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Quantum metric induced phases in Moiré materials
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We show that, quite generally, quantum geometry plays a major role in determining the low-energy physics
in strongly correlated lattice models at fractional band fillings. We identify limits in which the Fubini-Study
metric dictates the ground states and show that this is highly relevant for Moiré materials leading to symmetry
breaking and interaction driven Fermi liquids. This phenomenology stems from a remarkable interplay between
the quantum geometry and interaction which is absent in continuum Landau levels but generically present in
lattice models where these terms tend to destabilize, e.g., fractional Chern insulators. We explain this as a
consequence of the fundamental asymmetry between electrons and holes for band projected normal ordered
interactions, as well as from the perspective of a self-consistent Hartree-Fock calculation. These basic insights
about the role of the quantum metric, when dominant, turn an extremely strongly coupled problem into an
effectively weakly coupled one, and may also serve as a guiding principle for designing material setups. We
argue that this is a key ingredient for understanding symmetry-breaking phenomena recently observed in Moiré
materials.
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I. INTRODUCTION

The application of geometry in physics continues to
stimulate new fundamental insights. One of the most promi-
nent examples is the general relativity. In condensed matter
physics, the role of geometry has been in the limelight since
the discovery of the geometric Berry phase [1,2], which is
the phase accumulated during an adiabatic evolution. The
Berry phase has proven to be critical to topological states
and transport properties [3–14]. Quantum states also trace out
a distance during an adiabatic evolution, which is captured
by a metric [15,16]. The geometric concept of distance has
been well recognized in quantum information theory [17–19],
and it has also begun to attract interest in condensed matter
physics [20–32]. Examples include the collective excitations
of quantum Hall states [33–37] and bosonic phenomena such
as superfluidity and Bose-Einstein condensation [38–41] in
flat bands.

Flat, or nearly dispersionless, bands provide an ideal arena
for strongly correlated states. The most prominent example
thereof is the quantum Hall system exhibiting exactly flat
bands in the continuum limit, and a rich phenomenology of
strongly correlated states [42]. Flat bands of lattice models are
known to in principle exhibit an even richer phenomenology
[43–52], for which the recently engineered superlattice Moiré
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materials provide remarkably versatile flat-band structures
[53–59] that can be controlled in experiments [60,61].

In this letter, we show that the Fubini-Study (FS) metric
[15,16,62] has a profound impact on the low-energy physics
of strongly interacting lattice models and that it can induce
fermionic phases in lattice flat-band systems that have no
direct analog in continuum Landau levels. We derive an
emergent kinetic energy, which explicitly depends on the
FS metric, through two distinct but mutually converging
approaches: via a particle-hole (PH) transformation and a
self-consistent Hartree-Fock calculation. While these results
in principle have a wide range of applicability, here we focus
on applying this to realistic Moiré systems for which we find
that the quantum metric plays a preeminent role. Indeed, re-
cent experiments have identified a large number of symmetry
broken states [61,63–65]. Here, we provide an intuitive picture
of the symmetry breaking: electrons (holes) tend to occupy
regions of Brillouin zone (BZ) with short (long) quantum
distances as quantified by a small (large) quantum metric.
The main difference between this work and previous ones
[9,20,21,55,57] about the quantum metric is that we do not
seek analogs between flat bands and Landau levels at the
single-particle level. The role of the quantum metric here
purely comes from many-body interacting effects [66]. The
quantum distance turns out to be vital in reducing a strongly
interacting question to a weakly interacting question.

II. QUANTUM METRIC

In quantum physics, there is a natural notion of distance
between quantum states by regarding them as normalized
complex vectors [15,16,62,67]. In a tight-binding lattice
model, the periodic part μ(k) of the Bloch states 〈x|k〉 =
exp(ik · x)μ(k) is a vector of finite dimension. This gives rise

2643-1564/2023/5(1)/L012015(8) L012015-1 Published by the American Physical Society

https://orcid.org/0000-0002-4787-3357
https://orcid.org/0000-0001-8329-1867
https://orcid.org/0000-0002-9739-2930
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.L012015&domain=pdf&date_stamp=2023-02-10
https://doi.org/10.1103/PhysRevResearch.5.L012015
https://creativecommons.org/licenses/by/4.0/


ABOUELKOMSAN, YANG, AND BERGHOLTZ PHYSICAL REVIEW RESEARCH 5, L012015 (2023)

