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Conservation laws can constrain entanglement dynamics in isolated quantum systems, manifest in a slowdown
of higher Rényi entropies. Here, we explore this phenomenon in a class of long-range random Clifford circuits
with U (1) symmetry where transport can be tuned from diffusive to superdiffusive. We unveil that the different
hydrodynamic regimes reflect themselves in the asymptotic entanglement growth according to S(t ) ∝ t1/z where
the dynamical transport exponent z depends on the probability ∝r−α of gates spanning a distance r. For
sufficiently small α, we show that the presence of hydrodynamic modes becomes irrelevant such that S(t ) behaves
similarly in circuits with and without conservation law. We explain our findings in terms of the inhibited operator
spreading in U (1)-symmetric Clifford circuits where the emerging light cones can be understood in the context
of classical Lévy flights. Our Letter sheds light on the connections between Clifford circuits and more generic
many-body quantum dynamics.

DOI: 10.1103/PhysRevResearch.5.L012031

Introduction. Fundamental questions on the origin of quan-
tum statistical mechanics have experienced a renaissance in
recent years [1–3] with experiments being able to probe chaos
and information scrambling [4–7]. While much progress has
been made due to sophisticated numerical methods (e.g.,
Refs. [8–13]), ideas from quantum information provide a
useful lens on quantum dynamics far from equilibrium. In
particular, suitable random-circuit models capture aspects of
generic quantum systems [14–17], including settings with
conservation laws and constraints [18–20], as well as dual
unitary [21,22], time periodic [23,24], or nonunitary dynamics
[25,26]. Random circuits are particularly attractive in view
of today’s noisy intermediate-scale quantum devices [27–29]
with applications in achieving a quantum computational ad-
vantage [30] and exploring operator entanglement [31].

In the case of chaotic quantum systems with short-ranged
interactions, conservation laws give rise to hydrodynamic
modes that typically decay diffusively [32–35], whereas en-
tanglement is expected to grow ballistically [36]. Remarkably,
recent work unveiled that this picture is incomplete and that
transport and entanglement are intimately connected [37–41].
Specifically, diffusive transport can constrain higher Rényi
entropies to increase diffusively [37],

Sn>1(t ) ∝ √
t, where Sn = log2 tr

[
ρn

A

]
/(1 − n), (1)
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with ρA = trB |ψ (t )〉 〈ψ (t )| denoting the reduced density ma-
trix for a bipartition into subsystems A and B, and |ψ (t )〉 is
the state of the system. In contrast, the von Neumann entropy
S1 = −tr[ρA log2 ρA] grows linearly as usual, S1(t ) ∝ t . In this
Letter, we demonstrate that constrained entanglement dynam-
ics occurs more generically also for other transport types, and
can be readily explored in U (1)-symmetric long-range Clif-
ford circuits [Fig. 1(a)]. Depending on the probability ∝r−α

of gates spanning a distance r, the emerging transport can be
tuned from diffusive to superdiffusive. These circuits can be
seen as minimal models to describe the scrambling dynamics
of long-range Hamiltonian systems. Specifically, it was found
in Refs. [42,43] that the light-cone spreading in such circuits is
very similar to the dynamics generated by Hamiltonians with
interactions decaying as ∝r−α′

, where α′ = α/2. Although
Clifford gates are insufficient for universal quantum compu-
tation, they form unitary 2-designs [44] (3-designs for qubits
[45]) such that circuit averages of certain quantities, e.g., out-
of-time-ordered correlators, coincide with Haar averages over
the full unitary group [15,16]. Clifford circuits can, thus, be
useful to study aspects of more generic quantum dynamics.

