is located.
We determine the magnitudes g(n)(0) (up to n = 6) from the
factorial moments of N� [42],

g(n)(0) = 〈N�(N� − 1) . . . (N� − n + 1)〉
〈N�〉n

, (2)

transposing a well-known approach in quantum optics [43].
As shown in Fig. 1(b) and discussed below, g(n)(0) is found
to vary by several orders of magnitude between the superfluid
and the Mott insulator regimes.

We first investigate the many-body coherence of Mott
insulators. A “perfect” Mott insulator—a uniform Mott in-
sulator at zero temperature—is thought of as a Fock state
in the (in-trap) position basis. In the momentum basis, it
exhibits thermal statistics [34,44,45]. Thermal states are char-
acterized by a counting statistics P(N�) = (1 − q)qN� where
q = 〈N�〉/1 + 〈N�〉 and g(n)(k, k, . . . , k) = n! [46]. Note that
the probability distributions P(N�) for Gaussian states—
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FIG. 2. (a) Probability distribution P(N�) to find N� atoms in a
volume V� when probing a Mott insulator with unity filling (black
circles). The prediction for thermal (respectively, Poissonian) statis-
tics is shown as a dash-dotted black (respectively, dashed blue) line
using the measured value 〈N�〉 = 0.46(5). The shaded areas reflect
the uncertainty on 〈N�〉. (b) Same as panel (a) in the mode k = 0 of
lattice superfluids with U/J = 5 with 〈N�〉 = 5.3(2). Error bars are
smaller than the dots.

such as those with a thermal or a Poisson FCS—are fully
determined by a single parameter, the average number 〈N�〉
[2]. Therefore, a detection efficiency η smaller than 1 does
not affect their measurement—nor that of g(n). We realize
Mott insulators with N = 6.5(6) × 103 atoms at U/J = 76,
which corresponds to a lattice filling of one atom per site
at the trap center [34]. To compute the counting statistics,
we divide the first Brillouin zone into cubic voxels V� of
size δk = 6 × 10−2kd and average the probability distribu-
tions measured over all these voxels. Here kd = 2π/d is the
momentum associated with the lattice spacing d = 775 nm
and the size δk is comparable to that of one mode in mo-
mentum space, δk ∼ 2π/L (see Supplemental Material [47]).
The resulting distribution P(N�) in the Mott state is shown in
Fig. 2(a). It is found to be in excellent agreement with a ther-
mal statistics whose average atom number is that measured in
the experiment, 〈N�〉 = 0.46(5).

The properties of the Mott state are also revealed through
the magnitudes g(n)(0) of the correlation functions. Fully
contrasted correlation functions are measured only when com-
puted in voxels of small size δk � 2π/L, a requirement which
is more stringent than the one for measuring P(N�) [47]. The
magnitudes g(n)(0) are plotted in Fig. 1(b) and are found in ex-
cellent quantitative agreement with the prediction for thermal
states, g(n)(0) = n!. They represent a significant progress with
respect to the literature where only two- [44] and three-body
[34] correlations had been measured with limited amplitudes
g(n)(0) < n!.

In a second set of experiments, we address the n-body
coherence of interacting Bose superfluids. We produce lattice
superfluids with N = 5(1) × 103 at U/J = 5. In momentum
space, the BEC occupies a volume of width �k � 0.15kd cen-
tered at k = 0 [36]. The statistics of the atom number falling
in a sphere S� of a radius δk = 0.025kd � �k, centered at
k = 0, is sufficient to extract the counting statistics [47]. The
volume of S� is chosen much smaller than the one occupied
by the condensate to circumvent the macroscopic constraint
of the fixed total atom number N on the measured statistics of
N� [47]. In Fig. 2(b), we plot the corresponding probability
distribution P(N�), which is found to be close to the Poisson
FCS and which clearly differs from the thermal FCS. This is
confirmed by the measured values of g(n)(0) ≈ 1 at any order
n in the BEC mode [see Fig. 1(b)]. These results, predicted by
Glauber for a coherent state, are in striking contrast with those
of the Mott state, a difference that illustrates the outstanding
capabilities of the FCS to reveal the n-body coherence when
measured after an expansion.

Interestingly, however, our measurements in the BEC mode
deviate from the predictions for a coherent state and from
a previous observation [33]: the deviation in the FCS [see
Fig. 2(b)] is reflected in the fact that g(n)(0) > 1, as shown
in Fig. 1(c). To verify that the observed deviations are statis-
tically meaningful, we apply our computation of the n-body
correlations to a randomized set, with the same numbers of
atoms and of runs. This randomized set is obtained by ran-
domly shuffling the detected atoms across the experimental
runs. Doing so, atom correlations present within individual
runs, i.e., before shuffling, should vanish, and a Poisson
statistics is expected as a result of the discrete nature of
our detection method applied to fully independent events.
Indeed we find g(n)(0) = 1.00(2) at any order n [see the or-
ange squares in Fig. 1(c)], confirming that the deviations in
the (nonrandomized) experimental data are significant. The
randomization method also yields a Poisson statistics when
applied to the Mott insulator data set. Note that the results
of the randomization method validate the algorithm used to
compute the n-body correlations and provide a means to test
the accuracy of the measured statistics [47].

