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Two fundamental quantum resources, nonlocality and contextuality, can be connected through Bell inequalities
that are violated by state-independent contextuality (SI-C) sets. These Bell inequalities allow for applications
that require simultaneous nonlocality and contextuality. However, for existing Bell inequalities, the nonlocality
produced by SI-C sets is very sensitive to noise. This precludes experimental implementation. Here we identify
the Bell inequalities for which the nonlocality produced by SI-C sets is optimal, i.e., maximally robust to either
noise or detection inefficiency, for the simplest SI-C [S. Yu and C. H. Oh, Phys. Rev. Lett. 108, 030402 (2012)]
and Kochen-Specker sets [A. Cabello et al., Phys. Lett. A 212, 183 (1996)] and show that, in both cases,
nonlocality is sufficiently resistant for experiments. Our work enables experiments that combine nonlocality
and contextuality and therefore paves the way for applications that take advantage of their synergy.
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Introduction. Bell nonlocality [1–3] and Kochen-Specker
(KS) contextuality [4–6] are two fundamental quantum re-
sources that are crucial for quantum information processing.
Applications such as device-independent quantum key distri-
bution [7–9] require nonlocality. On the other hand, certain
schemes for universal quantum computation [10,11], quantum
computation tasks with quantum advantage [12], and methods
for benchmarking quantum computers [13,14] need con-
textuality. In addition, applications such as communication
complexity [15,16], certification of quantum devices [17–19],
and dimension witnessing [20,21] require either nonlocality
or contextuality, depending on the task.

Here we address the problem of combining nonlocality and
contextuality in the same experiment. This will allow us to
tackle tasks that cannot be accomplished using either nonlo-
cality or contextuality individually. To this end, we consider
the scenario depicted in Fig. 1, involving three nodes (Alice,
Bob, and Charlie). A source of entangled pairs of particles
is placed between Alice and Bob, which they use to produce
nonlocal correlations. Furthermore, we assume that the mea-
surements that Bob performs are nondemolition projective
(also known as ideal [22]) measurements and that Charlie
performs additional measurements on Bob’s particle [23–29]
(see Fig. 1). We aim at producing contextuality between
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Bob and Charlie using the same state and measurements that
Bob uses for producing nonlocality with Alice. We refer
to this target as simultaneous nonlocality and contextuality
(SNC).

The straightforward application of SNC is employing
two protocols with quantum advantage in the same experi-
ment. These could be, for example, nonlocality-based secret
communication [7] and a contextuality-based communication
complexity protocol with quantum advantage [16]. In addi-
tion, SNC is important by itself as there are applications
that require both nonlocality and contextuality to achieve
tasks that none of them can accomplish individually [28].
For example, combining nonlocality- and contextuality-based
self-testing [17,18] might facilitate certification of quantum
transformations produced by Bob’s device [30]. Finally, a
third motivation for SNC is investigating the connections be-
tween nonlocality and contextuality [31].

Simultaneous nonlocality and contextuality cannot be pro-
duced by simply combining the violation of the simplest Bell
inequality, the Clauser-Horne-Shimony-Holt inequality [32],
between Alice and Bob, and the violation of the simplest
noncontextuality inequality, the Klyachko-Can-Binicioğlu-
Shumovsky inequality [33], between Bob and Charlie. The
reason is that, in this case, there is a fundamental trade-off
between nonlocality and contextuality [24,25,29]. However, it
has been recently shown [34] that SNC is possible if all parties
choose their measurements from any state-independent con-
textuality (SI-C) set [35,36]. A SI-C set contains two-outcome
observables represented by rank-one projectors and produces
contextual correlations (i.e., violates a given noncontextuality
inequality) no matter what the initial quantum state is. In
particular, a SI-C set produces contextuality also when the
initial state is mixed, as it is the case for the reduced state
of Bob’s particle before he performs his measurement (see
Fig. 1). State-independent contextuality sets have been shown
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FIG. 1. Simultaneous nonlocality and contextuality. If Alice and
Bob share a source of pairs of maximally entangled qudits, x, y, z ∈
S, and S is a SI-C set (and thus a, b, c ∈ {0, 1}), then the parties
produce simultaneously Bell nonlocality between Alice and Bob and
contextuality between Bob and Charlie.

experimentally [37–39] and can be considered fundamental
quantum resources on their own.