Long-range interactions are ubiquitous in nature, including
dipolar or van der Waals interactions [46], experimentally re-
alized in various platforms [47–53]. In contrast to short-range
models where Lieb-Robinson bounds confine correlations to
a linear light cone [54], long-range interactions may lead to
faster information propagation [55,56]. Much effort has been
invested to tighten Lieb-Robinson-like bounds for power-law
interacting models [42,57–67] and to study transport and en-
tanglement dynamics [43,68–77]. For chaotic systems in d
dimensions, it was argued that linear light cones arise for
α′ > d + 1/2 with properties similar to short-range models,
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FIG. 1. (a) Two-qubit Clifford gates of range r occur with prob-
ability P(r) ∝ r−α and conserve the total Pauli-Z component, see
Supplemental Material [92] for more details. (b) By tuning α > 1,
different hydrodynamic regimes with dynamical exponent z [Eq. (2)]
emerge, manifest in the tails of the circuit-averaged expectation
value 〈ZL/2(t )〉 ∝ t−1/z. Entanglement saturates approximately on a
timescale ∝Lz, implying that it asymptotically mirrors the transport
behavior, S(t ) ∝ t1/z.

whereas power-law or logarithmic bounds emerge for d/2 <

α′ < d + 1/2 [42,64]. For α′ < d/2, locality breaks down,
and information propagation becomes essentially instanta-
neous [78].

From a numerical point of view, long-range systems are
challenging due to quick entanglement generation and strong
finite-size effects [79]. In contrast, the random Clifford cir-
cuits considered here can be simulated efficiently even for
large systems. Summarizing our main results, we unveil a di-
rect correspondence between transport and entanglement with
entanglement saturating on a timescale tsat ∝ Lz implying an
asymptotic scaling S(t ) ∝ t1/z, where z is the dynamical trans-
port exponent [Fig. 1(b)]. We explain this finding in terms of
the inhibited operator spreading in U (1)-symmetric Clifford
circuits, leading to narrower light cones compared to circuits
without conservation law. Moreover, we demonstrate that the
constraint on S(t ) becomes insignificant once the dynamical
exponent for transport reaches z ≈ 1.

Clifford circuits with symmetry. Clifford circuits are of
major interest in quantum information [80], including er-
ror correction and randomized benchmarking [81,82]. In the
context of quantum dynamics, they recently gained popular-
ity to study measurement-induced entanglement transitions
(e.g., Refs. [43,83–87]) as their efficient simulability allows
to access large system sizes [88,89]. The key idea is to ex-
ploit the stabilizer formalism [80,90], where a state |ψ〉 on
L qubits can be uniquely defined by L operators Oi, i.e.,

Oi |ψ〉 = |ψ〉, where Oi = X
ν i

1
1 Z

μi
1

1 · · · X
ν i
�

� Z
μi

�

� · · · X ν i
L

L Zμi
L

L are
L-site Pauli strings and ν i

�, μ
i
� = {0, 1} [88]. Since Clifford

gates preserve the Pauli group, the action |ψ〉 → U |ψ〉 of a
Clifford gate U can be efficiently described by the stabilizers,
UOiU† [91], e.g., by storing the ν i

�, μ
i
� in a binary matrix M

and updating their values appropriately [88].
We show that random Clifford circuits can elucidate the in-

terplay between transport and entanglement [39]. We consider
circuits with U (1) symmetry where one time step is defined as
the application of L gates conserving the total magnetization,

〈ψ (t )| ∑� Z�|ψ (t )〉 = const. (Fig. 1). This property is quite
restrictive: Although the full two-qubit Clifford group has
11520 distinct elements (modulo a global phase), only 64 con-
serve the total Pauli-Z component, see Ref. [92]. Due to the
U (1) symmetry and the Pauli-preserving property of Clifford
gates, it turns out that transport can be understood classically
in terms of long-range random walks, so-called Lévy flights
[53,69,95,96]. However, we will show that such constrained
circuits still generate extensive entanglement, similar to Haar-
random circuits [14].

Product states such as |→〉⊗L with spins in the x direc-
tion can be stabilized by operators Oi = Xi (i = 1, . . . , L)
acting nontrivially only on a single site. Evolving |ψ〉 with
respect to a random circuit will cause the Oi to become non-
local, resulting in increased entanglement. Clifford circuits
are special as they generate flat entanglement spectra such
that all Sn’s are equivalent [97]. Although the different be-
haviors of S1 and Sn>1 demonstrated in Ref. [37], therefore,
cannot be resolved, S(t ) is, nevertheless, sensitive to con-
servation laws, and S(t ) ∝ √

t was found in Clifford circuits
with diffusive transport [39]. Here, we show that long-range
circuits provide an ideal framework to study entanglement
dynamics also for other transport types. To this end, we re-
iterate the arguments to explain the constrained entanglement
growth [37,38]: Consider the reduced density matrix ρA with
χ nonzero eigenvalues �1 � · · · � �χ . In the presence of
hydrodynamic modes with dynamical exponent z, �χ can
be bounded by �χ � e−γ t1/z