As discussed previously, deviations to a perfectly coher-
ent state are expected in the presence of quantum and/or
thermal depletion of the condensate. Here, we probe Bose
superfluids with both a quantum and a thermal depletion as
our experiment is performed with interacting bosons at fi-
nite temperature. In addition, both the BEC and its depletion
contribute to the mode k = 0 since atoms are released from
a harmonic trap. We are therefore inclined to attribute the
observed deviations g(n)(0) > 1 to the condensate depletion.
To confirm this hypothesis, we repeat our measurements at
increasing values of the condensate depletion. We vary the
lattice depth to obtain ratios U/J ranging from U/J = 2 to 22.
In this range of parameters, the gas remains far from entering
the Mott insulator regime [39], but it enters the strongly in-
teracting regime where the condensate is strongly depleted (at
U/J = 22 the condensate fraction is fc ≈ 0.15). Importantly,
we increase U/J at a constant reduced temperature T/J [39]
so that the increase in the condensate depletion is mostly
due to an increase of the quantum depletion. In Fig. 3(b)
we plot the magnitudes of n-body correlations for U/J = 20.
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FIG. 3. (a, b) Plots of g(n)(0) measured at k = 0 in lattice superfluids with U/J = 5 and 20 [data shown in panel (a) are those of Fig. 1(c)].
The dashed lines (respectively, shaded areas) are the predictions of the model with the values fcoh (respectively, uncertainties on fcoh) fitted to
the data. (c, d) Plots of 1D cuts through the momentum densities ρ(k) measured at U/J = 5 and 20 and normalized to their value at k = 0.
The vertical shaded area indicates the volume occupied by the sphere S� where the FCS is evaluated. The horizontal dash-dotted lines indicate
the fitted values 1 − fcoh in panels (a) and (b). Lorentzian fits (dashed lines) in the range [0.2kd , 0.5kd ] estimate the density of the depletion at
k = 0 (shaded areas represent the fit error).

The deviation from the ideal coherent state is increased, in
qualitative agreement with our physical picture.

To be more quantitative, we introduce a heuristic model
that describes the contribution of both BEC atoms and de-
pleted atoms to the measured number N� falling in S�. We
define the “coherent fraction” fcoh as the fraction of N� that
belongs to a coherent state BEC. Our model assumes (i) that
atoms in the BEC and in the depletion contribute indepen-
dently to the measured counting statistics in S� [48] and (ii)
that the BEC is a coherent state while both the thermal and
quantum depletion exhibit thermal statistics in S�. We empha-
size that describing the contribution of the quantum depletion
with a thermal statistics is an assumption, although the statis-
tics of the quantum depletion was shown to be thermal when
measured at nonzero momenta, outside the BEC [35]. With the
hypotheses of our model, we obtain an analytical prediction
for g(n)(0) that depends only on the coherent fraction fcoh [47]:

g(n)(0) − 1 =
n−1∑
p=1

[
(n − p)!

(
n

p

)2

−
(

n

p

)]
f p
coh(1 − fcoh )n−p.

(3)

Note that, while our model straightforwardly predicts the
magnitudes g(n)(0), this is not the case for the probability dis-
tribution P(N�) which is difficult to obtain from the moments
of N� [49].

In Fig. 3, we fit the data with the analytical prediction of
Eq. (3). First, we find that Eq. (3) correctly fits the values of
g(n)(0) with a single adjustable parameter fcoh. Second, the
extracted values of fcoh decrease with the interaction strength

as intuitively expected. The uncertainty on the values fcoh is
extremely small, at the ≈0.1% level. As can be inferred from
Fig. 3, the larger the order n of correlations we measure, the
smaller the uncertainty on fcoh. This illustrates the extreme
sensitivity of high-order correlations to probe many-body
coherence.

A quantitative test of the model would compare the value
1 − fcoh to the fraction ηD of depleted atoms detected within
S�. We are not aware of a quantitative analytical prediction
for ηD in 3D interacting trapped lattice Bose gases. However,
an indirect comparison is amenable from measuring the mo-
mentum densities. In Figs. 3(c) and 3(d), we plot 1D cuts
through the momentum densities measured at U/J = 5 and
20 and we fit the tails (in the range [0.2kd , 0.5kd ]) with a
Lorentzian function to extrapolate the density of the deple-
tion at k = 0. Using a Lorentzian function is an arbitrary
choice which happens to correctly fit the tails. This anal-
ysis indicates that the values 1 − fcoh are compatible with
the extrapolated densities, while both quantities vary by one
order of magnitude. Another test of the model is provided in
the Supplemental Material [47], supporting the idea which
attributes the deviations g(n)(0) > 1 to the condensate de-
pletion. It would be interesting to confirm theoretically this
picture drawn from the heuristic model, in particular in the
strongly interacting regime where the model’s hypothesis is
uncertain.

In conclusion, we have presented measurements of the full
counting statistics and of high-order correlations in interacting
lattice Bose gases. We have obtained perfectly contrasted n-
body correlations between up to n = 6 individual atoms, as
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illustrated by the measured magnitudes g(n)(0) � n! in Mott
insulators. Furthermore, we have shown that the coherence
properties of interacting Bose superfluids deviate from those
of a coherent state because of the condensate depletion, in
particular of the quantum depletion. The role of the deple-
tion in the n-body coherence unveiled in this Letter was not
identified previously in the weakly interacting regime [33]. A
major technical difference of our experiment with respect to
that of [33] is that the volume V� used in that work to compute
the statistics is larger than the coherence volume (2π/L)3,
a choice made in light of a smaller detection efficiency η ≈
0.08. We conclude that our ability to obtain sufficient statistics
in tiny volumes is a major asset to quantitatively probe many-
body correlations. In the future, our experimental approach
to the full counting statistics could be used to study a large

variety of interacting quantum states and phase transitions
(see, e.g., [9–11,50]) as well as to access nontrivial n-body
correlations [26,27].
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