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Spectroscopic signature of sublattice polarization in the lattice dynamics
of an antiferroelectric crystal
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Spectroscopic measurements of the far-infrared phonon dynamics for a model antiferroelectric crystal are
performed at low temperature. In agreement with the phenomenological expectations for a displacive antiferro-
electric transition, a polar soft mode associated to a close-lying polar phase of the otherwise centrosymmetric
structure is observed. Incomplete softening of the polar soft mode due to the antiferroelectric transition quantifies
the energy barrier between the neighboring states. The dynamics are modeled with a biquadratic Landau potential
incorporating a symmetry constraining effective interaction between displaced ions. A signature of sublattice
polarization is observed in a scaling of the effective antipolar interaction in the antiferroelectric phase.
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The intuitive notion of antiferroelectricity, as laid out in
Kittel’s seminal paper [1] and many subsequent works (e.g.,
Refs. [2,3]), is rooted in the concept of sublattice polarization,
i.e., the idea that one can identify a dipolar structure in an
antiferroelectric (AFE) crystal such that (i) the total (average)
polarization cancels out in the absence of an electric field,
the so-called antipolar phase, and (ii) each sublattice can
be controlled or “switched” by an electric field, inducing a
polar phase transition with characteristic double-hysteresis
P–E loops. In the most general sense, such an image is not
strictly valid, as any ionic crystal can be decomposed into
subregions with apparent opposite polarization [4,5]. Yet,
it is certainly practical when elements carrying an electric
dipole are naturally identified in a structure, such as in AFE
molecular [6] or liquid crystals [7]. Moreover, it makes sense
to consider the emergence of polarized sublattices in the
context of phase transitions involving a symmetry descent
from a parent to a lower-symmetry phase with local breaking
of inversion symmetry [8].

In principle, for a proper AFE transition, sublattice polar-
ization is the primary order parameter that emerges below
the critical temperature Tc. It therefore represents the key
quantity to monitor in AFE systems, although it is rarely done.
For one thing, sublattice polarization cannot be measured
by integrating transient currents (as is done for ferroelectric
polarization), and thus it is never in fact quantified directly.
Instead, other quantities like ion displacements are used as
a proxy, or the evolution of the saturation polarization seen
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in the P–E double loop is monitored as a function of tem-
perature. Often, the requirement for large poling fields, and
the common occurrence of spurious currents with origins
other than polarization reversal means this approach is not
always possible. Moreover, in the case of displacive AFE
transitions specifically, there are a lack of suitable model
systems for which the order parameter is well defined. In-
deed, many of the commonly studied AFE crystals are either
of the order-disorder type [9,10], or are very complex with
multiple interacting order parameters, sublattice polarization
being essentially improper in these cases. The latter applies
in particular to the model AFE perovskite PbZrO3 [11–13],
whose electric-field-induced transition is far more complex
that the simple flipping of a polarization sublattice as envi-
sioned in a Kittel AFE. Thus, there is a strong motivation to
find new models, and specifically an AFE equivalent of the
famous displacive ferroelectric (FE) PbTiO3.

Recent work has shown that francisite
[Cu3Bi(SeO3)2O2Cl] might just fill this gap. Aside from
a novel antiferromagnetic order below TN = 25 K, francisite
features a structural phase transition at ∼118 K [14]. Its
low-energy phonon dispersion reveals this to be driven by an
antipolar vibrational soft mode at the Brillouin-zone bound-
ary [15]. This discovery highlights a rare example, where
a single zone-boundary (antipolar) phonon drives a purely
displacive phase transition in one dimension. The simplistic
one-dimensional symmetry descent (see Fig. 1), accompanied
by a dielectric anomaly, fits within an antipolarized sublattice
description [14]. At the same time, structural computations
show that a close-lying polar phase is nearly degenerate to
the antipolar ground state [15,16]. Together, these indicators
provide strong evidence that francisite is indeed a model
example of a displacive AFE. In this scenario, we expect that
the antipolar soft mode representing out-of-phase oscillations
of the ions associated to the polarized sublattice is connected
via the phonon dispersion to a zone-center polar mode repre-
senting in-phase oscillations of the same ions [17,18]. Thus,
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FIG. 1. ac-plane crystal structure of francisite showing antipolar
distortion of parent Pmmn (No. 59) phase to lower-symmetry Pcmn
(No. 62) phase below Tc ≈118 K. Red and blue shaded areas exag-
gerate the atomic displacements below Tc.

a polar soft mode should also be visible in the low-frequency
infrared spectrum of francisite, evidence that is so far lacking.