with some constant γ , where
z = 2 corresponds to diffusion [37,38]. The bound results
from rare contributions to |ψ (t )〉 where a region of length
ξ around the cut between A and B is in the |↑〉 state, acting
as a bottleneck for entanglement as it takes time ∝ξ z for a
|↓〉 to get across the cut. It follows that Sn→∞ = − log2 �χ

scales as S∞(t ) ∝ t1/z and due to S∞ � Sn>1 � nS∞/(n − 1),
all Sn>1(t )’s obey this scaling. This is independent of the type
of time evolution and generalizes to Clifford circuits, where
�i = � and Sn(t ) ≡ S(t ).

Hydrodynamics. By varying α, it is possible to tune the
nature of transport. Consider a state |ψ〉 = |→〉⊗L/2−1 |↑〉
|→〉⊗L/2, stabilized by X� for � �= L/2, and Z� for � = L/2, cf.
Fig. 1(a). The action UOiU† of U (1)-symmetric Clifford gates
on the two classes of stabilizers is quite different. While X�

becomes nonlocal and generates entanglement, the stabilizer
ZL/2 remains of length one throughout the circuit [92]. Specif-
ically, the Z operator performs α-dependent random walks,
i.e., Lévy flights [53,69], examples of which are shown in
Figs. 2(a) and 2(b) for α = 5 and α = 2. Consequently, at
a given time, there will be a site � with 〈ψ (t )|Z�|ψ (t )〉 = 1
unentangled with the rest of the system [98].

Simulating 1d circuits with L = 1024, Figs. 2(a) and 2(b)
show the circuit-averaged value 〈Z�(t )〉 for ∼105 random re-
alizations of UZL/2U†, highlighting a change from local to
nonlocal when reducing α. Analyzing 〈Z�(t )〉 at fixed t , we
find Gaussian profiles for α = 5 that collapse when rescaled
appropriately [Fig. 2(c)], indicating diffusion. In contrast,
〈Z�(t )〉 is non-Gaussian for α = 2 but rather described by a
Lorentzian, signaling superdiffusive transport [68,69]. (See
Ref. [92] for other α and 2d circuits.) The α-dependent
transport regimes are also reflected in the decay at � = L/2,
〈ZL/2(t )〉 ∝ t−1/z, where z approximately follows the Lévy-
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FIG. 2. [(a) and (b)] 〈Z�(t )〉 averaged over ∼105 circuit real-
izations for α = 5, α = 2, and L = 1024. Solid curves indicate
individual realizations, i.e., random walks with step-size distribu-
tion ∝r−α . [(c) and (d)] 〈Z�(t )〉t1/z at fixed t , plotted against (� −
L/2)/t1/z. (e) 〈ZL/2(t )〉 for different α. Dashed lines indicate power-
law ∝ t−1/z. The inset shows z extracted from the fits and compared
to Eq. (2).

flight prediction [53,69,99],

z =
{

2, α � 3;
α − 1, 1 < α � 3,

(2)

with no hydrodynamic tail for α � 1 [Fig. 2(e)]. Clifford and
U (1)-symmetric Haar-random gates are expected to yield the
same circuit-averaged 〈Z�(t )〉. In contrast, individual circuit
realizations differ since Haar gates distribute the Z exci-
tation smoothly over multiple sites whereas Clifford gates
yield sharp random walks. The transport behavior in Fig. 2
agrees qualitatively with the emergent quantum hydrodynam-
ics observed in long-range Hamiltonian systems [53,69]. Even
though transport in the Clifford case is a purely classical
process, the average coarse-grained type of hydrodynamics,
both in the circuit and the Hamiltonian model, is especially at
high temperatures mainly set by the range of the interactions
(i.e., by α), and not so much by the microscopic dynamics.

