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The bond-dependent Ising interaction present in the Kitaev model has attracted considerable attention. The
appearance of an unexpected intermediate phase under a magnetic field is particularly intriguing, and one may
wonder if a similar phase occurs in the Kitaev spin chain with alternating x- and y-bond Ising interactions.
Previous studies have focused on a transverse field hz and reported a direct transition to the polarized state. Here,
we investigate phases with an arbitrary angle of two longitudinal fields, hx and hy. For a magnetic field applied
along the diagonal, hx = hy, the chain remains gapless up to a critical field hc1

xy . Surprisingly, above hc1
xy it enters an

unusual intermediate phase before reaching the polarized state at hc2
xy . This phase is characterized by a staggered

vector chirality and for periodic boundary conditions, a twofold degeneracy with a finite gap. For open boundary
systems the ground state exhibits a single soliton, lowering the energy, and in-gap excitations. However, the
corresponding antisoliton raises the energy sufficiently that a gap appears for soliton and antisoliton pairs in
periodic systems. An intuitive variational picture is developed describing the soliton phase. A phase descending
from the intermediate field phase is also identified in the two-leg Kitaev ladder.

DOI: 10.1103/PhysRevResearch.5.L012027

Introduction. The Kitaev model, characterized by the bond-
dependent Ising spin interaction in a honeycomb lattice [1],
has recently generated considerable interest, as it offers a rare
quantum spin liquid as an exact ground state. Among several
exotic phenomena discussed in relation to the extended Kitaev
model [2], the proposed field-induced U (1) spin liquid in the
antiferromagnetic (AFM) Kitaev model under a magnetic field
is especially fascinating [3–5]. While the mechanism of the
U (1) spin liquid is still missing, a magnetically disordered
phase featuring a staggered scalar chirality has been found in
the quasi-one-dimensional AFM Kitaev ladder under a [111]
magnetic field [6]. The relation between these phases, if any,
is at present not clear and a detailed understanding of the
field-dependent phase diagram as the two-dimensional limit
is approached, starting from the purely one-dimensional (1D)
Kitaev spin chain, would clearly be desirable. This then raises
the question if any nontrivial phases exist for the Kitaev spin
chain in a magnetic field.

The 1D Kitaev s = 1
2 spin chain has been investigated and

shown to map to a free-fermion model [7–11]. With the Kitaev
chain defined in terms of x- and y-bond Ising interactions, it
has been shown that under a transverse magnetic field hz, the
model directly enters the polarized state without any phase
transition [8]. In fact, so far no intermediate phase in an
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FIG. 1. (a) The phase diagram in the (hx, hy ) plane from ED,
N = 24 (solid blue points), iDMRG (solid red points). The soliton
phase is marked by an “S.” Open circles indicate crossover observed
in ED due to incommensurability effects. (b) iDMRG results for
χ e

φxy
at |h| = 0.6 vs φxy. (c) X z vs hxy at a field angle to 45◦ from

iDMRG (orange points) and the bipartite entanglement entropy EE
(blue line).

applied field has been reported for the Kitaev spin chain.
One may then wonder if the Kitaev spin chain exhibits any
intermediate phase under a magnetic field such as the ladder
and C3 symmetric honeycomb lattice mentioned above. Here,
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we address this question, and report an unusual intermediate
chiral phase possessing magnetic solitons in the AFM Kitaev
spin chain under a magnetic field close to the hx ∼ hy. This
phase is absent in the ferromagnetic (FM) Kitaev spin chain.