In this Letter, we perform an infrared (IR) study of
francisite, extending the previously investigated frequency
range [19] into the sub-THz domain. The results show clear
evidence of a polar soft mode consistent with a zone-center
extrapolation of its antipolar counterpart. Moreover, we show
that both modes are well described by a one-dimensional
second-order displacive model, from which a signature of the
sublattice polarization can be obtained. Together these results
further support the argument towards francisite as a textbook
example of an ideal displacive AFE.

Far-IR reflectivity and complex THz transmission mea-
surements of francisite were performed on a thin single-
crystal sample, with dimensions ∼5 × 5 × 0.1 mm3, grown
using the chemical vapor-phase method described in Ref. [19].
The primary face of the sample was normal to the ĉ axis
and the optical polarization was fixed e ‖ â to probe the
lattice dynamics along the antiferrodistortive axis. The reflec-
tivity measurements were performed using a Bruker Vertex
80v Fourier-transform infrared (FTIR) spectrometer. The
transmission measurements we performed using backwards
wave-oscillator sources implemented in a Mach-Zehnder
(MZ) interferometer. Spectra were obtained at 13 tempera-
tures between 10 and 300 K. Further experimental details can
be found in the Supplemental Material along with broadband
spectra covering the frequency range 8–900 cm−1 [20].

The a-axis reflectivity between 8 and 120 cm−1 is shown
in Fig. 2(a). Spectra at three characteristic temperatures are
featured: One below both the magnetic (TN) and structural
(Tc) phase transitions (10 K), one in proximity to Tc (120 K),
and one above Tc (300 K). Data points from 40–120 cm−1

are the experimental results of the FTIR measurements. Data
points from 8–28 cm−1 are from the MZ interferometer. The
complex transmission measurements of the MZ interferom-
eter have been converted to reflectivity to help analyze the
FTIR data into the sub-THz range. This was achieved by

FIG. 2. Low-energy IR lattice dynamics in francisite. The exper-
imental reflectivity (a) is used to extract the real (b) and imaginary
(c) components of the dielectric permittivity. Labels indicate the
different phonon contributions to the Lorentzian oscillator model of
Eq. (2).

converting the measurements of transmission and phase into a
complex permittivity (ε = ε1 + iε2) and then applying the fol-
lowing Fresnel equation describing single bounce reflectivity
at normal incidence,

R(ω) =
∣∣∣∣
1 − √

ε(ω)

1 + √
ε(ω)

∣∣∣∣
2

. (1)

Solid lines in Fig. 2(a) are theoretical fits using Eq. (1) and an
underdamped Lorentz-oscillator model of the form

ε(ω) = ε∞ +
∑

i

�εiω
2
i

ω2
i − ω2 − iγiω

. (2)

Here, �εi represents the oscillator strength, ωi the frequency,
and γi the damping (full width at half-maximum) of the
ith Lorentzian-oscillator phonon mode. The fitting was per-
formed using a Marquardt-Levenberg least-squares procedure
within the WAVE METRICS IGOR PRO software package. The
high-frequency contribution to the permittivity (ε∞ = 4.2)
was held constant to improve fitting stability and is justified
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by the static reflectivity above ∼850 cm−1 observed over all
temperatures.

We note that the uncertainties of the fits determined by
a covariance matrix implemented in the least-squares fitting
algorithm will typically underestimate the true experimen-
tal error of the measurements [25]. Thus, the uncertainty in
frequency position was further approximated by taking the
half-width at half-maximum value of the corresponding peak.
The uncertainty for the dielectric contribution for each os-
cillator was approximated by considering a 5% uncertainty
in its reflectivity contribution, a modest assumption based on
observations of repeatability of the reflectivity measurements.

Despite the onset of antiferromagnetic order below
25 K [14], the magnetic permeability was held constant at
μ = 1 in all fits. A small peak in the 10-K reflectivity at
∼11 cm−1 is attributed to antiferromagnetic resonance in the
permeability channel of the complex transmission measure-
ments. We note that this magnetic contribution should not
appear with this profile and strength in reflectivity but found
that it had negligible consequence on the fitting of ε(ω) com-
pared to the far more dominant lattice dynamics.

The real and imaginary components of the dielectric per-
mittivity extracted from the reflectivity fits are shown in
Figs. 2(b) and 2(c). The spectrum is dominated by a strongly
damped oscillator at ∼40 cm−1 that softens with decreasing
temperature. Below Tc, it starts to harden and becomes less
damped. This behavior is reminiscent of the low-frequency
phonon dynamics of other notable AFE candidates such as
Rochelle salt [26] and PbZrO3 [27].

The damped profile and frequency softening is indicative
of a polar lattice instability. While attempts were made to fit
this mode with an overdamped oscillator of the Debye form,
it was found that the Lorentz model gave the best fit for all
temperatures investigated. The absence of complete softening
and significantly overdamped or “central mode” behavior [28]
is a strong indication that the structural transition at Tc is
essentially displacive as proposed by Milesi-Brault et al. [15].