Operator spreading. While UZ�U† remains a single-site
operator for U (1)-symmetric Clifford gates (Fig. 2), we now
consider O = X�. Generally, O(t ) = ∑

S αS (t )S can be writ-
ten in the basis of the 4L Pauli strings S . Evolution under
Haar-random gates increases the number of nonzero αS (t )
[14–16], leading to operator entanglement [100]. In contrast,
Clifford gates map Pauli operators to each other, O(t ) =
δS,O(t )S with no operator entanglement. However, O(t ) will
become nonlocal, manifested by its growing support ρtot (t ) =
1
L

∑
�,σ ρσ (�, t ), where ρσ (�, t ) = tr[O�(t )
σ ]/2, O�(t ) is the

matrix at position � in the string, and 
σ = {X,Y, Z}, σ =
x, y, z.

FIG. 3. [(a) and (b)] Averaged ρ(�, t ) in full Clifford circuits
with α = 5 and α = 2.5, obtained from O(0) = XL/2 with L = 1024.
Symbols indicate ρ(�, t ) = 10−1. (c) ρtot (t ) for L = 2048 and dif-
ferent α’s (see also Ref. [92]). The inset shows ρσ (t )/ρtot (t ) ≈ 1/3,
i.e., all 
σ ’s contribute equally. [(d)–(f)] Analogous data but for
U (1)-symmetric circuits, where O(t ) spreads significantly slower.
This stems from the dominant contribution of Z operators within
ρtot (t ), cf. inset in (f) for α = 5.

Considering O(0) = XL/2, we plot ρ(�, t ) = ∑
σ ρσ (�, t )

in Fig. 3, which is a measure for the out-of-time-ordered cor-
relator between operators at sites � and L/2 [101]. For circuits
without conservation law [Figs. 3(a) and 3(b)], we observe a
linear light cone for α = 5, whereas a power-law light cone
emerges for α = 2.5, in agreement with the phase diagram in
Ref. [42]. Correspondingly, we find ρtot (t ) ∝ t at α = 5 and
faster growth for smaller α [Fig. 3(c)], see also Ref. [92]. In
the bulk of the light cone, we observe full scrambling with
ρ(�, t ) → 3/4 and ρσ (t )/ρtot (t ) ≈ 1/3 [insets in Fig. 3(c)],
where ρσ (t ) = ∑

� ρσ (�, t ) is the Pauli-component resolved
support. Speaking differently, the interior of the light cone
has reached an equilibrium distribution where local X,Y, Z
operators are equally likely. We will discuss the dynamics of
the light-cone edges further below in the context of Fig. 4.

Next, turning to U (1)-symmetric gates, the behavior of
ρ(�, t ) changes drastically [Figs. 3(d) and 3(e)]. Namely,
operator spreading is significantly slower and resembles the
transport behavior of the conserved quantity [Eq. (2)], with
a diffusive (superdiffusive) light cone for α = 5 (α = 2.5),
also reflected in the growth of ρtot (t ) [Fig. 3(f)]. This is due
to the properties of the U (1)-symmetric Clifford gates, which
cause O(t ) to be dominated by Z operators. Given the initial
operator O(0) = XL/2 with a single X at � = L/2 and identity
operators on all other sites, it is, in fact, significantly more
likely that a random gate will generate more Z than X , Y
operators and thereby increase the overall share of Z in O(t ),
see Ref. [92] for details. This is shown in the inset of Fig. 3(f)
for α = 5 where we find ρz(t ) ∝ t1/2 whereas ρx,y(t ) = const.
such that ρz(t )/ρtot (t ) → 1. The inhomogeneous composition
of O(t ) differs from the unsymmetric case where X , Y , and Z
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FIG. 4. [(a) and (b)] S(t ) for different α’s in asymmetric and
U (1)-symmetric circuits with L = 1024 and open boundaries. For
α � 3, we expect short-range behavior: z = 2 with U (1) symmetry
and z = 1 without. [(c) and(d)] Normalized difference between left
(right) endpoints of O(t ) for L = 2048. The dashed curves indicate
∝ t (∝√

t) scaling. (e) z versus α for circuits with and without
conservation law. The deviations from Eq. (2) around α = 3 may be
due to logarithmic corrections to transport [69].

occur with equal probability [Fig. 3(c)]. The large fraction of
Z operators behaves similarly to Fig. 2, leading to narrower
light cones compared to circuits without conservation law.
Furthermore, studying the bulk of the light cone, we find
that ρ(�, t ) < 3/4 in the U (1)-symmetric case [Figs. 3(d) and
3(e)]. This indicates that, at least, on the timescales shown
here, the operator string is not fully scrambled and contains,
on average, more identity operators than in the case without
conservation law.