The s = 1
2 Kitaev spin chain is described by the Hamilto-

nian

H = K
∑

j

(
Sx

2 j+1Sx
2 j+2 + Sy

2 j+2Sy
2 j+3

) −
∑

j

h · S j, (1)

where we set g = h̄ = μB = 1 and consider the AFM model
with K = 1 and a parametrization of the field term as h =
h(cos φxy cos θz, sin φxy cos θz, sin θz ). We refer to the coupling
KSxSx as an x bond ( ) and KSySy as a y bond ( ). Be-
low, we determine the phase diagram of Eq. (1) in a field
using Lanczos exact diagonalization (ED) techniques in com-
bination with density matrix renormalization group (DMRG)
and infinite-size DMRG (iDMRG) [12–15] methods typically
performed with a bond dimension larger than 1000 and ε <

10−10. Subsequently, we describe our variational calculations
valid in the chiral soliton phase.

Phase diagram. In the presence of a field in the z direction,
the Kitaev chain Eq. (1) is exactly solvable and it is known
that the system immediately enters the polarized state (PS)
[8] directly. The integrability is lost when the field is applied
in the x or equivalently the y direction and the situation is
less clear. We have therefore studied the correlation func-
tions C(r) = 〈Sx

1Sx
r+1〉 for small fields in the x direction. For

hx = 0 a power law is found, C(r) ∼ r−0.25(1), as shown in the
Supplemental Material [16], however, for any nonzero hx an
exponential decay is observed with a resulting finite gap [16].
The polarized state is then entered directly for any nonzero hx

and by symmetry for any nonzero hy.
Next we study the phase diagram for fields in the entire x-y

plane [Fig. 1(a)]. Although difficult to establish numerically,
our results indicate that for φxy = 45◦ the Kitaev chain re-
mains gapless up to a critical field hc1

xy = 0.511K where a new
unexpected phase is entered, marked by “S.” We determine
the phase boundary for this phase by studying the energy
susceptibility χ e

φxy
= −∂2e0/∂φ2

xy which scales as N2/ν−(d+z)

at a quantum critical point [17]. Here, e0 is the energy per
site and ν, z the correlation and dynamical exponents. The
solid blue points denote results from N = 24 ED where χ e

φxy

is maximal. The positions of these peaks are confirmed by
iDMRG (solid red points) as illustrated in Fig. 1(b). The open
circles denote crossover due to incommensurability effects
where the position of the ED peak cannot be reproduced
with iDMRG and is strongly finite-size dependent. The phase
extends out of the x-y plane to nonzero θz [16]. At a 45◦ angle
another quantum critical point is observed at the critical field
hc2

xy = 0.726K where the chain transitions from the soliton
phase to the polarized state.

The gapless phase, extending from zero field to hc1
xy at a

45◦ angle, is a critical line. For φxy �= 45◦, or θz �= 0, a gap
opens up and the chain enters the PS phase. The S phase is
characterized by a nonzero staggered vector chirality X α ,

X α = (−1) j〈(S j × S j+1)α〉. (2)

While X x,y = 0 in the S phase X z �= 0 as shown in Fig. 1(c).
In the context of the anisotropic J1-J2 model with J1 < 0,
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FIG. 2. Energy gap 	 to the first ten energy levels above the
ground state (not shown) vs 1/N at hxy = 0.7. (a) ED results with
PBC for even N = 12–36 (orange points). Note the twice de-
generate ground state below a well-defined gap. The dashed line
indicates 	PBC = 0.02962K . Two soliton variational results (red
points). (b) ED results with OBC for N = 12–36 (blue points). Vari-
ational estimates for the lowest gaps in the space of single defects
(green lines) and with {0, 1, 2} defects (red points). (c) ED results
for the ground-state energy vs N at hxy = 0.7, for OBC (blue) and
PBC (red).