FIG. 1. Geometric interpretation of the form factor in band pro-
jections. The Bloch state μ(k) maps the Brillouin zone to a complex
projective space CPN−1. The geometric information of the quantum
states on CPN−1 can be pulled back to the Brillouin zone. The
norm of the form factor directly reflects the quantum distance and
the Fubini-Study metric. The exchange interaction ε̃ relies on the
quantum distance and brings nontrivial hole dispersion.

to a distance measuring the difference between Bloch vectors
at momenta k and k′,

D2(k, k′) = 2 − 2|μ†(k)μ(k′)|, (1)

as illustrated in Fig. 1. Here μ†(k)μ(k′) is the inner product∑N
j=1 μ∗

j (k)μ j (k′) for a model with N bands. To gain some
intuition, note that identical Bloch vectors at k and k′ yield
D = 0 while orthogonal ones give D = √

2, consistent with
Pythagoras’ theorem.

At small separation q, this distance leads to a FS metric
gab(k):

D2(k − q, k) ≈
2∑

a,b=1

gab(k)qaqb. (2)

Equivalently, the FS metric can be expressed as [20,68]

2gab(k) = ∂aμ
†(k)∂bμ(k) − [∂aμ

†(k)μ(k)][μ†(k)∂bμ(k)]

+ (a ↔ b). (3)

One may note that the distance (1) is different from the
geodesic distance [16] or the Hilbert–Schmidt quantum dis-
tance [17,23], but all these definitions coincide when the
quantum distance is small, leading to the same effective met-
ric. Mathematically the terminology of distance and metric
tensor [69] introduced here may need careful treatment. More
details can be found in the Supplemental Material (SM) [70].

III. EMERGENT KINETIC ENERGY

In a flat-band model the relevant physics is given by the
projected interaction of electrons:

H = 1

2

∑
q,k,k′

V (q)[μ†(k − q)μ(k)][μ†(k′ + q)μ(k′)]

× c†
k−qc†

k′+qck′ck. (4)

The key ingredient is the projected density operator at mo-
mentum q, which is the product of the operators c†

k−qck and
the form factor μ†(k − q)μ(k). We consider a single band,
i.e, we freeze any additional degrees of freedom such as the
spin and the valley. As there is no kinetic energy, the electrons
are strongly interacting and the many-body state seems to be
very complicated. Previous work [66,71] notices that under a
PH transformation the Fermi liquid may be a good candidate
for ground states. At first glance, however, the Hamiltonian
seems PH symmetric. The enigma lies in the fluctuating band
geometry and the correlated nature of hole-like degrees of
freedom. A PH transformation maps ck → d†

−k. In addition
to the transformation on operators, we also need to transform
the concomitant reference state, from the vacuum of electrons
|�〉 to the vacuum of holes |�′〉 = ∏

k c†
k|�〉. The low-energy

excitations of |�′〉 are described by creating a few holes. To
better capture this physical process, we need to normal order
the Hamiltonian by moving all hole creation operators to the
right of hole annihilation operators. This procedure gives the
following Hamiltonian:

¯̄H =
∑

k

εkd†
kdk + 1

2

∑
q,k,k′

V (q)[μ†(−k)μ(q − k)]

× [μ†(−k′)μ(−k′ − q)]d†
k−qd†

k′+qdk′dk. (5)

Apart from a similar interaction term to electrons, holes
receive a quadratic term that is generically dispersing (an
exception is Landau levels where it is constant) [66]. This
term reflects the fact that the kinetics of a hole is described by
how an electron moves in an electron background (see Fig. 1).
It can be decomposed into two parts: ε = ε + ε̃. The first
constant term comes from a uniform background repulsion
and is equivalent to a chemical potential (details in the SM
[70]). The second term is nontrivial, resulting from the ex-
change interaction, ε̃−k = ∑

q V (q)|μ†(k − q)μ(k)|2, where
the form factor norm enters.

A key observation is that the form factor norm occurring in
ε̃−k describes the distance between two Bloch states μ(k) and
μ(k − q). The exchange interaction is thus jointly determined
by the interaction potential and the quantum distance. The
kinetic energy of holes is dispersing as long as the quan-
tum geometry pulled back to the BZ is not uniform. For
small momentum q, ε̃−k can be expanded by the FS metric
|μ†(k − q)μ(k)|2 
 1 − ∑

ab qaqbgab(k):

ε̃−k 

∑

q

V (q)e− ∑
ab qaqbgab(k), (6)

where we further approximate the parabolic expansion by
lifting it to the exponent so that the norm is still positive at
large q. This ansatz of form factors also appears in the context
of ideal fractional Chern insulators (FCI) [20], although the
focus here is on the opposite aspects, namely, the qualitative
deviations from Landau level physics.