The operator spreading in U (1)-symmetric Clifford cir-
cuits is notably simpler compared to the Haar-random case
where the conserved charges lag behind the light-cone front
which propagates quickly due to nonconserved operators [18].
Although Clifford gates fail to capture this aspect of generic
quantum dynamics, the simplified description is helpful to
understand the constrained entanglement dynamics since the
light cones in Fig. 3 upper bound the growth of S(t ) [14].

Entanglement dynamics. Choosing |ψ (0)〉 = |→〉⊗L, we
study S(t ) = rank(ML/2) − L/2 for a half-system cut, where
ML/2 denotes the stabilizer matrix of the first L/2 sites
[14,102,103]. From this expression, it is clear that S(t ) de-
pends on the collective dynamics of |ψ (t )〉’s stabilizers. Since
|ψ (0)〉 is a superposition of all symmetry sectors, S(t →
∞) ≈ L/2 saturates at the same value in circuits with and
without the conservation law [Figs. 4(a) and 4(b)]. We find
it convenient to analyze the α dependence of S(t ) by extract-
ing the saturation time tsat ∝ Lz for different L’s, implying
an asymptotic scaling S(t ) ∝ t1/z. The obtained values of z
are summarized in Fig. 4(e). In the case of U (1)-symmetric
circuits, we find that the transport behavior is reflected in the
entanglement dynamics, and z is reasonably well described by

Eq. (2). In addition, whereas we recover z → 1 in unsymmet-
ric circuits for α � 3 as expected for short-range models [14],
the scaling behaviors of circuits with and without conservation
law become similar for α � 2 with all discrepancies in z
estimates contained within error bars.

At small α, transport is fast enough that entanglement
growth is mainly dictated by the gate range and not by the
conservation law. Specifically, at α = 2 we have z ≈ 1 and
the bound �χ � e−γ t1/z

due to transport becomes comparable
to the typical value ∼e−γ t expected given the ballistic S1(t ) in
generic circuits [37]. The behavior of the edges of the light
cone can provide further quantitative insights. Specifically,
we study the end points ρL(R)(t ) of a string O(t ), i.e., the
left(right)most � where O�(t ) is nonidentity. Once a nontrivial
part of O(t ) extends across the cut, entanglement may, in
principle, increase. One might, therefore, expect that ρL(R)(t )
is more relevant for S(t ) than ρtot (t ) [Fig. 3]. As shown in
Figs. 4(c) and 4(d), we find that |ρL(t ) − ρR(t )|/L behaves
very differently in symmetric and unsymmetric circuits for
α = 5 but grows with roughly comparable rate if α is small
(see also Ref. [92]), which is consistent with the observed
similar growth rate of entanglement.

We expect the relation between transport and entanglement
to carry over to Rényi entropies Sn>1(t ) in generic systems
with a conserved quantity, see Ref. [92] for some evidence
in a long-range tilted field Ising model. Since Clifford gates
form unitary 3-designs [44,45], they give the same “annealed”
Rényi-2 entropy S(a)

2 = − log2 trAρ2
A as a Haar-random cir-

cuit. Although S(a)
2 � S2 only lower bounds the average S2,

in U (1)-symmetric Haar-random circuits it displays the same√
t growth as S2 [37], consistent with small sample-to-sample

fluctuations of S2(t ).
Let us comment on the deviations in Fig. 4(e) from the pre-

diction (2), most pronounced near α = 3. Even for L ∼ 103

presented here, we observe a drift of z with L. We attempt to
account for these finite-size effects by restricting the data to
L � Lend and extrapolating z(Lend ) to 1/Lend → 0. For details,
including how we obtain the error bars, see Ref. [92]. Pre-
cisely at α = 3, transport can receive logarithmic corrections
[69], which may also explain the faster entanglement growth.
Repeating our analysis but with S(t ) ∼ t1/z√log t , we obtain
z = 1.91(1) much closer to z = 2 [104]. The marginality at
α ≈ 3 is also reflected in the development of non-Gaussian
tails in both 〈Z�(t )〉 and ρ(�, t ) [92].

