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The quantum spin Hall states are usually expected to possess gapless, helical edge modes. We show that
the generic, n-fold-symmetric, momentum planes of three-dimensional, stable Dirac semimetals, which are
orthogonal to the direction of nodal separation are examples of generalized quantum spin Hall systems, that
possess quantized, spin or relative Chern numbers as bulk topological invariants, and gapped edge modes.
We demonstrate these planes and the celebrated Bernevig-Zhang-Hughes model support identical quantized,
non-Abelian Berry flux of magnitude 2π . Hence, they display identical quantized, topological response such as
spin-charge separation and pumping of one Kramers-pair or SU (2) doublet, when probed with a magnetic flux
tube. The Dirac points are identified as unit-strength, monopoles of SO(5) Berry connection, describing topolog-
ical phase transitions between generalized quantum spin Hall and trivial insulators. Our work identifies precise
bulk invariant and quantized response of Dirac semimetals, which are not diagnosed by nested Wilson loops
and filling anomaly of corner-localized-states, and shows that many two-dimensional higher-order topological
insulators can be understood as generalized quantum spin Hall systems.

DOI: 10.1103/PhysRevResearch.5.L012019

Introduction. The stable, three-dimensional, Dirac
semimetals (DSM) arising from accidental linear touching
between two Kramers-degenerate bands at isolated points in
the Brillouin zone (BZ) are experimentally relevant examples
of gapless topological states [1–19]. The Dirac points of
such systems, occurring along an n-fold axis of rotation
are protected by the combined PT and the n-fold, discrete,
rotational (Cn) symmetries, with n = 3, 4, 6 [1,2], where P
and T represent space-inversion/parity (P) and time-reversal
(T ) symmetries, respectively. Several materials like Na3Bi
[1,20–23], Cd3As2 [2,24–29], PdTe2 [30], β ′-PtO2 [16,19],
VAl3 [11], β-CuI [13], KMgBi [12,19], PtBi2 [31], and the
magnetoelectric compound FeSn [9,32] can host such Dirac
points. Despite intensive theoretical research on stable DSMs
for almost ten years [1–16,18,19], their bulk topological
invariants are still unknown.

The simplest version of DSMs can be obtained by stacking
of Bernevig-Hughes-Zhang (BHZ) model [33] of quantum
spin Hall (QSH) effect along the direction of nodal separation
or the Cn axis. Since the BHZ model is a first-order topological
insulator (FOTI), supporting helical edge modes, the resulting
DSM exhibits loci of zero-energy surface states, also known
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as the helical Fermi arcs. The total number of zero modes is
equal to the total QSH conductivity of DSMs, determined by
�kD/π , where �kD is the distance between the bulk Dirac
nodes. The spectroscopic and transport data of many stable
DSMs are usually interpreted based on the existence of helical
Fermi arcs [20–30,32].

However, recent theoretical works [7,17–19] have shown
that the generic, n-fold planes of DSMs are not described
by the BHZ model possessing U (1) spin-conservation law, or
closely related Z2 FOTIs [34]. Away from the mirror planes,
various crystalline-symmetry-preserving perturbations can
gap out the helical edge modes. The topological properties
of these planes were not addressed in Refs. [3,4], as the au-
thors focused only on the difference between high-symmetry
planes. Using K-theory analysis, the generic planes were
found to be topologically trivial [7]. Subsequently, various
groups [17–19,35] have identified these planes as higher-
order, topological insulators (HOTI) [36]. The distinction
between FOTI and HOTI is established by computing the
nested Wilson loops of SU (2) Berry connection for the oc-
cupied valence bands under periodic boundary conditions and
the filling anomaly due to corner-localized-states under Cn-
symmetric open boundary conditions. However, such analysis
does not address the presence or absence of spin-Chern num-
ber [37,38] as a bulk topological invariant. The primary goal
of this Letter is to compute and probe the spin Chern number
of generic planes of DSMs.

