
PHYSICAL REVIEW RESEARCH 5, L012026 (2023)
Letter

Compression algorithms reveal memory effects and static disorder
in single-molecule trajectories
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A key challenge in single-molecule studies is deducing underlying molecular kinetics from low-dimensional
data, as distinct physical scenarios can exhibit similar observable behaviors such as anomalous diffusion.
We show that information-theoretic analysis of single-molecule time series can reliably differentiate Markov
(memoryless) from non-Markov dynamics and static from dynamic disorder. This analysis is based on the
idea that non-Markov time series can be compressed, using lossless compression algorithms and transmitted
within shorter messages than appropriately constructed Markov approximations. In practice, this method detects
differences between Markov and non-Markov trajectories even when they are much smaller than the errors of
the compression algorithm.
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I. INTRODUCTION

Single-molecule studies that track molecular conforma-
tions in real time have opened a window on biomolecular
folding, function of molecular machines, and other cellu-
lar phenomena. A critical limitation of such experiments,
however, is that they report on low-dimensional observables,
which are projections of high-dimensional molecular motion.
Such projected dynamics are known to be complex and often
intractable; they are usually non-Markov processes exhibiting
memory [1]. Yet, to describe the time evolution of experimen-
tal observables x(t ), phenomenological Markovian models,
such as biased diffusion or random walk along x [2–4], are
commonly invoked. Signatures of non-Markovian dynamics
such as anomalous diffusion [5,6] have been reported (see,
e.g., Refs. [7–13]), but the challenge then is to select the
correct dynamical model out of the multitude of possibili-
ties [5,14]. Data-driven Bayesian inference of models from
single-molecule time series has enjoyed considerable success
in recent years [15–20], but such studies published so far
required physical insight to constrain the space of possible
models, and they, too, often assume that the observed dynam-
ics is a one-dimensional random walk even if the number of
discrete states is not specified a priori. Moreover, Bayesian
techniques, which sample full posteriors, come at added com-
putational cost.

Is it possible to tell whether the observed experimental tra-
jectory x(t ) can be explained by a Markov process or whether
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a non-Markov model or a model of a higher dimensionality is
called for by the data? When the experimental observable x is
a continuous variable, several Markovianity criteria have been
found [21–24], but they provide only a necessary and not suffi-
cient Markovianity condition, and for non-Markov processes,
they do not quantify the memory length of the process. Other
statistical Markovianity tests have recently been proposed
for continuous-time jump processes [25]. For single-molecule
measurements yielding discrete states, Markovianity of tra-
jectories (or even of candidate hidden-state models) can be
assessed by testing for exponentiality of dwell time distribu-
tions [26], but again, such exponentiality is only a necessary
condition: it is easy to construct an example of a non-Markov
random walk with exponential dwell time distributions. Here,
we explore a different approach to the problem, which is
based on Shannon’s classic work [27], where he estimated the
information content of printed English. We adapt Shannon’s
idea to the analysis of single-molecule trajectories (Fig. 1) and
show that this method can readily detect memory and static
disorder in single-molecule data.

We first describe how Shannon’s method is applied to
text. The applications to single-molecule data will follow.
A text can be described as a sequence of letters, . . .

i(t−1), i(t ), i(t + 1) . . ., where i ∈ {′A′..′Z ′}. Let us assume
for a moment that each letter occurs independently of the
others, with some probability P(i). While ASCII encoding of
the letters requires 7 bits per symbol, we can use more bits for
rare letters and fewer for common letters to compress the text,
with the theoretical compression limit given by Shannon’s
entropy:

h(0) = −
N∑

i=1

P(i)log2P(i) (1)

bits per character (where N is the alphabet size).
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FIG. 1. (a) Compression applied to molecular trajectories and
letter sequences. Two molecular motor trajectories. In the first (red),
the motor keeps on stepping forward each time. In the second, the
motor takes a random step at every direction. Intuitively, the first
trajectory can be completely described by “take N steps forward,”
while a complete description of the second requires us to record
every step. In information theory language, the first trajectory/string
is characterized by low entropy/information and the second by a
much higher one. (b) Memory makes character strings/trajectories
compressible. A compression algorithm applied to the string will
discover that each “a” is always followed by next four letters of
alphabet. Thus, memory of “a” here persists over the next four
characters. The algorithm may then take advantage of memory and
shorten the string by simply not recording “bcde”.