J2 > 0 [18–20] phases with nonzero X α have been found and
recently observed in the s = 1

2 chain LiCuVO4 [21].
To understand the nature of the unexpected S phase we

focus on the spectrum of excitations. Using ED for chain
sizes ranging from N = 12 to 36 at hxy = 0.7, φxy = 45◦,
θz = 0◦ results for the gap to the ten lowest states are shown
in Fig. 2(a) for periodic boundary conditions (PBCs) (orange
points) and Fig. 2(b) for open boundary conditions (OBCs)
(blue points). For PBCs there are two almost degenerate states
that become degenerate as N → ∞ below a well-defined but
small gap of 	PBC = 0.02962K . For PBC we determine the
momentum of the lowest excited state above the two degen-
erate ground states to be at k = 0. For OBC the spectrum is
more intriguing. As seen in Fig. 2(b) the spectrum evolves
smoothly with N for both even and odd N . While it is possible
to identify 	PBC in the spectrum for OBC an increasing num-
ber of states appear below this gap, quickly approaching the
ground-state energy. Counterintuitively, as shown in Fig. 2(c),
the ground-state energy is always lower for OBC as compared
to PBC for any N , despite the missing bond. At hxy = 0.7 we
determine 	O−PBC = −0.2121K . Open boundary conditions
therefore allow the chain to significantly lower the energy.
The proliferation of states below the gap for OBC is an un-
usual feature reflecting the excited states of the soliton, as we
discuss below.

The ground-state magnetization 〈Sα
i 〉 is very unique in the

S phase for OBC. As seen in Figs. 3(b) and 3(c), 〈Sα
i 〉 (shown

only for odd sites) alternates between the x and y directions
with a single twist, a topological soliton, occurring in the
middle of the chain. For hxy < hc1

xy the on-site magnetization
is much more complicated and five crossings are present for
N = 384. In the PS phase for hxy > hc2

xy the spins simply
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FIG. 3. (a)–(d) Finite chain DMRG results for the on-site mag-
netization 〈Sx

i 〉, 〈Sy
i 〉 vs position i for an N = 384 site chain with

OBC at different field strengths. (a) hxy = 0.51 < hc1, (b) hxy = 0.55,
(c) hxy = 0.70, (d) hxy = 0.75 > hc2

xy . Only odd sites are shown.

align with the field and the soliton is absent. A useful way
to visualize the solitons is to plot the energy density for each
bond ei. In the bulk this is just a constant, eY X

0 , but the presence
of the soliton lowers ei below this value, locally. This is shown
in Fig. 4(b) where 〈ei〉 − eY X

0 is plotted versus i for hxy = 0.6,
showing a sharply localized soliton. If we now evaluate

	b =
∑

i

(〈ei〉 − eY X
0

)
, (3)

FIG. 4. (a) N = 1200 DMRG results with OBC for the soliton
mass, 	b vs hxy at φxy = 45◦. (b) 〈ei〉−eY X

0 vs i at hxy = 0.6, φxy =
45◦.

we can determine by how much the soliton has lowered the
total energy which we denote as the soliton mass 	b. Results
for 	b calculated this way are shown in Fig. 4(a) throughout
the soliton phase. While closely related, 	O−PBC includes
boundary effects from the missing bond with OBC.

Variational picture, PBC. As shown in Fig. 1(c) the entan-
glement entropy (EE) is relatively low in the soliton phase. In
fact, for PBC and N even the twofold degeneracy noted in the
ground-state subspace in Fig. 2(a) is closely described by two
(zero-defect) product states of the following form,

|X ′Y ′〉 = |x′y′x′y′ · · · 〉, |Y ′X ′〉 = |y′x′y′x′ · · · 〉, (4)

where |y′〉 = (e−i(π/2+c), 1)/
√

2, |x′〉 = (eic, 1)/
√

2. The |x′〉
and |y′〉 are eigenstates of �S · �nα where the unit vectors �nx′ , �ny′

are close to the x and y directions but crucially with an angle
between them exceeding π/2, by 2c. The usual |x〉 and |y〉
states are obtained by setting c = 0. The optimal value for c
depends on the field hxy and is determined in the Supplemental
Material [16] to be c = cos−1(hxy/K ) − π/4. The solitons
shown in Figs. 3(b) and 3(c) for OBC then interpolate between
these two degenerate states as is typical for topological soli-
tons [22]. Although 〈X ′Y ′|H |Y ′X ′〉 is nonzero for very short
chains this coupling quickly goes to zero with N .