What happens to the QSH effect of the BHZ model, when
the U (1) spin-conservation law and the helical edge modes
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get destroyed by crystal-symmetry-preserving perturbations?
This question has intrigued condensed matter physicists since
2006, leading to the formulation of the spin-Chern number
in terms of generalized twisted boundary conditions [37,38].
Qi et al. studied a C4-symmetric model of QSH insulators,
possessing gapped edge modes [38], which is topologically
equivalent to the generic planes of C4-symmetric DSMs. Us-
ing generalized twisted boundary conditions, they argued the
spin Chern number to be ±4. Recently, this work has inspired
Song et al. [39] to categorize the spectral flow of fragile topo-
logical insulators, lacking Kramers degeneracy. However, the
important question, whether the spin Chern number of generic
planes of Kramers-degenerate DSMs is ±2 or ±4, has not
been addressed. If the spin Chern number is ±2 (±4), Dirac
points would act as unit-strength (double) monopoles. In this
work, we perform second homotopy classification of the non-
Abelian Berry connection to show that the spin Chern number
is ±2, and Dirac points are unit strength monopoles. The
analysis of momentum space invariant will be substantiated
by probing real-space topological response with a magnetic
flux tube.

Challenge toward topological classification. The minimal
model of a pair of twofold, Kramers-degenerate bands of
PT symmetric systems is described by the Hamiltonian H =∑

k �†(k)Ĥ (k)�(k), where �(k) is a four-component spinor,
and the Bloch Hamiltonian operator can be written as [40–43]
Ĥ (k) = N0(k)1 + ∑5

j=1 Nj (k)� j . The magnitude of O(5)
vector N(k) controls the spectral gap between conduction and
valence bands, N0(k) describes particle-hole anisotropy, and
� j are five, mutually anticommuting, 4 × 4 matrices, such
that {�i, � j} = 2δi j . Since the projection operators for con-
duction and valence bands are given by P̂±(k) = 1

2 (1 ± N̂(k) ·
�), the topology of Bloch wave functions is determined by
the unit O(5) vector N̂(k) = N(k)/|N(k)|, representing the
coset space SO(5)/SO(4) = S4, where S4 is the unit, four
sphere. On the fermionic spinor �(k), the action of SO(5)
and SO(4) groups are realized in terms of their double cover
groups Spin(5) and Spin(4) = SU (2) × SU (2), respectively.
Therefore, the diagonalizing matrix of the Bloch Hamilto-
nian belongs to the coset space SO(5)

SO(4) = Spin(5)
Spin(4) = S4, and the

gauge group for the intraband Berry connection is given by
Spin(4) = SU (2) × SU (2).

The vanishing of |N(k)| restores SO(5)-symmetry at the
Dirac points, which serve as singularities of N̂(k). Whether
the Dirac points are monopoles of Berry connection, leading
to the quantized Berry flux for generic n-fold planes, can
only be unambiguously determined by performing second
homotopy classification of the gauge group. Since π2(S4)
and π2(SU (2)) ≡ π2(S3) are trivial, the homotopy analysis
of DSMs involves conceptual subtleties, and a physically
motivated gauge-fixing procedure of non-Abelian Berry con-
nection is required, which exploits the crystalline symmetries
that protect Dirac points. We will show that the form of Cn op-
erator allows one to identify a pair of global spin-quantization
axes that reduces the redundancy of band eigenfunctions from
being Spin(4) to U (1) × U (1), and the gauge-fixed Berry con-
nection admits second homotopy classification.