Intuitively, one may expect that the hole dispersion and the
Fermi-liquid idea would only be useful at high electronic band
filling. Remarkably, however, the Fermi liquid prevails in a
wide range of fillings ν [71] for Moiré systems. This can be
understood from a self-consistent picture of Landau’s Fermi
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FIG. 2. Metric-induced phases in TLG-hBN C = 0 valence band
and C = 3 valence band obtained by switching the sign of the gate-
voltage: (a and b) Contour plots of log tr gab(k)/a2

M , where aM is the
Moiré unit cell lattice constant. (c and d) Lowest energy ground state
electron occupation n(k) = 〈c†

kck〉 obtained from exact diagonaliza-
tion [70] vs log tr gab(k)/a2

M as a function of electron band filling ν.
We use gate voltage U = ±0.02 eV [72].

liquids, yielding a Fock energy induced by the interaction [70]

Ek 
 −
∑

q

V (q)e− ∑
ab qaqbgab(k)〈c†

k−qck−q〉. (7)

Because of the nonuniform geometry, electrons prefer to fill
the areas in the BZ with small tr g (Fig. 2), where they can
benefit from a lower Fock energy due to the smaller quantum
distance. This renders the Fermi liquid a natural ground-state
candidate also in the electron picture. The hole dispersion can
be regarded as the extreme case when the band is completely
filled (〈c†

kck〉 = 1 for all k). As we will show, Moiré systems
have rapidly decaying form factors. Then the partial summa-
tion (7) over the electron-filled region is not very different
from the whole BZ summation (6). So, the hole energy gives
a good estimate of the self-consistent Hartree-Fock Hamilto-
nian of the electrons, Ek 
 −ε̃−k, where the minus signs come
from the PH relation. Explicit comparisons can be found in the
SM [70].

Equations (6) and (7) and their relevance to Moiré ma-
terials are the main results of this letter. The nonuniform
quantum geometry and the finite electron density induce a
nontrivial emergent kinetic energy in flat bands. Locally, such
a nonuniform geometry is captured by the FS metric and
the kinetic energy can be obtained by integrating the interac-
tion potential with the metric. This emergent kinetic energy
naturally appears in the hole Hamiltonian, as hole degrees
of freedom have the completely filled band as a reference
state. In contrast, Landau levels have an exactly flat geometric
structure and the Hamiltonian (any band projected translation
invariant two-body interaction) is always PH symmetric.

IV. METRIC-DOMINATED CONDITIONS

We expect that Eq. (6) gives the dominant contribution to
the emergent kinetic energy when the product of the interac-
tion potential and the form factor decays fast enough in q. The
form factor reflects the quantum distance. As the BZ is fixed to
be two-dimensional (2D), we can envisage its image μ(k) to
be some 2D subspace of the complex projective space CPN−1.
The average distance between μ(k − q) and μ(k) thus de-
pends on to which extent this subspace extends in CPN−1. A
natural condition is that N should be large, otherwise most
states in CPN−1 are nearby. Especially for a topologically
non-trivial band, the image of the BZ tends to span much of
CPN−1. Thus a system with sufficient many bands is likely to
support a fast-decaying form factor. An excellent approxima-
tion is obtained by considering the finite thickness of the 2D
material. This results in a potential decaying in the momentum
space, for example, the Zhang-Das Sarma potential V (q) =
2πe2 exp(−lq)/q, where l is the sample thickness [73].

V. APPLICATIONS TO MOIRÉ MATERIALS

The number of minibands in Moiré systems is estimated
as N 
 (|Q0|/|G0|)2 ∼ 103, where G0 is the primitive Moiré
reciprocal lattice vector and Q0 is the primitive reciprocal
lattice vector of the original lattice. So Moiré materials sat-
isfy the condition of sufficiently many bands. In continuum
approximations, the Moiré Bloch states |ψk〉 are constructed
by superposing the original Bloch states |k + G〉 differed by
Moiré reciprocal wave vectors, |ψk〉 = ∑

G μ(k, G)|k + G〉.
Here we omit other indices for spins or valleys. The form
factor is obtained as

∑
G μ∗(k − q, G)μ(k, G). A natural def-

inition of Moiré Bloch vectors is given by μ(k, G) with G as
an index of components. We show in the SM [70] that the
Moiré form factors are indeed quickly decaying.