The first SI-C set identified had 117 observables in di-
mension d = 3 and was used by Kochen and Specker to
prove the KS theorem of impossibility of hidden variables [4].
State-independent contextuality sets that have the proper-
ties needed to prove the KS theorem are called KS sets
(see the Supplemental Material [22]). Recently, it has been
shown [40] that the simplest KS set has 18 observables in
dimension d = 4 [41]. This set, here called KS18, is shown in
Fig. 2(a). The optimal (i.e., maximally violated by KS18, for
any state, including states with an arbitrary degree of noise)
and tight noncontextuality inequalities (i.e., separating the set
of noncontextual and contextual correlations) for KS18 are
known [35,42,43].

While any KS set is a SI-C set, not any SI-C set is a KS
set (see the Supplemental Material [22]). The simplest [44,45]
SI-C set is the one with 13 observables in dimension d = 3
found by Yu and Oh [46] and shown in Fig. 3(a). The Yu-Oh
set is not a KS set [22]. The optimal and tight noncontextuality
inequalities for the Yu-Oh set are also known [43].

The correlations produced by measuring any SI-C set in
dimension d on a two-qudit maximally entangled state vi-
olate a Bell inequality constructed from the SI-C set [41].
However, such inequalities are neither optimal (in this case
meaning maximally resistant to either noise or detection in-
efficiency [47]) nor tight Bell inequalities (i.e., separating
the set of local and nonlocal correlations [48]). Moreover,
these inequalities do not allow for experimental Bell tests
because nonlocality with respect to them is very sensitive to
noise, which prevents experimental implementations and in
particular those with spacelike separation. On the other hand,
tightness is important for both fundamental and practical
reasons [49–53].

The fact that the optimal and tight Bell inequalities are
not known for any SI-C set contrasts with the fact that, as
it was pointed out before, the optimal and tight noncontex-
tuality inequalities for KS18 and the Yu-Oh set were already
identified. This means that, in the scenario shown in Fig. 1,
the optimal witnesses for detecting contextuality between Bob
and Charlie using the most fundamental SI-C sets are known,
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FIG. 2. (a) KS18 and its graph of compatibility. Each vector vi

of KS18 is represented by a black node. Orthogonal vectors, which
correspond to compatible observables, are represented by adjacent
nodes. Nodes along the same straight line (or ellipse) represent
mutually adjacent nodes. Same color nodes (edges) are structurally
equivalent (see the Supplemental Material [22]). (b) Bell operator
It
KS18. The Bell inequality It

KS18 � 8 is tight and is maximally violated
by the KS18 correlations. The coefficients of It

KS18 are presented
using a matrix of the form (5). Color coding is used to emphasize
that the coefficients in It

KS18 share the same symmetries as the graph
shown in (a). The entries with white background correspond to graph
nodes and edges shown in (a). The coefficients of the entries with
white background are also color coded. The coefficients associated
with the corresponding edges have the same color as used in (a) (red,
blue, and black). The coefficients associated with nonadjacent nodes
[not shown in (a)] have entries with three different backgrounds (or-
ange, violet, and cyan), one for each of the three orbits of nonadjacent
nodes in (a) (see the Supplemental Material [22]).

but the optimal witnesses for detecting nonlocality between
Alice and Bob are still missing.

The aim of this work is to identify the optimal and tight
Bell inequalities for the correlations produced by measuring
KS18 and the Yu-Oh set on maximally entangled states. Here-
after, we will refer to these correlations as KS18 correlations
and Yu-Oh correlations, respectively.

Our motivation roots, first, in having Bell inequalities that
can be exploited and deployed in experiments requiring space-
like separation and that enable the development of SNC and its
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FIG. 3. (a) Yu-Oh set and its graph of compatibility. Each vector
vi of the Yu-Oh set is represented by a node. Orthogonal vectors,
which correspond to compatible observables, are represented by
adjacent nodes. Same color nodes (edges) are equivalent (see the
Supplemental Material [22]). (b) Bell operator It

Yu-Oh,V . The Bell
inequality It

Yu-Oh,V � 12 is tight and provides maximum resistance
to noise for the Yu-Oh correlations. The coefficients of It

Yu-Oh,V are
presented with the aid of a matrix of the form (5). Color coding is
used to emphasize that the coefficients in It

Yu-Oh,V share the same sym-
metries as the graph shown in (a). The entries with white background
correspond to graph nodes and edges. The coefficient associated with
each of the nodes (edges) has the same color as used in (a) (red,
blue, black, and green). The coefficients associated with nonadjacent
nodes have entries with five different backgrounds (brown, violet,
cyan, orange, and magenta), one for each of the five orbits of nonad-
jacent nodes [not shown in (a)] (see the Supplemental Material [22]).

applications. Second, we are motivated by the fact that optimal
and tight Bell inequalities for SI-C sets are by themselves
fundamental. On the one hand, they provide the optimal way
of using a fundamental quantum resource (a SI-C set) for
producing a fundamental quantum effect (nonlocality). On the
other hand, they allow proving Bell’s theorem [1] through the
violation of Bell inequalities inspired by the KS theorem [4],
thus connecting these two fundamental theorems.