Model. We substantiate these claims by considering a
model of C4-symmetric, magnetoelectric DSMs, arising from

the hybridization between s and p orbitals, which does not sup-
port any gapless surface states. We will employ the following
representation of gamma matrices:

� j=1,2,3 = τ1 ⊗ σ j, �4 = τ2 ⊗ σ0, �5 = τ3 ⊗ σ0. (1)

The ten commutators � jl = [� j, �l ]/(2i), with j = 1, ..., 5
and l = 1, ..., 5 serve as the generators of SO(5) and its dou-
ble cover group Spin(5). The 2 × 2 identity matrix τ0 (σ0)
and the Pauli matrices τ j’s (σ j’s), with j = 1, 2, 3 operate
on the orbital/parity (spin) index. The relevant O(5) vector is
given by

N(k) = [tp sin kx, tp sin ky, td,1(cos kx − cos ky),

× td,2 sin kx sin ky, ts(� − cos kx − cos ky − cos kz )], (2)

where ts, tp, td,1, td,2 are four independent hopping parameters,
and the dimensionless parameter � controls topological phase
transitions. The Hamiltonian is written using the simultaneous
eigenstates of �5 and C4,

|1〉 = | + 1, eiθp〉 =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠, |2〉 = | + 1, e−iθp〉 =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠,

|3〉 = | − 1, eiθq〉 =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠, |4〉 = | − 1, e−iθq〉 =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠, (3)

such that

C4 = eiθpσ3 ⊕ eiθqσ3 , (4)

θp = π
4 (2p + 1), with p = 2 mod 4, θq = π

4 (2q + 1), with
q = 0 mod 4. The C4 symmetry requires that the Bloch
Hamiltonian transforms as C4Ĥ (k)C†

4 = Ĥ (k′), which
leads to

N1(k′) = cos (2θ+)N1(k) + sin (2θ+)N2(k),

N2(k′) = cos (2θ+)N2(k) − sin (2θ+)N1(k),

N3(k′) = cos (2θ−)N3(k) + sin (2θ−)N4(k),

N4(k′) = cos (2θ−)N4(k) − sin (2θ−)N3(k),

N5(k′) = N5(k), (5)

with θ± = 1
2 (θp ± θq), and the rotated wave vector

(k′
x, k′

y, k′
z ) = (−ky, kx, kz ). The phase diagram is shown in

Fig. 1(a). The DSMs (1 < |�| < 3) interpolate between trivial
insulators (|�| > 3) and topological insulators (|�| < 1). We
will focus on the parameter regime 1 < � < 3, with the Dirac
points located at kD = (0, 0,±kD), with cos(kD) = (� − 2).
Away from the high-symmetry locations kz = 0, π , the
generic fourfold planes of DSMs [3], preserving both P and
T symmetries display identical form of N(k).

For any fixed |kz| < kD, Eq. (2) describes a two-
dimensional insulator, which is topologically equivalent to
the system [see Eq. (15)] studied in Ref. [38]. The O(5)
vector describes embedding of two distinct O(3) vectors or
BHZ models. (i) The BHZ model for td,1 = td,2 = 0 sup-
ports unit winding number and U (1) spin-conservation law
with respect to �34, as [H (td,1 = td,2 = 0), �34] = 0. (ii) But
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FIG. 1. Phase diagram and bulk topology of Dirac semimetal (DSM) models. (a) Gapless topological phases (DSM), interpolate between
a trivial/normal insulator (NI) and a topological insulator (TI), and topologically distinct phases are separated by quantum critical points (blue
dots). (b) and (c): For all topologically nontrivial fourfold planes, the three-component, unit vector n̂12(n̂34), defined by Eq. (22) displays
skyrmion texture with winding number −1(0). (d) The relative Chern number or the quantized flux of F̄ 12

xy (k) of Dirac semimetals for � = 2.
(e) The vector plots of dipole configuration for Abelian projected magnetic fields B12

i (k) = 1
2 εi jl F̄ 12

jl (k). The momentum components are in
units of π . The Dirac points act as a pair of unit strength, SO(5) monopole and antimonopole, where CR,12 jumps by ±1. (f) The average value
of the relative Chern number 〈CR,12〉 per xy plane, as a function of �. Therefore, in contrast to the findings of Ref. [38], our analysis shows that
the generic quantum spin Hall insulators described by Eq. (2) support spin Chern number 2 × CR,12 = ±2.

the BHZ model for tp = 0, exhibits double winding num-
ber, and U (1) spin-conservation law with respect to �12, as
[H (tp = 0), �12] = 0. When studied separately, they support
one and two pairs of gapless, helical edge modes, respectively.
The generic Bloch Hamiltonian lacks such global U (1) spin-
rotation symmetries, as [H, �12] �= 0 and [H, �34] �= 0, and
does not support gapless edge states. Therefore, we outline
the formalism for computing Berry curvatures for generic
model.