Of course, the assumption of letter independence is unreal-
istic. A better model would account for the tendency of some
letters to appear together: for example, a “t” is more likely to
be followed by “h” than by “x”. Such pairwise correlations
can be included within a model that treats the text as a first-
order Markov process, allowing its further compression. In
this model, one measures the frequency P(i j) with which a
pair of letters i j occurs in the language and computes the
conditional probability T (i → j) = P(i j)/P(i) of seeing j
after i. Then the optimal compressed size (per letter) is given
by the first-order entropy rate h(1) :

h(1) = −
∑

i, j

P(i)T (i → j) log2T (i → j). (2)

Higher-order models of text are constructed simi-
larly: For a sequence of k consecutive letters S =
i(m), i(m + 1), . . . , i(m + k−1) and any j, one can compute
the conditional probability T (S → j) = P(S j)/P(S) that the
sequence S is followed by the letter j. The entropy rate of this
kth-order Markov model is

h(k) = −
∑

j,S

P(S)T (S → j) log2T (S → j). (3)

A key observation is that h(k+1) � h(k): Knowing more
history helps us guess the next character, so the amount of
new information revealed by the next character is lower. The
true entropy rate of a non-Markov process is the limit h =
limk→∞ h(k), which is bounded above by kth-order entropy
h(k). This analysis (1) establishes that an English text is not
a Markov process, i.e., that h < h(1), (2) quantifies the extent
of the memory from observing how fast h(k) converges to h,
(3) constructs a kth-order Markov model of the English lan-
guage, and (4) provides a theoretical limit of how much
the text can be compressed. Here, we examine whether

FIG. 2. A summary of models studied here. (a) Single-file diffu-
sion on a ring lattice with R = 10 sites and M = 5 particles. Each
particle (filled circle) can only move to an adjacent vacant lattice
site (empty circle). The observer monitors the position of a single
tagged particle (red). (b) A random walker with internal states. At
each location i, the walker can be found in two experimentally indis-
tinguishable states i and i′, with jumps to the neighboring locations
occurring with a higher rate k f (lower rate ks) for i (i′). Switches
between the two internal states occur stochastically with a rate γ .
(c) A static disorder model. Each site is randomly chosen to be fast
or slow. Transitions leaving slow sites (gray) occur with rate ks,
while transitions leaving fast sites (white) occur with rate k f . (d)
Self-avoiding (SA) random walk (red) and non-SA walk (blue) on
a square lattice.

similar considerations can be applied to molecular trajec-
tories (Fig. 1), which are viewed as discrete time series
i(0), i(�t ), i(2�t ) . . ., where the molecular state i is sampled
at time intervals �t . Specifically, we consider several models
that are commonly used to describe single-molecule phenom-
ena (summarized in Fig. 2), with their dynamics sampled
using kinetic Monte Carlo (see, e.g., Refs. [28–30]). We note
in passing that earlier related work has explored construction
of kth-order Markov models from single-molecule time series
[31] and that the idea that a kth-order Markov process maxi-
mizes the entropy rate given the known transition probabilities
T (S → j) can also be used to derive a kth-order master equa-
tion describing the process [32].