Methods. The set of local correlations for the Bell scenario
with two parties, m measurement settings, and two outcomes,
called the (2, m, 2) Bell scenario, is a polytope, called the
local polytope, that has 22m vertices [48]. For the KS18 cor-
relations, m = 18. For the Yu-Oh correlations, m = 13. This
makes finding optimal and tight Bell inequalities difficult (see
the Supplemental Material [22]).

To address this, we developed a three-step approach. In the
first step, we identify Bell inequalities for which the nonlocal-
ity of the KS18 or Yu-Oh correlations has high resistance to
noise or detection inefficiency. In the second step, we verify
whether these inequalities are tight and if not we use them
to construct tight inequalities. In the third step, we verify
whether the resulting inequalities are maximally robust to
either white noise or detection inefficiency, respectively.

In the first step, we implement a numerical technique based
on Gilbert’s algorithm for quadratic minimization [54]. This
iterative algorithm minimizes the distance between a given
matrix of correlations and the local polytope and yields a Bell
inequality [55–57] (see the Supplemental Material [22] for
details).

Depending on the type of robustness we want, we adopt
a different approach. To obtain Bell inequalities with high
resistance to white noise, we assume that the state shared by
Alice and Bob is of the form

ρ = V |ψ〉〈ψ | + (1 − V )
1

d2
, (1)

where |ψ〉 = 1√
d

∑d
j=1 | j j〉, 1 is the identity matrix, d is the

dimension of the local subsystems (d = 4 and 3 for the KS18
and Yu-Oh correlations, respectively), and V is called the
visibility. For any state of the form (1), the joint probability
that Alice obtains outcome 1 for measurement �i (with pos-
sible outcomes 0 and 1) on her particle and Bob obtains the
outcome 1 for measurement � j on his particle is

Pρ

(
�A

i = �B
j = 1

) = V P|ψ〉
(
�A

i = �B
j = 1

) + (1 − V )
1

d2
.

(2)
Similarly, the marginal probability that each of the parties
obtains outcome 1 for measurement �i is

Pρ

(
�A

i = 1
) = V P|ψ〉

(
�A

i = 1
) + (1 − V )

1

d
,

Pρ

(
�B

i = 1
) = V P|ψ〉

(
�B

i = 1
) + (1 − V )

1

d
. (3)

For a given Bell inequality, we denote by Vcrit the minimum
value of V required to violate the inequality with the state (1).

To obtain Bell inequalities resistant to detection ineffi-
ciency, we assume that the source of pairs is heralded, the
initial state is |ψ〉, and each of the parties assigns the outcome
0 when they fail to detect the particle [47]. Then

Pη
(
�A

i = �B
j = 1

) = η2P|ψ〉
(
�A

i = �B
j = 1

)
,

Pη
(
�A

i = 1
) = ηP|ψ〉

(
�A

i = 1
)
,

Pη
(
�B

j = 1
) = ηP|ψ〉

(
�B

j = 1
)
, (4)

where η is the detection efficiency; η it is assumed to be
the same for all parties, measurements, and outcomes. For
each correlation (i.e., state and measurements) violating a Bell
inequality, there is a critical value of the detection efficiency
ηcrit above which local models cannot simulate the quantum
correlations [47].

At the end of the first step, we have Bell inequalities with
respect to which the KS18 or Yu-Oh correlations are robust
to either noise or detection inefficiency. In the second step,
we check whether these inequalities are tight. To this end,
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we collect all the vertices that saturate the local bound and
form the largest set of affinely independent vectors. If the
length of the affinely independent set is D, then they span
a vectorial subspace of dimension D − 1 (the polytope is in
RD), hence a facet of the local polytope so the Bell inequality
is tight [50,58].

However, in most cases the Bell inequalities obtained after
the first step are not tight. Then we use them to obtain tight
inequalities. For that, we exploit three facts. (i) When the
inequalities obtained after the first step are written using the
Collins-Gisin parametrization [59] (explained below), their
coefficients display symmetries that allow us to reduce the
number of independent coefficients. (ii) The vertices of the
local polytope that saturate the local bound have an orthogonal
subspace of dimension 1. Therefore, the linear combination of
all these vertices must be a vector with at most one component
equal to zero. Otherwise there would be at least two linearly
independent vectors that are orthogonal to all the vertices,

leading to an orthogonal subspace of at least dimension 2.
(iii) A facet of a polytope in RD must at least be saturated
by D vertices. Otherwise, this facet could not contain D
affinely independent vectors [60,61]. (See the Supplemental
Material [22] for details.)