Berry curvature. The PT symmetry is implemented by
�24Ĥ∗(k)�24 = Ĥ (k), and the diagonalizing matrix U (k)
must satisfy the constraints

U †(k)Ĥ (k)U (k) = |N(k)|�5, (6)

U †(k)�24U
∗(k) = �24. (7)

Hence, U (k) has the general form [42,43],

U (k) =
[

cos θ (k)
2 g+(k) i sin θ (k)

2 u(k)g−(k)
i sin θ (k)

2 u†(k)g+(k) cos θ (k)
2 g−(k)

]
, (8)

where

cos[θ (k)] = N5(k)

|N(k)| , (9)

u(k) = N4(k)σ0 + i
∑3

j=1 Nj (k)σ j√
N2

1 (k) + N2
2 (k) + N2

3 (k) + N2
4 (k)

. (10)

The first (last) two columns correspond to the eigenfunc-
tions of conduction (valence) bands, the SU (2) matrix u(k)
describes hybridization between two orbitals, and the SU (2)
matrices g±(k) describe gauge freedom in selecting the eigen-
functions for conduction and valence bands, respectively.
Owing to the transformation properties of N(k) under C4

rotation [(see Eq. (5)],

u(k′) = eiθpσ3 u(k)e−iθqσ3 . (11)
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From U (k) one finds the following intraband SU (2) con-
nections:

A+(k) = sin2 θ

2
g†

+[−iu∇u†]g+ − ig†
+∇g+,

A−(k) = sin2 θ

2
g†

−[−iu†∇u]g− − ig†
−∇g−, (12)

for the conduction and valence bands, respectively. For no-
tational compactness, we have suppressed the explicit k
dependence of θ , u, and g±.

Since the C4 symmetry leads to the constraint

[U †(k′)C4U (k), �5] = 0, (13)

the transformed rotation operator or the sewing matrix
C ′

4(k) ≡ U †(k′)C4U (k) acquires the form

C ′
4(k) = [g†

+(k′)eiθpσ3 g+(k)] ⊕ [g†
−(k′)eiθqσ3 g−(k)]. (14)

Notice that the gauge choice g±(k) = eiα±(k)σ3 keeps the
spin quantization axes unaffected, and the sewing matrix re-
duces to the global C4 operator.

Any general choice of gauge specify a pair of local
spin quantization axes m̂±(k), according to g†

±(k)σ3g±(k) =
m̂±(k) · σ. Once g±(k) are identified, U (k) only ex-
hibits residual U (1) × U (1) gauge freedom, correspond-
ing to the spin rotations about m̂±(k), i.e., g±(k) →
g±(k) exp[iϕ±(k)m̂±(k) · σ]. Consequently, the gauge group
of intraband Berry connection is given by Spin(4)/[U (1) ×
U (1)], with the second homotopy class

π2

(
Spin(4)

U (1) × U (1)

)
= π1(U (1) × U (1)) = Z × Z. (15)

Hence, the topology of fourfold planes and the Dirac
points are governed by a pair of integer invariants,
and the Dirac points can be identified as non-Abelian
monopoles. The analysis of Cn=3,6 fold symmetric
DSMs can be performed using this formalism, after
setting θp = π

n (2p + 1), with p = 0, .., n − 1 mod n, θq =
π
n (2q + 1), with p = 0, .., n − 1 mod n, and k′ = (kx cos
(2π/n) − ky sin(2π/n),−kx cos(2π/n) + ky cos(2π/n), kz ).