Different from conventional tight-binding models, the
norm of the Moiré form factor is not periodic in q. A usual
Bloch vector μ(k) and its BZ translated counterpart μ(k + Q)
only differs by a phase φk,Q. In contrast, the Moiré BZ trans-
lated pairs are different by an additional cyclic transformation
on its components μ(k + G′, G) = exp(iφk,G′ )μ(k, G + G′).
For this reason, even the contribution εk is (weakly) dispersing
and ε̃k becomes more complicated [70]. However, all of these
differences are happening at momenta equal or larger than
G0 and since the Moiré form factors are quickly decaying,
these modifications are minimal. Hence (6) remains accurate.
Equipped with the connection between the FS metric and an
emergent dispersion, we proceed to analyze possible phases
in prominent Moiré systems such as trilayer graphene and
twisted bilayer graphene, both aligned with hexagonal boron
nitride. Both these two setups and several other related ones
have attracted ample interest as tunable platforms for studying
strongly correlated phases such as correlated insulators and
superconductivity [63,76–95].

VI. TRILAYER GRAPHENE ALIGNED
WITH BORON-NITRIDE

The Moiré system trilayer graphene aligned with hBN
hosts a nearly flat valence band below charge neutrality upon
applying a gate voltage across the layers [72,96]. At the
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noninteracting level, neglecting possible strain effects [97],
the flat band could be topologically trivial with Chern num-
ber C = 0 or topologically nontrivial with C = 3, depending
on the sign of the applied gate voltage. It was theoretically
shown [71] that this system could host Fermi liquid phases
dictated by the single-hole dispersion for a wide range of
filling. Remarkably, the emergent dispersion greatly influ-
ences the average electron occupation down to very low
fillings. Regardless of the value of the Chern number, the
trilayer graphene aligned with boron-nitride (TLG-hBN) va-
lence band has a nontrivial and far from flat FS metric
quantified by the trace tr g(k) shown in Figs. 2(a) and 2(b). We
find the electron occupation in momentum space n(k) to cor-
relate well with log tr g(k)/a2

M , as indicated in Figs. 2(c) and
2(d) for representative filling fractions ν � 2/3. This shows
that the origin of such a correlation is mainly induced by the
highly fluctuating FS metric that results in a kinetic energy
with large bandwidth. As shown in Figs. 2(a) and 2(b), we find
log tr g(k)/a2

M to share the same qualitative features with the
hole dispersion [71] up to very high electron fillings, where it
starts to deviate from the hole energy. The gradual disappear-
ance of well-defined Fermi surfaces, manifested in the sharp
jumps in the occupation n(k) as shown in Figs. 2(c) and 2(d),
as the electron filling ν decreases signals possible transitions
from the Fermi liquid state to competing states. Charge den-
sity waves (CDW) are natural candidates at fillings that are
commensurate with the triangular Moiré lattice. To illustrate
this, we provide numerical evidence for a possible CDW at
ν = 1/3 for the C = 0 band through the threefold ground state
degeneracy shown in Fig. 3(a) and the static structure factor
peaks shown in Fig. 3(b). The effects of quantum geometry
are, however, present even when there is an absence of a well-
defined Fermi surface. Although the sharp Fermi surface is
blurred [cf. ν = 1/3 in Fig. 2(c)], the ground state occupation
correlates well with tr g as the electrons tend to stay in regions
with small tr g. Moreover, the nonuniform quantum metric
reflects a strong PH asymmetry; we find no evidence of CDW
at the PH dual filling ν = 2/3, as illustrated in Figs. 3(c) and
3(d). Indeed, the occupation n(k) [cf. ν = 2/3 in Fig. 2(c)],
when averaged over a number of low-lying energy states,
shows clear signs of a Fermi liquid state [70]. This asymmetry
may be attributed to the different Fermi-surface geometries
corresponding to ν = 1/3 and ν = 2/3, dictated by the FS
metric. The systematic identification of the ground states at
different commensurate fillings and the nature of transitions
provides avenues for future work starting from the insights
presented here, including the study of possible instabilities
starting from Fermi surfaces suggested by the FS metric.

VII. TWISTED BILAYER GRAPHENE ALIGNED
WITH BORON-NITRIDE

Next we study twisted bilayer graphene aligned with
boron-nitride (TBG-hBN). The alignment with hBN gaps out
the flat bands of twisted bilayer graphene and makes them
acquire a nonzero Chern number C = ±1 [74,98]. Earlier
theoretical studies [57,71,99] have predicted the possibility of
realizing zero magnetic field FCI state at fractional fillings of
the flat bands of TBG-hBN. These FCI states compete with
possible CDW at commensurate fillings [100]. Such com-

(a) (c)

(b) (d)