Finally, the third step of our method consists in proving that
the inequalities obtained after the second step are optimal with
respect to white noise or detection efficiency. In order to do so,
we identify local models that, for the critical values of detec-
tion efficiency ηcrit and visibility Vcrit, reproduce the KS18 or
Yu-Oh correlations. (See the Supplemental Material [22] for
details.)

The Collins-Gisin parametrization follows from the fact
that any Bell inequality with two-outcome measurements can
be written as I � L, with I = ∑

x,y c(�A
x = �B

y = 1)P(�A
x =

�B
y = 1)+ ∑

x c(�A
x = 1)P(�A

x = 1)+ ∑
y c(�B

y = 1)P(�B
y =

1), where the coefficients can be arranged in a matrix
as

⎛
⎜⎜⎜⎝

c
(
�A

1 = 1
) · · · c

(
�A

m = 1
)

c
(
�B

1 = 1
)

c
(
�A

1 = �B
1 = 1

) · · · c
(
�A

m = �B
1 = 1

)
...

...
. . .

...

c
(
�B

m = 1
)

c
(
�A

1 = �B
m = 1

) · · · c
(
�A

m = �B
m = 1

)

⎞
⎟⎟⎟⎠ (5)

and L is the upper bound of I for local models.
Results. Using the methods described before, we have

obtained five Bell inequalities: two optimal and tight Bell
inequalities for the Yu-Oh correlations and two optimal and
one tight Bell inequalities for the KS18 correlations. The tight
inequalities for the (2,13,2) Bell scenario are

It
Yu-Oh,V � 12, (6)

It
Yu-Oh,η � 4, (7)

where It
Yu-Oh,V is given in Fig. 3(b) and It

Yu-Oh,η in the Sup-
plemental Material [22]. The subindex Yu-Oh indicates the
correlations used to obtain the inequality. The subindex V or η

indicates that the correlations are maximally resistant to either
noise or detection inefficiency, respectively. The superindex t
indicates that the inequality is tight. The Yu-Oh correlations
yield

It
Yu-Oh,V = 46

3 ≈ 15.333, (8)

It
Yu-Oh,η = 86

9 ≈ 9.555. (9)

The critical visibility for It
Yu-Oh,V and the critical detection

efficiency for It
Yu-Oh,η are

Vcrit = 0.7917, (10)

ηcrit = 0.8441, (11)

respectively, which, on the one hand, are a significant im-
provement compared to the values in [34], namely, Vcrit =
0.9578 and ηcrit = 0.9710, respectively (see the Supplemental
Material [22] for details), and, on the other hand, are within
the reach of currently attainable visibilities in experiments

with high-dimensional systems [62–66] and current detection
efficiencies for photons [67].

We have also obtained three Bell inequalities for the
(2,18,2) Bell scenario,

It
KS18 � 8, (12)

IKS18,V � 12, (13)

IKS18,η � 0, (14)

where It
KS18 is given in Fig. 2(b) and IKS18,V and IKS18,η are

given in the Supplemental Material [22]. The KS18 correla-
tions yield

It
KS18 = 45

4 = 11.25, (15)

IKS18,V = 73
4 = 18.25, (16)

IKS18,η = 27
4 = 6.75. (17)

The critical visibility for IKS18,V and the critical detection
efficiency for IKS18,η are

Vcrit = 0.8169, (18)

ηcrit = 0.8421, (19)

respectively, which are a significant improvement over the
values in [34], namely, Vcrit = 0.9317 and ηcrit = 0.9428, re-
spectively (see the Supplemental Material [22] for details).
Moreover, IKS18,η � 0 allows for loophole-free experiments
with nonheralded sources [47].

Finding tight Bell inequalities for the KS18 correlations
proved to be more challenging due to the complexity of the
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corresponding local polytope. However, we obtained one tight
inequality It

KS18 � 8. This inequality displays an interesting
feature: Its quantum bound (i.e., the highest possible value
allowed by quantum mechanics) matches the value attained by
the KS18 correlations. This is remarkable because it proves
that the KS18 correlations are in the boundary of the set of
quantum correlations, which means that they are not only non-
local, but also extremal [30]. Extremality has been recognized
as the key feature for nonlocal correlations to allow for device-
independent quantum key distribution [2,68] and self-testing
of quantum devices [19]. (See the Supplemental Material [22]
for further details on device-independent applications of the
KS18 and Yu-Oh correlations.)