The Abelian projected Berry connections can be
obtained as Ā±(k) = 1

2 Tr[A±(k)m̂±(k) · σ] = 1
2 Tr[A±(k)

g†
±(k)σ3g±(k)], leading to

Ā+(k) = 1

2
sin2 θ

2
Tr[−iu∇u†σ3] + i

2
Tr[g+∇g†

+σ3],

Ā−(k) = 1

2
sin2 θ

2
Tr[−iu†∇uσ3] + i

2
Tr[g− ∇g†

−σ3]. (16)

Consequently, the gauge-invariant, quantized Berry flux
can be determined from the Abelian field strength tensors
(or Berry curvatures) F̄i j,±(k) = ∂iĀ j,±(k) − ∂ j Āi,±(k). For all
smooth gauge transformations, such that the spin-quantization
vectors m̂(k) are topologically trivial (meaning the gauge-
fixing operators m̂±(k) · σ do not correspond to fictitious
two-band models of Chern insulators), i/2Tr[g±∇g†

±σ3]
terms cannot contribute to the quantized flux of F̄i j,±(k) or
the relative Chern numbers for 4-fold planes, defined as

CR,±(kz ) = 1

2π

∫
T 2

dkxdky F̄xy,±(k). (17)

To compare against the spin-Chern number of Ref. [38],
we have to trace over the Kramers index of occupied bands
(i.e., trace over σ3). Hence, Cs = 2CR,−.

Quantized Berry flux. Next we perform explicit analyti-
cal calculations of Berry flux with the global gauge choice
g±(k) = σ0, corresponding to the spin quantization axes
m̂±(k) = (0, 0, 1). This choice implies that the conduction
and valence band eigenfunctions are obtained by operating
with projectors on the global basis:

|+; ↑〉 = P̂+|1〉√
〈1|P̂+|1〉

, |+; ↓〉 = P̂+|2〉√
〈2|P̂+|2〉

,

|−; ↑〉 = P̂−|3〉√
〈3|P̂−|3〉

, |−; ↓〉 = P̂−|4〉√
〈4|P̂−|4〉

. (18)

Therefore, the expressions for Berry curvatures only in-
volve the matrix elements of Ĥ (k). It is convenient to define
symmetric and anti-symmetric combinations of Berry curva-
tures as F̄ 12

ij = (F̄ij,+ + F̄ij,−)/2, and F̄ 34
ij = (F̄ij,+ − F̄ij,−)/2.

These curvatures will be associated with the diagonal, Cartan
generators of SO(5) group, namely �12 = τ0 ⊗ σ3 and �34 =
τ3 ⊗ σ3, and can be elegantly written as

F̄ ab
i j = sin(θab)[∂iθab∂ jφab − ∂ jθab∂iφab], (19)

where we have introduced two sets of spherical polar angles
(θ12(k), φ12(k)) and (θ34(k), φ34(k)), such that

tan[φab(k)] = Nb(k)

Na(k)
, (20)

cos[θab(k)] = 1 −
[
N2

a (k) + N2
b (k)

]
|N(k)|[|N(k)| + N5(k)]

. (21)

The quantized flux of F̄ 12
i j and F̄ 34

i j can only exist if the BZ
two-torus can wrap around unit two spheres, defined by

n̂ab = (sin θab cos φab, sin θab sin φab, cos θab). (22)

Notice that �12
xy (kz ) = 2πCR,12(kz ) and �34

xy (kz ) = 2π

CR,34(kz ) describe the flux of Abelian fields F̄ 12 and F̄ 34,
respectively.

For all topologically nontrivial fourfold planes of C4-
symmetric DSMs described by Eq. (2), only θ12 interpolates
between 0 and π , leading to the skyrmion configuration for the
unit vector n̂12, as shown in Fig. 1(b). In contrast to this, θ34

does not interpolate between 0 and π , and the corresponding
unit vector n̂34 is topologically trivial, as shown in Fig. 1(c).
The quantization of the relative Chern numbers, and their
discontinuities at the Dirac points are shown in Fig. 1(d). The
monopole numbers for the Dirac points at k = (0, 0,±kD, j )
are determined by