The temperature dependence of the fitted oscillator pa-
rameters and their uncertainties are given in Fig. 3. Here,
the lowest-energy mode designated ωF clearly features the
most prominent changes in relation to the other phonons.
Specifically, the frequency (ωF) softens to about 50% of its
300-K value at Tc. It then hardens significantly at lower tem-
peratures while none of the other phonons shift in frequency
by more than 5% across the entire temperature span. The
damping (γF) is also unique, demonstrating a rapid shift from
critical damping as ωF → γF above Tc to underdamping be-
low ∼80 K. Finally, the oscillator strength (�εF) representing
the primary contributor to the static permittivity exhibits a
characteristic anomaly at Tc. The sum of all the dielectric con-
tributions (including ε∞) is in excellent agreement with the
low-frequency capacitive measurements obtained at 100 kHz
using an alpha-analyzer and Physical Properties Measurement
System (PPMS) [20]. This gives strong support to our fitting
model and highlights the primary role ωF plays in the dielec-
tric response of the â-axis antipolar transition.

So far, the characteristic double-hysteresis P–E loop used
to identify a close-lying FE phase has not been observed
for francisite. Attempts were made by measuring the charge
buildup on silver painted electrodes as a function of volt-

FIG. 3. Temperature dependence of fitted oscillator parameters.
The soft mode is highlighted (rose) relative to the other more static
lattice modes (teal). The yellow shaded area in (c) represents a
geometric calibration uncertainty for the capacitance measurements
(see [20–24] for details).

age applied along the â direction [20]. Voltage sweeps up
to ±80 kV/m were performed at several temperatures above
and below Tc. Electrical discharge across the sample inhibited
higher field strengths. No clear signature of an electrically
induced FE or ferrielectric phase was observed, but we note
that the maximum field achieved here lies well below typical
antiferroelectric switching fields [29].

In the absence of an electric-field induced transition, we
look to the IR lattice dynamics for insight regarding a potential
neighboring polar phase. A displacive AFE transition should
be accompanied by a FE soft mode that represents the � point
of the antipolar soft-mode band [18]. The energy difference
between the � point and boundary point of the phonon disper-
sion determines if a FE or AFE phase is ultimately stabilized.

This is in precise agreement with our IR observations for
e ‖ â and the polar soft-mode behavior of ωF. At 300 K,
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FIG. 4. (a) Simplified diagram of local polar moments carried by the FE (ωF) and AFE (ωAF) soft modes. Each displacement xa and xb

behaves independently in its local potential [Eq. (3)], only interacting through the model potential [Eq. (5)]. (b) Squared frequency dependence
of ωF obtained using IR techniques described in the text and ωAF adapted from Ref. [15] obtained using inelastic x-ray scattering (IXS) and
Raman spectroscopy. (c) The difference of ω2

F and ω2
AF is proportional to the model interaction potential revealing a signature of the AFE

sublattice polarization below Tc (orange shaded area).

ωF = 41 cm−1 while the antipolar soft mode ωAF = 27 cm−1,
as determined by inelastic x-ray scattering in Ref. [15]. The
dispersion band of ωAF mapped from the Z point towards the
� point in Ref. [15] increases in energy and intercepts our
observation of ωF close to the � point. Thus, we identify ωF

as the polar mode for the neighboring FE phase. We can then
use the incomplete softening of ωF at Tc as a probe of the
energy barrier between the FE and AFE phases. Taking the
displaced Cl− ions as the primary ionic distortion below Tc

(see Ref. [20]), we estimate that electric fields of the order
of ∼1.2 MV/m are required to switch francisite to its polar
phase in the vicinity of Tc.

A key observation of Ref. [15] [see Fig. 4(b)] is how the
temperature evolution of the antipolar soft mode in francisite
follows Cochran’s model of displacive transitions, i.e., ω2

AF ∝
(T − Tc) [17,30]. This indicates that the antipolar distortion,
confined largely to a single crystallographic axis, occurs due
to a local lattice instability.

We can model a simple one-dimensional instability with a
biquadratic Landau potential

U (x) = ax2 + bx4, (3)

where x is the ionic displacement and a(T ) = α(T − Tc).
Antipolar instability is achieved by considering two equiv-
alent masses (ma = mb = m), each within a local potential
[Eq. (3)], and constrained along two independent parallel axes
xa and xb as in Fig. 4(a). Here, we can select for polar or
antipolar symmetry by including an “effective interaction”
potential

UF = c(xa − xb)2, (4)

UAF = c(xa + xb)2. (5)

The total potential experienced by each mass is Utot =
U (xa,b) + UF,AF. Ferroelectric (UF) or AFE (UAF) order is
selected depending on the choice of interaction and by fixing
xa = xb for the FE and xa = −xb for the AFE case. The eigen-
modes describing the dynamics of this model are derived in
the Supplemental Material [20] and summarized in Table I.