Conclusion. We have studied the interplay of transport
and entanglement dynamics in long-range random Clifford
circuits with U (1) symmetry. We demonstrated that the
emerging transport regimes with dynamical exponent z re-
flect themselves in the growth of entanglement as S(t ) ∝
t1/z, generalizing earlier work that has focused on diffusive
systems with z = 2 [37]. Although we expect this result to
hold also in more generic Haar-random circuits or chaotic
quantum systems for Sn>1(t ), we here provided a simplified
picture specific to the Clifford framework where operator
strings become dominated by the conserved quantity lead-
ing to narrower light cones. Although transport in Clifford
circuits turned out to be purely classical, their efficient sim-
ulability may suggest the study of possible connections with
recent state-of-the-art methods to capture transport coeffi-
cients [10–12,105–108] and to better understand the role of
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entanglement and the differences to full thermalizing quantum
dynamics [109].

A promising research direction is to consider entanglement
dynamics in Clifford circuits with other gate sets or conser-
vation laws, potentially giving rise to localization [110] as
well as adding measurements which can induce nonequilib-
rium phases in circuits with symmetry [111,112]. Studying
the impact of sporadic non-Clifford gates, acting as seeds of
chaos [113], is another natural avenue. Finally, it would be
interesting if the transport-dependent entanglement growth is
observable in quantum-simulator experiments where diffusion

and superdiffusion can be realized [53,114], and the Rényi-2
entropy is accessible for small systems [115,116].
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Silva, and R. Fazio, Scrambling and entanglement spread-
ing in long-range spin chains, Phys. Rev. B 98, 134303
(2018).

[74] A. Lerose and S. Pappalardi, Origin of the slow growth of
entanglement entropy in long-range interacting spin systems,
Phys. Rev. Res. 2, 012041(R) (2020).

[75] T. Kuwahara and K. Saito, Absence of Fast Scrambling in
Thermodynamically Stable Long-Range Interacting Systems,
Phys. Rev. Lett. 126, 030604 (2021).

[76] T. Minato, K. Sugimoto, T. Kuwahara, and K. Saito, Fate of
Measurement-Induced Phase Transition in Long-Range Inter-
actions, Phys. Rev. Lett. 128, 010603 (2022).

[77] T. Müller, S. Diehl, and M. Buchhold, Measurement-Induced
Dark State Phase Transitions in Long-Ranged Fermion Sys-
tems, Phys. Rev. Lett. 128, 010605 (2022).

[78] R. Bachelard and M. Kastner, Universal Threshold for the
Dynamical Behavior of Lattice Systems with Long-Range In-
teractions, Phys. Rev. Lett. 110, 170603 (2013).

[79] M. P. Zaletel, R. S. K. Mong, C. Karrasch, J. E. Moore,
and F. Pollmann, Time-evolving a matrix product state
with long-ranged interactions, Phys. Rev. B 91, 165112
(2015).

[80] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cam-
bridge, UK, 2000).

[81] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad,
J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland,
Randomized benchmarking of quantum gates, Phys. Rev. A
77, 012307 (2008).

[82] E. Magesan, J. M. Gambetta, and J. Emerson, Scalable and
Robust Randomized Benchmarking of Quantum Processes,
Phys. Rev. Lett. 106, 180504 (2011).

[83] Y. Li, X. Chen, and M. P. A. Fisher, Quantum Zeno effect
and the many-body entanglement transition, Phys. Rev. B 98,
205136 (2018).

[84] M. J. Gullans and D. A. Huse, Dynamical Purification Phase
Transition Induced by Quantum Measurements, Phys. Rev. X
10, 041020 (2020).

[85] S. Sharma, X. Turkeshi, R. Fazio, and M. Dalmonte,
Measurement-induced criticality in extended and long-range
unitary circuits, SciPost Phys. Core 5, 023 (2022).

[86] A. Lavasani, Y. Alavirad, and M. Barkeshli, Measurement-
induced topological entanglement transitions in symmetric
random quantum circuits, Nat. Phys. 17, 342 (2021).

[87] O. Lunt, M. Szyniszewski, and A. Pal, Measurement-
induced criticality and entanglement clusters: A study of
one-dimensional and two-dimensional Clifford circuits, Phys.
Rev. B 104, 155111 (2021).