OBC, any N. We now focus on OBC irrespective of N ,
and we focus exclusively on the case where the chain starts
with an Sx

1Sx
2 term ( ), in which case the solitons in Fig. 3

transition from the y′x′ to the x′y′ pattern. Within the soliton
phase the lowest-energy subspace is well described by linear
combinations of (single defect) states of the form

|ψb(i)〉 = |y′ x′ y′ x′
i x′ y′ x′ y′ x′ y′〉,

|ψb(i)〉 = |y′ x′ y′ x′ y′
i y′ x′ y′ x′ y′〉,

(5)

transitioning from the y′x′ to the x′y′ pattern at bond i. Note
that, even though x′

i x′ have the spins aligned ferromagneti-
cally along x, it costs little energy since it occurs on a y bond.
Similarly, the spins at y′

i y′ are aligned ferromagnetically
along y, but on an x bond. Analogously, we can define “an-
tidefects” of the form

|ψB(i)〉 = |x′ y′ x′ y′
i y′ x′ y′ x′ y′ x′〉,

|ψB(i)〉 = |x′ y′ x′ y′ x′
i x′ y′ x′ y′ x′〉,

(6)

in this case transitioning from the x′y′ to the y′x′ pattern
at bond i. Contrary to the defects, ψb, these antidefects are
relatively costly since y′

i y′ now occurs on a y bond and x′
i x′

on an x bond.
The states ψb and ψB are not eigenstates of the Hamiltonian

[16] but we expect linear combinations of the single defect
|ψb(i)〉 to realistically define the low-energy subspace of the
system in a variational manner. We therefore define the (single
defect) soliton states:

|�b〉 =
∑

k

ak|ψb(k)〉. (7)

Similarly, we can define |�B〉 = ∑
cl |ψB(l )〉 but this leads

to high-energy states. It is important to note that the states
|ψb(i)〉, while normalized, are not orthogonal. Due to the
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FIG. 5. (a) 〈Sx
i 〉 and 〈Sy

i 〉 on odd sites from DMRG calculations
on an N = 120 site open chain compared to the variational results
〈Sx

i 〉�b, 〈Sx
i 〉�b in the variational soliton state �b at hxy = 0.7, φxy =

45◦. (b) 〈Sx
i 〉�B , 〈Sx

i 〉�B on odd sites in the variational “antisoliton”
state �B. (c) |ak |2 vs k for the �b state. (d) |cl |2 vs l for the �B state.

nonorthogonality, determining the optimal values for the
coefficients ak in �b in Eq. (7) from a variational calcu-
lation therefore defines a generalized eigenvalue problem
in terms of the matrices Hkl = 〈ψb(k)|H |ψb(l )〉 and Skl =
〈ψb(k)|ψb(l )〉, with similar definitions for the state �B. The
generalized eigenvalue problem can be solved using standard
methods and the optimal �b and �B determined.

Variational results. Solving the generalized eigenvalue
problem yields a series of states for �b and �B. With OBC
we expect the lowest �b state to be a good approximation
to the ground state. This is illustrated in Figs. 5(a) and 5(c)
where the variational results for 〈Sx,y

i 〉�b are compared to finite
chain DMRG results for a system with N = 120 at hxy =
0.7. We find EDMRG = −29.9169 while E�b = −29.9019 less
than 0.05% higher. For comparison, the defect-free Y ′X ′ state
has an energy EY ′X ′ = −29.6975 significantly higher and the
soliton has therefore lowered the energy with respect to the
Y ′X ′ state. However, for the “antisoliton” state �B shown in
Figs. 5(b) and 5(d) we instead find E�B = −29.4520 above
the Y ′X ′ state. Using the defect-free Y ′X ′ state as a reference
we can now estimate the energy difference (mass) for the two
states at hxy = 0.7: 	b = −0.2044K compared to −0.2085K
from DMRG in Fig. 4(a) and 	B = 0.2455K which cannot
be determined from DMRG or ED. A similar asymmetry has
been noted in the Rice-Mele model [23] and the nonsymmo-
morphic symmetry [24] present also in the Kitaev spin chain
could be crucial.