Direct application of Shannon’s method to single-molecule
data, however, is often not feasible: Evaluating Eq. (3) is
computationally prohibitive unless k is small, and estimation
of transition probabilities T (S → j) involving long sequences
S from data becomes increasingly inaccurate given finite
amounts of data [33], rendering such an entropy estimator
unsuitable for long memory. Likewise, direct inspection of
transition probabilities T (S → j), and particularly whether
they depend only on the last symbol in the string S, can inform
one about the validity of the first-order Markov assumption
[34] but becomes prohibitive for high-order Markov models.
Instead, here, we explore an approach that does not require
construction of high-order Markov models of the process: We
estimate the entropy rate h as the size of the output (per time
step) of a lossless compression algorithm applied to the trajec-
tory i(t ). Specifically, dictionary-type compression algorithms
look for repeats of earlier (i.e., occurring at shorter time t) se-
quences in the data. If repeating data are found [Fig. 1(b)], the
algorithm replaces later repeated sequences by references to
the earlier occurrences, thereby reducing the output size of the
algorithm relative to the original trajectory (in what follows,
we report results using LZMA2 lossless encoding [35]).
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In applying this idea to realistic trajectories, however, one
should consider the errors introduced by the compression
algorithm applied to trajectories of finite length. Although
for an ergodic, stationary i(t ), the size of the output of the
algorithm per time step is known to converge asymptotically
to the theoretical entropy rate h of the process [36], molecular
trajectories are usually not long enough to ensure such conver-
gence in practice. Consequently, the results may depend on the
trajectory length and on the specific compression algorithm
used. To circumvent this, we estimate the errors introduced
by the compression algorithm in the following way: We gen-
erate a synthetic first-order Markov process according to the
trajectory-derived transition probabilities T (i → j), calculate
its exact entropy rate h(1) according to Eq. (2), and estimate its
entropy rate h̃(1) using the compression algorithm (throughout
the rest of this Letter, tilde over an entropy rate indicates a raw
compression-derived value). Assuming that the compression
method introduces the same error to the original process as
to its first-order Markov model that has the same transition
probabilities T (i → j), we then correct the raw compression-
derived entropy rate h̃ to estimate the entropy rate as

h ≈ h̃ − h̃(1) + h(1). (4)

While plausible, this correction is empirical; while re-
markably effective in the examples studied below, we do
not know how general it is. Note that, because of statistical
errors in estimating the transition probabilities T (i → j), the
estimated value h(1) in general differs from that of the exact
first-order entropy rate of the process; for most of the cases
studied here, however, this difference is negligible when com-
pared with the errors introduced by the compression algorithm
(Supplemental Material, Fig. S9 [37]). In other words, the
statistical errors resulting from the last term in Eq. (4) are
almost always immaterial (see, however, Supplemental Mate-
rial, Fig. S8 [37], for an exception; see Supplemental Material,
Fig. S9 [37], for a study of statistical errors as a function
of the trajectory length). Further note that, for the purpose
of detecting non-Markov behavior, the absolute value of h
and the value of the last term in Eq. (4) are immaterial:
The difference between the compressor-derived entropy rates
h ≈ h̃ − h̃(1) already informs us about memory effects. Appli-
cation of Eq. (4), however, provides a much more stringent
test of the ability of the method not only to detect memory
but also to estimate the actual entropy rate h. We find that,
while the raw compressor-estimated vales show strong depen-
dence on the trajectory length, on the specific compression
algorithm used, or on change in the representation of the
data [e.g., applying compression to the sequence of steps
l (t ) = i(t ) − i(t−1) instead of the original trajectory i(t )], the
entropy rates corrected using Eq. (4) remain virtually the same
(Supplemental Material, Figs. S2, S6, and S9 [37]).

Another issue that may affect the utility of the method in
application to experimental rather than simulated trajectories
is that the latter are usually partially degraded by noise. In-
terestingly, noise or loss of spatial resolution by itself may
introduce additional memory not present in the noiseless dy-
namics, an effect that deserves a more extensive future study.
In an example considered in Supplemental Material, Fig. S7
[37], noise effect on the estimated difference h̃ − h̃(1) is less
significant than on the absolute values, and thus, the compres-

FIG. 3. Compression-derived [and corrected using Eq. (4)] en-
tropy rates of a tracer particle undergoing single-file diffusion on a
ring lattice shown as a function of the number R of lattice sites for a
fixed number of random walkers, M = 7.

sion algorithm still correctly detects non-Markovianity of the
underlying process.