Finally, as shown in Figs. 2 and 3, two of the tight Bell
operators It

KS18 and It
Yu-Oh,V , respectively, display the same

(highly nontrivial) symmetries as the graph of compatibility of
the corresponding set of local measurements (see the Supple-
mental Material [22]). This is surprising and requires further
investigation, since, a priori, we do not expect any facet of the
local polytope to be related to the graph of compatibility of a
SI-C set.

Conclusion. Using a three-step method, we have obtained
Bell inequalities that are optimal (maximally resistant to either
noise or detection inefficiency) for correlations produced by
maximally entangled states and KS18 (the simplest KS set
in quantum mechanics) and the Yu-Oh set (the simplest SI-C
set). They fundamentally connect the theorems of Bell, and
Kochen and Specker, allow us to perform Bell tests with
SI-C sets and spacelike separation and achieve simultaneous

Bell nonlocality (with spacelike separation) and contextual-
ity (with timelike separation). Therefore, they pave the way
to tasks requiring both resources simultaneously and, more
importantly, to tasks that cannot be accomplished with each
of the resources individually. We have demonstrated that
the KS18 correlations maximally violate the Bell inequality
It
KS18 � 8 and can be used for device-independent quantum

key distribution. Moreover, they allow for Bell self-testing
while KS18 can also be used for certification with sequential
measurements (Bob and Charlie in Fig. 1) [30], thus the cor-
relations for three parties (the KS18 nonlocal correlations be-
tween Alice and Bob and the contextual correlations produced
by sequentially measuring KS18 between Bob and Charlie)
could be used to certify quantum transformations in a device-
independent way. All these functionalities contribute to clos-
ing of the gap between general probabilistic theories (which
refer to states, measurements, and transformations) and the
device-independent framework (which refer only to the con-
ditional probabilities of obtaining outputs from inputs) [69].
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[19] I. Šupić and J. Bowles, Self-testing of quantum systems: A
review, Quantum 4, 337 (2020).

[20] N. Brunner, S. Pironio, A. Acin, N. Gisin, A. A. Méthot, and
V. Scarani, Testing the Dimension of Hilbert Spaces, Phys. Rev.
Lett. 100, 210503 (2008).

L012035-5

https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/RevModPhys.86.419
http://www.iumj.indiana.edu/IUMJ/fulltext.php?artid=17004&year=1968&volume=17
https://doi.org/10.1103/RevModPhys.94.045007
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.95.010503
https://doi.org/10.1103/PhysRevLett.98.230501
https://doi.org/10.1038/nature13460
https://doi.org/10.1103/PhysRevLett.119.120505
https://doi.org/10.1126/science.aar3106
https://doi.org/10.1103/PhysRevA.77.032108
https://doi.org/10.1103/PhysRevA.106.012431
https://doi.org/10.1103/RevModPhys.82.665
https://doi.org/10.1103/PhysRevLett.130.080802
https://dl.acm.org/doi/10.5555/2011827.2011830
https://doi.org/10.1103/PhysRevLett.122.250403
https://doi.org/10.22331/q-2020-09-30-337
https://doi.org/10.1103/PhysRevLett.100.210503


JUNIOR R. GONZALES-URETA et al. PHYSICAL REVIEW RESEARCH 5, L012035 (2023)

[21] M. Ray, N. G. Boddu, K. Bharti, L.-C. Kwek, and A. Cabello,
Graph-theoretic approach to dimension witnessing, New J.
Phys. 23, 033006 (2021).

[22] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.5.L012035 for concepts in KS con-
textuality (Appendix A), methods to obtain tight Bell inequal-
ities (Appendix B), further details on our implementation of
Gilbert’s algorithm (Appendix C), the second step of our
method (Appendix D), the Bell inequalities obtained (Appendix
E), their optimality (Appendix F), why there are two optimal in-
equalities (Appendix G), device-independent applications of the
KS18 and Yu-Oh correlations (Appendix H), and the proofs that
two of the tight Bell operators have the same symmetries as the
graph of compatibility of the corresponding SI-C set (Appendix
I). The Supplemental Material includes Refs. [70–94].

[23] A. Cabello, Proposal for Revealing Quantum Nonlocality via
Local Contextuality, Phys. Rev. Lett. 104, 220401 (2010).
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