[88] S. Aaronson and D. Gottesman, Improved simulation of stabi-
lizer circuits, Phys. Rev. A 70, 052328 (2004).

[89] S. Anders and H. J. Briegel, Fast simulation of stabilizer
circuits using a graph-state representation, Phys. Rev. A 73,
022334 (2006).

[90] D. Gottesman, The heisenberg representation of quantum
computers, arXiv:quant-ph/9807006.

[91] Note that this expression differs from the usual Heisenberg
picture where the order of U and U† is reversed.

[92] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevResearch.5.L012031 for
details on the structure of the Clifford group, additional
numerical results on transport, operator spreading, and
entanglement growth in circuits with and without U (1)
symmetry in one and two dimensions, and entanglement
dynamics in a long-range Ising chain, which includes
Refs. [93,94].

[93] A. D. Córcoles, J. M. Gambetta, J. M. Chow, J. A. Smolin, M.
Ware, J. D. Strand, B. L. T. Plourde, and M. Steffen, Process
verification of two-qubit quantum gates by randomized bench-
marking, Phys. Rev. A 87, 030301(R) (2013).

[94] R. Koenig and J. A. Smolin, How to efficiently select an
arbitrary Clifford group element, J. Math. Phys. 55, 122202
(2014).

[95] R. Metzler and J. Klafter, The random walk’s guide to anoma-
lous diffusion: A fractional dynamics approach, Phys. Rep.
339, 1 (2000).

[96] V. Zaburdaev, S. Denisov, and J. Klafter, Lévy walks, Rev.
Mod. Phys. 87, 483 (2015).

[97] D. Fattal, T. S. Cubitt, Y. Yamamoto, S. Bravyi, and
I. L. Chuang, Entanglement in the stabilizer formalism,
arXiv:quant-ph/0406168.

[98] Note that if one were to simulate the dynamics of a state sta-
bilized by ±Z� on all lattice sites, i.e., a product state |↑↓ · · ·〉
in the Z basis, evolution with respect to Z-conserving Clifford
gates would be entirely classical with S(t ) = 0 for all t’s. This
is in contrast to Haar-random gates with U (1) symmetry.

[99] We emphasize again that this corresponds to 1d Hamiltonian
systems with couplings J ∝ r−α′

with α′ = α/2.
[100] P. Zanardi, Entanglement of quantum evolutions, Phys. Rev. A

63, 040304(R) (2001).
[101] S. Xu and B. Swingle, Scrambling dynamics and out-of-time

ordered correlators in quantum many-body systems: A tuto-
rial, arXiv:2202.07060.

[102] A. Hamma, R. Ionicioiu, and P. Zanardi, Bipartite entangle-
ment and entropic boundary law in lattice spin systems, Phys.
Rev. A 71, 022315 (2005).

[103] Note that the rank has to be calculated by treating the entries
ν i

�, μi
� of M as elements of the field F2, i.e., addition and

multiplication are performed mod 2.
[104] In fact, we find the closest agreement with z = 2 if we

make the ansatz S(t ) ∼ t1/z(log t )2/3, from which we obtain
z = 1.98(1).

L012031-7

https://doi.org/10.1103/PhysRevA.104.062420
https://doi.org/10.1103/PhysRevA.99.032114
https://doi.org/10.1103/PhysRevB.101.020416
https://doi.org/10.1088/1367-2630/18/9/093002
https://doi.org/10.3390/sym14040666
https://doi.org/10.1103/PhysRevX.3.031015
https://doi.org/10.1103/PhysRevB.98.134303
https://doi.org/10.1103/PhysRevResearch.2.012041
https://doi.org/10.1103/PhysRevLett.126.030604
https://doi.org/10.1103/PhysRevLett.128.010603
https://doi.org/10.1103/PhysRevLett.128.010605
https://doi.org/10.1103/PhysRevLett.110.170603
https://doi.org/10.1103/PhysRevB.91.165112
https://doi.org/10.1103/PhysRevA.77.012307
https://doi.org/10.1103/PhysRevLett.106.180504
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevX.10.041020
https://doi.org/10.21468/SciPostPhysCore.5.2.023
https://doi.org/10.1038/s41567-020-01112-z
https://doi.org/10.1103/PhysRevB.104.155111
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PhysRevA.73.022334
http://arxiv.org/abs/arXiv:quant-ph/9807006
http://link.aps.org/supplemental/10.1103/PhysRevResearch.5.L012031
https://doi.org/10.1103/PhysRevA.87.030301
https://doi.org/10.1063/1.4903507
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1103/RevModPhys.87.483
http://arxiv.org/abs/arXiv:quant-ph/0406168
https://doi.org/10.1103/PhysRevA.63.040304
http://arxiv.org/abs/arXiv:2202.07060
https://doi.org/10.1103/PhysRevA.71.022315