II. SINGLE-FILE DIFFUSION

A classic example of a random walk with long memory,
single-file diffusion [38,39] [Fig. 2(a)], has applications as
the prototype of diffusion in the crowded environment of
a biological cell [5,40], passage of multiple solute particles
across a biological channel [41], and non-Markovian barrier
crossing [42]. Here, we use a discrete-time lattice formula-
tion, in which M particles occupy discrete positions on a ring
with R sites. A particle can move to an adjacent site if it is
unoccupied, and each step of the single-file diffusion process
consists of one such move chosen uniformly at random. An
observer monitors the location i(t ) of a single tagged particle
[red in Fig. 2(a)] as a function of the number t of successive
steps.

It is instructive to consider the case with R = 3 and M = 2
because its true (infinite-order) entropy rate h and the first-
and second-order entropy rates can be calculated analytically
and are given by h = 1 bits/step, h(1) = 1.5 bits/step, and
h(2) = 1.25 bits/step, respectively (Supplemental Material,
Fig. S1 [37]). When using transition probabilities T (i → j),
T (i j → m) estimated numerically from a sampled trajectory
instead of their exact values, we obtain nearly identical es-
timates for h(1) and h(2) (Supplemental Material, Fig. S1
[37]). The true entropy rate, however, must be h = 1 bit/step,
because the vacant site (dashed circle in Fig. 2(a) and Supple-
mental Material, Fig. S1 [37]) moves in a Markovian fashion
with two equiprobable outcomes, and there is a bijective map-
ping between the positions of the vacancy and the tagged
particle.

Corresponding compression-based estimates obtained us-
ing a simulated trajectory of L = 109 Monte Carlo steps are
h̃(1) = 1.62 bits/step and h̃ = 1.08 bits/step. Using Eq. (4),
the corrected compression-estimated values of the entropy
rates are h(1) = 1.5 bits/step and h = 0.96 bits/step, in better
agreement with the theoretical values.

For larger numbers of walkers and sites, the exact entropy
rate h is unknown. Figure 3 shows the compression-based
estimate of h for M = 7 walkers as a function of the number of
sites R; h is always lower than the first-order entropy rate h(1).
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FIG. 4. Left: Estimated entropy rate for the random walk with internal states [Fig. 2(b)]. The ratio of the rates is
k f

ks
= 10. In the limit

γ → ∞, the process becomes Markov, with an entropy rate equal to that of a one-dimensional (1D) random walk with a jumping rate of
(ks + k f )/2, and thus, h → h(1) (dash-dotted line). At low switching rates, γ → 0, the entropy rate is seen to approach the expected value
equal to the mean of the entropy rates of two Markovian processes, the slow one (with the jump rate ks) and the fast one (jump rate k f ). Red
line indicates the entropy rate for a random walk with static disorder averaged over random arrangements of slow and fast sites placed on a
ring of size n = 110. Yellow line indicates the entropy rate for a forgetful random walk. Right: Distribution of entropy rates for individual
realizations of static disorder on the ring. Inset: Raw compression-derived entropy rates show significant noise, unlike their values corrected
using Eq. (4).

In addition, we have also applied the compression method to
higher-order Markov models of the same process (k = 2, 3),
with the estimated values h(2) and h(3) also shown. When
M ≈ R, h is significantly lower than its finite-order estimates
h(k), k � 3. This indicates strongly non-Markovian character
of single-file diffusion not captured by including memory of
past k � 3 states of the particle. As L increases, however,
the clashes between walkers become increasingly unlikely,
and each walker diffuses freely in the limit R � M, thus
undergoing Markovian dynamics. Accordingly, the true en-
tropy rate estimate h and its k-order Markovian estimates h(k)

converge to the same value as R increases. Importantly, the
compressor-estimated entropy rates follow the correct relative
order h(1) > h(2) > h(3).