FIG. 3. Particle-hole asymmetry in TLG-hBN C = 0 valence
band: (a and b) Evidence of charge density wave at ν = 1/3.
(a) Many-body spectrum showing threefold degeneracy at three
different momenta corresponding to the three possible charge con-
figurations when the unit-cell is tripled. (b) The projected static
structure constant calculated in the lowest energy ground state
S(q) = 〈ρ̂proj

q ρ̂
proj
−q 〉 with ρ̂

proj
q = ∑

k μ†(k − q)μ(k)c†
k−qck. Promi-

nent peaks are observed at the K points. (c and d) Absence of charge
density wave at ν = 2/3. (c) Many-body spectrum with no clear
separated low-energy sector. (d) Featureless static structure factor
S(q) with no prominent peaks.

petition depends on the relaxation ratio r = w0/w1, where
w0 and w1 are the interlayer tunneling strengths at the AA-
stacked and AB-stacked regions, respectively. Assuming spin
and valley polarization, we focus on the valence band at
filling fraction ν = 1/3 and vary r. (Qualitatively similar re-
sults were obtained in the valence band at ν = 2/3 and in
the conduction band at both ν = 1/3 and ν = 2/3.) As the
value of r increases, FS metric fluctuations become more
prominent and a transition from FCI to CDW occurs (Fig. 4).
The critical value of r of such a transition is sensitive to the
model parameters such as w1 and twist angle θ [14]. Recent
experiments [61] have confirmed the existence of FCI states
in TBG, albeit with the application of a weak magnetic field.
It was argued [14,61] that the role of the weak magnetic
field, similar to a smaller r, is to make the Berry curvature
more uniform, thus stabilizing the zero-field FCI. Note that in
this system, the FS metric fluctuates in sync with the Berry
curvature [14,55,57], and the magnetic field or the ratio r also
flattens the FS metric. As a consequence, we here provide a
complementary interpretation of the competition between FCI
and CDW based on the FS metric. FCI prefer the electron
density to be uniform in momentum space and the Berry
curvature, the effective “magnetic field,” to be nonvanishing
in these regions. If the metric is uniform, electrons do not have
priorities in the BZ and this condition can be satisfied. As the
ratio r increases, however, the FS metric becomes less uniform
as shown Figs. 4(a)–4(c). Accordingly, there is a tendency for
the electrons to occupy states with lower tr g(k) to minimize

L012015-4



QUANTUM METRIC INDUCED PHASES IN MOIRÉ … PHYSICAL REVIEW RESEARCH 5, L012015 (2023)

FIG. 4. Fubini-Study metric effect in the spin and valley polarized C = 1 valence band in TBG-hBN: (a)–(c) Contour plots of
log tr gab(k)/a2

M at twist angle θ = 1.05◦ and mass term [74] M = 15 meV for different values of r = w0/w1. aM is the Moiré unit cell
lattice constant. (d) Lowest energy ground state electron occupation n(k) = 〈c†

kck〉 obtained from exact diagonalization [70] at ν = 1/3 vs
log tr gab(k)/a2

M for different values of r. The criteria for FCI agree with counting rules in Ref. [75].

the Fock energy according to Eqs. (5)–(7). This leads to a
varying n(k), destabilizing the FCI state since it is a liquid
of roughly uniform density. This is highlighted in Fig. 4(d),
where we show how the occupation n(k) evolves for different
values of r as a function of log tr g(k)/a2

M .

VIII. DISCUSSION

We have shown that the quantum geometry in terms of
the Fubini-Study metric explicitly appears in the effective
Hamiltonian description of strongly interacting electrons in
a flat band, yielding an emergent kinetic energy stemming
from the collective interactions. This suggests a generic and
physically intuitive picture of symmetry breaking states—and
their microscopic provenance—which have been observed in
recent experiments on Moiré materials [61,63–65].

Our theory also provides an alternative criterion for the
stability of FCI. Whereas previous studies [8,20,101] were
based on the similarity of the density algebra to quantum
Hall effects, here we give a microscopic interpretation of band
geometry. The uniformity of the Fubini-Study metric dictates
where the electrons are likely to condensate in momentum

space. The observed FCI/CDW transitions in Ref. [61] may
also be explained by the more uniform metric tuned through
the magnetic field or interlayer interaction ratio w0/w1. As a
comparison, the interpretation of the Berry curvature from a
microscopic view is less clear [12].

The paramount role of the Fubini-Study metric in frac-
tionally filled Moiré bands may serve as a guiding principle
in materials design aiming to realize various exotic phases.
Moreover, it effectively turns experimentally relevant in-
stances of an extremely strongly interacting problem into an
effectively weakly interacting one, thus enabling the use of
standard techniques of theoretical physics.
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