For PBCs the ground state in the soliton phase is well
described by the degenerate and defect-free Y ′X ′ and X ′Y ′
states. While for OBC the number of solitons nsol can be both
even and odd, with PBC it is not possible to consider a single
soliton, because they have to come in a bB pair or multiple
pairs, 0, bB, bBbB, . . ., with nsol even. This explains the gap

seen in Fig. 2(a) since to a first approximation we expect that

	PBC = 	b + 	B, (8)

which would predict a gap for PBC of 0.0411K from the
variational results. For OBC the gap to the lowest bBb state
from the b ground state should then also be equal to 	PBC,
which agrees with the results in Fig. 2(b). We then extend the
variational calculations to two-defect bB states by considering

|ψbB(i, j)〉 = |y′ x′
i x′ y′ x′ y′ x′

j x′ y′ x′〉,
(9)

and defining two-soliton states of the form

|�bB〉 =
∑

i �= j

ai, j |ψbB(i, j)〉. (10)

If we include the Y ′X ′ and X ′Y ′ states in the variational
calculation, extending the subspace to {0, 2} defects, we
find at hxy = 0.7 a gap of 	var

PBC = 0.04289K [red circles in
Fig. 2(a)], in qualitative agreement with the ED result of
	PBC = 0.02962K and close to 	b + 	B. We expect the in-
clusion of multiple pairs of defects in the variational subspace
to further improve the agreement. We can now intuitively
understand the transition at hc1

xy. At this point 	b = −	B and
the cost of a bB pair becomes zero. As is clearly seen in
Fig. 3(a), a number of bB pairs then condense into the single
soliton ground state, in this case creating a bBbBb state. As the
field is increased the solitons then effectively evaporate. On
the other hand, the transition at hc2

xy occurs due to the closing
of the gap to spin-wave excitations.

The solution of the generalized eigenvalue problem leads
not only to the variational ground state �b but also a series of
excitations of these states, i�b, which are in good agreement
with results for excited states obtained from DMRG [16].
For OBC, these states correspond to static excitations of the
single soliton present in the system [25]. As the system size
is increased the excited states gradually fill in the gap in the
spectrum. The variationally determined gaps obtained from
the single defect states [Eq. (5)] are shown as the green lines in
Fig. 2(b). For short chains with OBC we can extend the varia-
tional subspace in Eq. (7) to include {0, 1, 2} defects with the
resulting gaps shown as red circles in Fig. 2(b) significantly
improving the agreement with the ED results for short chains.

Discussion. In parallel with studies of solitons in conduct-
ing polymers [26], magnetic solitons have been studied since
the late 1970s [27–32] with signatures observed experimen-
tally [33] in the 1D easy-plane ferromagnetic chain system
CsNiF3 as well as the 1D AFM materials tetramethylammo-
nium manganese trichloride (TMMC) [34,35], CsCoBr3 [36],
and CsMnBr3 [37], among others. The excitations of interest
here are topological solitons linking distinguishable ground
states [22]. Building on this picture, domain walls between
degenerate ground states in dimerized spin chains, such as the
s = 1

2 , J1-J2 model, have been viewed as solitons [38–43] and
observed experimentally in BiCu2PO6 above a critical field
[44]. Comparing periodic (PBC) and open (OBC) boundary
conditions, a positive mass 	s has then been defined [41–43]
for both the soliton and antisoliton in the dimerized phase with
a well-defined spin, s = 1

2 .

L012027-4
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FIG. 6. The Kitaev ladder with colors indicating x, y, and z bonds.