III. COARSE-GRAINED SYSTEMS

A fundamental source of dynamical memory is coarse
graining [1]. An experiment cannot resolve the individual
microscopic states of the molecule, so multiple microscopic
states are effectively lumped into collective observable states.
An example of coarse graining is given in Fig. 2(b) (additional
examples are discussed in the Supplemental Material [37]).
In Fig. 2(b), a random walker can be in one of two internal
states; in one, the walk is fast (quantified by a jump rate k f ),
and in the other, it is slow (jump rate ks). The walker switches
between the states stochastically [43], with a switching rate
γ . Models of this type have been used to describe the dy-

namics of biomolecular motors [4,43–45]. The kinetic scheme
[Fig. 2(b)] describing the system consists of fast (enumerated
by i) and slow (enumerated by i′) tracks, with the walker
randomly switching between the two. The time evolution of
the probabilities P(i, t ) and P(i′, t ) to occupy sites i and i′
obeys the continuous-time master equations:

dP(i, t )

dt
= −2k f P(i, t ) + k f P(i − 1, t ) + k f P(i + 1, t )

− γ P(i, t ) + γ P(i′, t ), (5a)

dP(i′, t )

dt
= −2ksP(i′, t ) + ksP(i′ − 1, t ) + ksP(i′ + 1, t )

− γ P(i′, t ) + γ P(i, t ), (5b)

which describe a Markov process. The two internal states i
and i′, however, correspond to the same observable position
i = 1, 2, . . . of the walker. The states i and i′ are then indistin-
guishable experimentally and thus lumped into a single coarse
state characterized by position i. Unless k f = ks, the observed
time evolution i(t ) of this position is non-Markovian.

The compression-derived entropy rates of this random
walk are shown in Fig. 4 as a function of the switching
rate γ and compared with the entropy rates of the first- and
second-order Markov approximations. The true entropy rate
is lower than that of the two approximations, indicating non-
Markovianity of the dynamics. While significant statistical
noise is observed in the raw compression-derived entropy
rates (Fig. 4 inset), the corrected value of h [Eq. (4)] is
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considerably less noisy and is lower than h(1); moreover, in
the slow switching limit γ � ks, it approaches the expected
limit h = (h f + hs)/2, where hs and h f are the entropy rates
of Markov random walks with jump rates ks and k f . Thus,
the compression method detects the non-Markovianity of the
random walk reliably even when the simulations have not
fully converged.

IV. STATIC AND DYNAMIC DISORDER

The random walker with two internal states is an example
of a model with dynamic disorder, where the (mean) lifetime
of the random walker on a lattice site can be either long
[1/(2ks)] or short [1/(2k f )] depending on a dynamical vari-
able (the internal state of the walker). There are also static
disorder models, where the lifetime of the walker is deter-
mined by a non-time-dependent variable, such as its spatial
location. Given the same probabilities of being in the slow
and fast states, one often uses these two types of models
interchangeably, but the two models are not equivalent [46].

Can the compression method differentiate between the two
kinds of disorder? Entropy rate is a measure of information
gained about the random walker: Every time a new site is
visited, the information gained consists of the direction of the
step (1 bit of information for an unbiased walk) and of the
time spent on this site. If the walker visits the same site again,
less information will be gained in the case of static disorder,
as information can already be inferred about the dwell time of
this site from the time spent on this site in the previous visit.