RICHTER, LUNT, AND PAL PHYSICAL REVIEW RESEARCH 5, L012031 (2023)

[105] E. Leviatan, F. Pollmann, J. H. Bardarson, D. A. Huse, and
E. Altman, Quantum thermalization dynamics with matrix-
product states, arXiv:1702.08894.

[106] B. Ye, F. Machado, C. D. White, R. S. K. Mong, and N. Y.
Yao, Emergent Hydrodynamics in Nonequilibrium Quantum
Systems, Phys. Rev. Lett. 125, 030601 (2020).

[107] T. K. Kvorning, L. Herviou, and J. H. Bardarson, Time-
evolution of local information: Thermalization dynamics of
local observables, SciPost Phys. 13, 080 (2022).

[108] C. W. von Keyserlingk, F. Pollmann, and T. Rakovszky, Opera-
tor backflow and the classical simulation of quantum transport,
Phys. Rev. B 105, 245101 (2022).

[109] T. Farshi, J. Richter, D. Toniolo, A. Pal, and L. Masanes,
Absence of localization in two-dimensional Clifford circuits,
arXiv:2210.10129.

[110] A. Chandran and C. R. Laumann, Semiclassical limit for the
many-body localization transition, Phys. Rev. B 92, 024301
(2015).

[111] U. Agrawal, A. Zabalo, K. Chen, J. H. Wilson, A. C. Potter,
J. H. Pixley, S. Gopalakrishnan, and R. Vasseur, Entanglement

and Charge-Sharpening Transitions in U (1) Symmetric Moni-
tored Quantum Circuits, Phys. Rev. X 12, 041002 (2022).

[112] Y. Bao, S. Choi, and E. Altman, Symmetry enriched phases of
quantum circuits, Ann. Phys. (NY) 435, 168618 (2021).

[113] S. Zhou, Z.-C. Yang, A. Hamma, and C. Chamon, Single
T gate in a Clifford circuit drives transition to univer-
sal entanglement spectrum statistics, SciPost Phys. 9, 087
(2020).

[114] D. Wei, A. Rubio-Abadal, B. Ye, F. Machado, J. Kemp, K.
Srakaew, S. Hollerith, J. Rui, S. Gopalakrishnan, N. Y. Yao,
I. Bloch, and J. Zeiher, Quantum gas microscopy of Kardar-
Parisi-Zhang superdiffusion, Science 376, 716 (2022).

[115] R. Islam, R. Ma, P. M. Preiss, M. Eric Tai, A. Lukin, M.
Rispoli, and M. Greiner, Measuring entanglement entropy
in a quantum many-body system, Nature (London) 528, 77
(2015).

[116] N. M. Linke, S. Johri, C. Figgatt, K. A. Landsman, A. Y.
Matsuura, and C. Monroe, Measuring the Rényi entropy of
a two-site Fermi-Hubbard model on a trapped ion quantum
computer Phys. Rev. A 98, 052334 (2018).

L012031-8

http://arxiv.org/abs/arXiv:1702.08894
https://doi.org/10.1103/PhysRevLett.125.030601
https://doi.org/10.21468/SciPostPhys.13.4.080
https://doi.org/10.1103/PhysRevB.105.245101
http://arxiv.org/abs/arXiv:2210.10129
https://doi.org/10.1103/PhysRevB.92.024301
https://doi.org/10.1103/PhysRevX.12.041002
https://doi.org/10.1016/j.aop.2021.168618
https://doi.org/10.21468/SciPostPhys.9.6.087
https://doi.org/10.1126/science.abk2397
https://doi.org/10.1038/nature15750
https://doi.org/10.1103/PhysRevA.98.052334