In contrast, for the Kitaev chain we find here that the
soliton mass 	b is negative, lowering the energy in the soliton
phase, while the antisoliton has positive mass, raising the
energy by 	B, more than compensating the soliton. In peri-
odic systems, the low-lying excitation, a pair of solitons and
antisolitons, then has a small gap given by the difference
between 	B and 	b. At hc1

xy the two masses cancel out, 	b =
−	B. Furthermore, the soliton and antisoliton do not have a
well-defined spin.

Several important tasks remain to be addressed in future
work. One is finding candidate Kitaev spin chain systems.
Recently, CoNb2O6 was proposed as a twisted Kitaev chain
[45]. However, the Kitaev interaction is FM and finding an
AFM sister material would be of considerable interest. Pre-
liminary results for the AFM twisted Kitaev chain show that
the phase diagram is similar to the Kitaev chain considered
here [16]. Furthermore, an understanding of the dynamics of
the solitons in a nonequilibrium setting and their signature in
thermodynamic properties such as the specific heat should be
developed. Another task is the connection, if any, of the soli-
ton phase to the puzzling intermediate field-induced U (1) spin
liquid reported in a finite cluster study of the two-dimensional
AFM Kitaev model under a field [3]. As a first step in this
direction, we have studied the two-leg Kitaev ladder,

HLadder =
∑

〈i, j〉γ∈(x,y,z)

KSγ

i Sγ

j −
∑

j

h · S j, (11)

where γ = x/y/z, and 〈i, j〉 refers to the nearest-neighbor
sites. Apart from the x and y bonds occurring in the Kitaev
chain, the ladder now also includes z-Ising interactions and we
may view the Hamiltonian as shown in Fig. 6. In the presence
of a field in the [111] direction the ladder has been extensively
studied [6,46] with the antiferromagnetic Kitaev phase (AK)
appearing for K > 0 and the polarized state (PS) at high fields.
Intriguingly, if instead a field is applied in the hx, hy plane,
two phases which we denote D (for defect) and D′ can be
identified [16] in the Kitaev ladder by studying χ e

h , with the
D phase appearing between hxy/K = 0.402 and 0.583 for a
field in the [110] direction. The phase diagram in the hx, hy

plane is shown in Fig. 7(a). The D phase is dominated by
physics closely resembling that of the soliton phase of the
Kitaev chain. This can be seen in Fig. 7(b) where 〈Sx,y

i 〉 is
plotted along one leg of a 400-site ladder showing a defect
in the middle of the ladder strikingly similar to the solitons
observed in the chain. However, in this case the defect is
not simply a transition between the Y ′X ′ and X ′Y ′ states but
displays a more intricate transition between patterns with a
period of 6. This is reflected in the ground-state degeneracy
for PBC, which in the D phase shows a threefold degeneracy

FIG. 7. (a) The phase diagram of an S = 1/2 Kitaev ladder in the
hx, hy plane obtained from iDMRG. The phase marked D is the phase
dominated by ground-state defects shown in (b). The phase denoted
D′ is a closely related defect phase with a unique ground state. AK
denotes the Kitaev phase and PS the polarized state. (b) 〈Sx,y

i 〉 from
N = 400 finite chain DMRG calculations at h[110] = 0.46K with
a field in the [110] direction. Results are shown for one leg of the
ladder with every point plotted. 〈Sz

i 〉 (not shown) is uniformly zero.

with a gap to excited states. In contrast, the D′ phase with PBC
has a unique ground state with a gap and is therefore distinct
from the D phase. As was the case for the soliton phase in
the Kitaev chain, the D phase extends out in the hx, hy plane
away, as shown in Fig. 7(a). By symmetry, results along the
[110], [1̄1̄0], and [1̄10] directions are identical. While it is
tempting to connect the D and D′ phases to the field-induced
phase in two dimensions as the number of legs grows, a future
study with a systematic increase of the number of legs is
needed.
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