N12(±kD, j ) = lim
ε→0

[CR,12(kz = ±kD, j + ε)

−CR,12(kz = ±kD, j − ε)] = ±1, (23)

N34(±kD, j ) = 0. (24)

In Fig. 1(e), we illustrate the structure of Abelian projected
magnetic fields B12

i (k) = 1
2εi jl F̄ 12

jl (k), which support dipole
configuration. Using the kz-dependent relative Chern num-
bers, we can also define the average relative Chern numbers
per xy plane 〈CR,ab〉(�) = 1

2π

∫ π

−π
dkz CR,ab(kz ), which is
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FIG. 2. Spin-charge separation and spin-pumping for nontrivial
planes of Dirac semimetals. (a) Local density of states for magnetic
flux tube, as a function of energy E (measured in units of hopping
parameter tp) and the strength of flux φ, and φ0 = h/e is the flux
quantum. (b) The number of states vs energy eigenvalues for φ =
φ0/2, showing the higher-order topological insulators, described by
Eq. (2) support twofold degenerate, zero-energy states. As φ is tuned
from 0 to φ0, one Kramers pair is pumped. If the relative (spin) Chern
number was ±2 (±4), two Kramers pair would be pumped, and π

flux tube would bind four zero-energy, midgap states.

shown in Fig. 1(f). Therefore, our results correspond to spin
Chern number ±2 instead of ±4. We note that the stacked
BHZ model with td,1 = td,2 = 0, the stacked HOTI with td,2 =
0 [36], and the stacked HOTI with td,1 = 0 support identical
quantized flux of F̄ 12

jl (k). Hence, the relative Chern number
acts as a topological order parameter for various phases, con-
trolling the strength of generalized QSH effect, which can be
seen in the following manner.

Generalized QSH effect. References [44–47] have identi-
fied spin-charge separation as the nonperturbative signature

of QSH, which can survive as a genuine topological response
even in the absence of U (1) spin conservation law. For the
BHZ model (td,1/2 = 0) and closely related Z2 FOTI, support-
ing gapless edge modes, it was shown that a magnetic π -flux
tube binds twofold degenerate, zero-energy, midgap states.
When both bound modes are occupied (empty), the spin or
Kramers-singlet state carries charge +e (−e). In contrast to
this, the half-filling of bound modes corresponds to spin or
Kramers-doublet with charge e = 0. When the strength of flux
is varied adiabatically between 0 and full flux quantum φ0 =
h/e, ground state carrying unit relative Chern number (spin
Chern number ±2) shows pumping of spin or one Kramers
pair.

To demonstrate spin-charge separation and spin-pumping
for C4-symmetric HOTI, we have computed the local density
of states in the presence of a magnetic flux tube, oriented
along z axis, for a system size 21 × 21, under periodic bound-
ary condition. The local density of states for flux tube is shown
in Fig. 2(a) as a function of energy and the strength of flux
φ. The calculations were performed with hopping parameters
ts = tp = td,1 = td,2, kz = π/2, and � = 1.5. The low-energy
states for φ = φ0/2 or π flux are shown in Fig. 2(b), provid-
ing clear evidence for the existence of two-fold degenerate,
midgap states at zero energy, and pumping of one Kramers
pair, when φ is tuned from 0 to φ0. All topologically nontriv-
ial planes of DSMs can support such midgap states (which
may or may not be at zero energy), and their total number
corresponds to �kD/π .

In conclusion, we have provided second homotopy clas-
sification of generic fourfold planes and Dirac points. We
have shown that generic planes are generalized QSH insula-
tors, possessing relative (spin) Chern number ±1 (±2). The
combined analysis of non-Abelian Berry flux in momentum
space and real-space topological response described in this
work is widely applicable for studying first- and higher-order
topological insulators and semimetals. This is a unified theo-
retical framework that is capable of addressing complex band
structures of analytically known effective models [48–50] and
numerical tight-binding models [49,51], for which the pres-
ence of quantized Berry flux cannot be easily inferred from
simple symmetry-based indicators.
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