To probe this effect, we introduce two additional models.
In the static disorder model, each lattice site is randomly
assigned to have either long or short average dwell time
[Fig. 2(c)]. Transitions that leave the former occur with rate
ks, and transitions that leave the latter occur with rate k f .
The fractions of slow and fast sites are chosen such that, on
average, the walker spends half of the time on slow sites and
half of the time on fast ones. In the forgetful walker model,
every time the walker transitions to a new state, the new state
is randomly assigned to have rate k f or ks, regardless of its
prior identity. Note that both models have the same first-order
Markov model as that of the process described by Eqs. (5a)
and (5b). If the above argument is correct, the forgetful ran-
dom walker should have a higher entropy rate than the walker
in the model where the site identity is frozen, and indeed,
this is the case (Fig. 4). It is also instructive that the forget-
ful walker and static disorder entropy rates are greater than
the entropy rate of the random walker described by Eq. (4)
in the slow-switching limit, ks, k f � γ . This is because, in
this limit, the consecutive steps are highly correlated, with a
slow/fast step being likely followed by another slow/fast step,
resulting in lower information gained and higher compress-
ibility.

V. SELF-AVOIDING RANDOM WALKS

A random walk that is not allowed to cross its prior path
[here, we consider a walk on a square lattice, Fig. 2(d)] offers
an interesting example of a non-Markov process with infinite
memory. A compression-based approach to the mathemati-
cally similar problem of computing the entropy of a polymer

has been recently studied by Avinery et al. [47]. Since the
frequencies with which left, right, up, and down steps are
observed in a self-avoiding (SA) walk are the same, the condi-
tional probabilities for making a step in any of these directions
are equal to 1

4 , and thus, the first-order Markov model of
the SA walk is simply the random walk with the SA condi-
tion removed (Supplemental Material, Fig. S4 [37]), with an
entropy rate of h(1) = log2 4 = 2 bits/step. Using transition
probabilities estimated from walk trajectories, we find, numer-
ically, a nearly identical first-order entropy rate h(1) ≈ 2.00
bits/step, and h(2) ≈ 1.58 for the second-order entropy rate.
As with single-file diffusion, these values agree with known
theory (Supplemental Material, Fig. S4 [37]). The true entropy
rate can be estimated using the known asymptotic behavior
of the total number of length L SA walks [48], �(L) ∝ μL

as L → ∞, with 2.625622 < μ < 2.679193 numerically es-
timated [49] for SA walks on the square lattice. This gives
h ≈ log2 μ ≈ 1.4. The corresponding compression-estimated
entropy rates (Supplemental Material [37]) h(2) ≈ 1.53 and
h ≈ 1.42 bits/step are again close to the above values.

VI. CONCLUSIONS

Reconstruction of the underlying models of single-
molecule dynamics from experimental observables has re-
ceived much recent attention (see, e.g., Ref. [50] for a review)
and remains a challenge in the field. Here, we showed that
compression-derived entropy rate estimates could differenti-
ate between Markov and non-Markov trajectories, as well as
between models with dynamic and static disorder, even when
the statistical errors or systematic errors introduced by the
compression algorithm exceeded the difference between the
entropy rate of the true trajectory and the candidate model.
Moreover, this approach provides a measure of how long
memory is: When the estimated entropy rate h(k) of the kth-
order Markov model of the trajectory becomes close to the
estimated true value h, the number k quantifies how many
previous steps are remembered by the trajectory.

The method described here assumed ergodicity of the un-
derlying dynamics; whether it could be applied to systems
that, e.g., display aging phenomena [51] is an open question.
Another limitation is that the observed variable is viewed as
discrete. Applying the method to the continuous case would
require digitizing the observed variable by measuring it with
a finite resolution. The resulting entropy rate is known as
the epsilon entropy h(ε) (the parameter ε quantifying the
resolution), which can be viewed as an approximation to
the Kolmogorov-Sinai entropy [52,53]. To our knowledge,
the practical utility in using h(ε) to differentiate between
stochastic processes with and without memory has not yet
been explored, and it will be the subject of our future work.
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