Naturally, the behavior of the polar eigenmode for FE
ordering is nothing but the well-documented ferroelectric soft
mode with an order parameter of spontaneous polarization
given by P = qnx, where q and n are the charge and density of
the displaced ion. Interestingly, the antipolar mode is gapped
relative to the polar mode by an amount proportional to the in-
teraction potential. The situation is reversed for AFE ordering.
Thus, considering all other parameters equal (mass, charge,
density), the difference between the squared frequencies of
the polar and antipolar modes for each type of ordering is
directly proportional to the strength of the interaction potential
ω2

F − ω2
AF ∝ c.

The temperature evolution of ω2
F and ω2

AF in francisite is
shown in Fig. 4(b). In a previous paper, we stated the ratio
between the slopes of ω2

AF above and below Tc = 115 K
as −3.4 [15]. This is in disagreement with the prediction of
−2 from Table I. It suggested that the displacive transition in
francisite is not purely second order, involving elements of a

TABLE I. Eigenmodes of the one-dimensional displacive model
described by Eqs. (3)–(5).

Interaction Polar mode Antipolar mode

FE mω2
F = −4a mω2

AF = −4a + 4c
T < Tc AFE mω2

F = −4a + 4c mω2
AF = −4a

FE mω2
F = 2a mω2

AF = 2a + 4c
T > Tc AFE mω2

F = 2a + 4c mω2
AF = 2a
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tricritical nature. After reexamining our previous neutron and
x-ray diffraction measurements [14,15], we determine that the
critical temperature is in fact closer to Tc = 118 K. Taking this
into consideration, we find the ratio of the slopes for ω2

AF in the
proximity of Tc to be −2.4 ± 0.6, indicating good agreement
with the second-order model.

The difference between the squared soft-mode frequencies
is shown in Fig. 4(c). As stated above, this relationship is
proportional to what can be considered the intersublattice
stiffness c. Interestingly, while c(T ) remains constant in the
paraelectric phase, it exhibits critical behavior in the AFE
phase, increasing nonlinearly below Tc. The trend is well fit by
a power-law relation ω2

F − ω2
AF = λ0 + λ1τ

β , with τ = Tc−T
Tc

,

λ0 = 10.7 ± 2.0 meV2, λ1 = 21.2 ± 1.7 meV2, and critical
exponent β = 0.66 ± 0.17, consistent with the mean-field
universality class.

The tendency for c to increase with a mean-field de-
pendence in the AFE phase is suggestive of an underlying
connection to the AFE order parameter. This can be under-
stood in terms of a first-degree Taylor expansion of c with
respect to the local ionic displacement c(x) = c0 + ∂c

∂x (x −
x0), where (xa,b − x0) ∝ Pa,b represents the Kittel sublattice
polarization [1]. Intuitively, the local interaction potential con-
fining the displaced ions in antipolar symmetry is reinforced
by the molecular field of staggered dipoles in the AFE phase.

In the so-called modern theory of polarization, FE or-
der is given a topological interpretation, where electric
polarization emerges through the existence of topologically
protected boundary charges [31–33]. Extending to higher-

order multipoles invokes topological states that describe bulk
quadrupoles or octupoles [34]. In this context, it is tempting to
consider if a bulk quadrupole moment similar to the cartoon
depiction in Fig. 1 could more naturally describe the electric
field gradient of staggered dipoles in francisite. Interestingly,
investigations of this field gradient were carried out early on
in the history of AFEs in the general search for dielectric
anomalies surrounding those transitions [35–37]. We antici-
pate it would be beneficial to revisit those experiments and
techniques in light of recent progress in AFE materials.

In conclusion, we have shown foundational work detailing
the polar soft-mode dynamics in a model displacive AFE ma-
terial. The dynamics are in precise agreement with expected
behavior, highlighting a close-lying FE phase. By relating
experimental observations to the eigenmodes of a simple
one-dimensional displacive model, we extract a signature of
the sublattice polarization. This analysis is possible in fran-
cisite as the key polar and antipolar soft modes are uniquely
identified along a single-crystallographic dimension. It will
be interesting to see if similar analyses using comprehensive
lattice dynamical studies can be applied to other AFEs, a key
observation being parallel evolution of ωF and ωAF above Tc.

We acknowledge H. Berger for growing the single-crystal
francisite samples. We thank M. Ryzhkov for helpful dis-
cussions on the capacitive measurements. This work was
financially supported by the Austrian Science Fund (Project
No. P 32404-N27).
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