
PHYSICAL REVIEW RESEARCH 5, L012014 (2023)
Letter

Common packing patterns for jammed particles of different power size distributions
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We introduce a model for particles that are extremely polydisperse in size compared with monodisperse and
bidisperse systems. In two dimensions (2D), size polydispersity inhibits crystallization and increases the packing
fraction at jamming points. However, no packing pattern common to diverse polydisperse particles has been
reported. We focused on polydisperse particles with a power size distribution r−a as a ubiquitous system that
can be expected to be scale invariant. We experimentally and numerically constructed 2D random packing for
various polydisperse particles with different size exponents a. Analysis of the packing pattern revealed a common
contact number distribution for a < 3 and a higher jamming point for 2 < a < 3 than in monodisperse systems.
These findings demonstrate that the ambiguity of the characteristic length provides common properties that lead
to a classification scheme for polydisperse particles.
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Polydisperse particles are omnipresent. Thermal particles,
such as biomolecules in cells [1,2], and athermal particles,
such as cement [3] and gravel [4–6], are highly dispersed
in size and shape. Regarding size polydispersity, fracture-
produced particles such as impact-fractured objects [7–9],
fault gouge under tensile stress [4], and rubble by the collision
of rock [6] have power size distribution. In addition, critical
phenomena result in a power size distribution of the clusters.
It is known that correlation lengths related to the cluster size
cutoff diverge at the critical point and that the cluster size
follows a power size distribution [10,11]. It is also known that
droplets with a power-law distribution arise because of self-
organized criticality [12,13]. Thus polydisperse particles with
various power size distributions are ubiquitous and seemingly
without any order; however, they have one thing in common:
They have no apparent characteristic length.

In the context of jamming and glass transitions, such par-
ticle size dispersion has been considered based on monodis-
perse systems [14–20]. Previous studies have shown that
size polydispersity suppresses crystallization at high pack-
ing fractions in two dimensions. Examples include bidisperse
systems (size distribution with two peaks) with a size ratio
of approximately 1.4 [15,21–24] and systems with a slight
size dispersity around the average size [25–27]. In addition,
more polydisperse bidisperse systems with larger size ratios
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than 1.4 have been reported to exhibit unique phenomena,
such as random packing at higher packing fractions [28,29]
and the appearance of multiple glass phases [30,31]. Despite
numerous experimental and numerical studies on polydisperse
systems [3,15,21–25,28–35], there are no reports of common
patterns to randomly packed polydisperse particles beyond the
size polydispersity or of properties different from those of
monodisperse particles.

Because we anticipate that scale invariance results in
common patterns of jammed particles beyond the size poly-
dispersity, we have concentrated on systems with power size
distributions with no apparent characteristic lengths, such as
the mean and standard deviation of the sizes.

We explored the random packing patterns and the jamming
transitions by numerically and experimentally employing par-
ticles with various power size distributions, and we contrasted
them with bidisperse systems. The power distribution of the
particle radius has the minimum and maximum cutoffs at rmin

and rmax. Although these rmin and rmax length scales exist due
to constraints for physical realization, such as the finite num-
ber of particles and area, we have succeeded in deriving con-
ditions under which these length scale effects can be neglected
using experiments and simulations. Therefore this study con-
tributes to describing the actual power size distribution, which
can lead to practical scale invariance in jamming transitions.

Materials and methods. Distilled water (Ultra-Pure
DNase/RNase-free distilled water; Invitrogen, Waltham, MA)
with a surfactant Tween 20 (Sigma-Aldrich, St. Louis, MO)
was used as a continuous phase. Mineral oil (Nacalai Tesque,
Kyoto, Japan) with a surfactant, Span 80 (Tokyo Chemical
Industry, Tokyo, Japan), was used as a dispersed phase. To
facilitate identification of the oil-in-water (O/W) droplets, a
lipophilic dye, capsanthin in vegetable oil (Tokyo Chemical
Industry), was added to the mineral oil. The O/W droplets
were prepared by using an aqueous solution containing 1 wt %
Tween 20 and a mineral oil containing 0.1 wt % Span 80 and
2 wt % capsanthin oil.
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FIG. 1. (a) Schematic of the experimental setup of polydisperse droplets confined in 2D space. (b) Microscopic image of the polydisperse
droplets from the top (top panel) and cross-sectional image along the dashed line in the top panel (bottom panel). The scale bar is 100 µm.
(c) Micrograph of the packed droplets with the automatically detected contact lines. The scale bar is 200 µm. (d) and (e) Microscopic images
for bidisperse and polydisperse systems, respectively. The scale bars are 1 mm. (f) and (g) Droplet radius distribution N (r) and contact
number distribution ν(z), respectively, for a bidisperse system. The solid curve in the N (r) plot is the fitting line for multiple Gaussians,
indicating that there are two peaks. (h) and (i) N (r) and ν(z) for a polydisperse system. The inset log-log graphs show their normalized
cumulative distributions, Nn(r) and νn(z). (i) The radius distribution N (r) follows a power size distribution of a � 3 in the region of one order
of magnitude.

To prepare monodisperse droplets, we used a centrifugal
microfluidic device, which is a modified version of a pre-
viously reported device [36]. The device consists of three
parts: a glass capillary, a micropipette tip (Labcon, Petaluma,
CA), and a microtube. The glass capillary with a thin tip
of ∼30 µm and length of 8 mm from the tip was fabricated
from the ready-made capillary (outer diameter 1 mm, inner
diameter 0.6 mm, G-1; Narishige, Tokyo, Japan) by using
a puller (PC-10; Narishige) and microforge (MF-900; Nar-
ishige). The capillary was attached to the end of a micropipette
tip (200-µl standard yellow pipette tip). The micropipette tip
was filled with 80 µl of mineral oil and fixed on the micro-
tube containing 500 µl of the aqueous solution by passing
through the 6-mm-diameter hole drilled in the lid of the mi-
crotube. The device was centrifuged at 6000 rpm for 1 min
using a tabletop centrifuge (Wako Pure Chemical Industries,
Osaka, Japan).

Polydisperse particles with a power size distribution were
prepared by impact fracture of oil droplets in water. To the mi-
crotube containing 500 µl aqueous solution, 150 µl of mineral
oil were added in three portions. Each time the oil was added,
the microtube was tapped with a finger. Alternating the oil ad-
dition and tapping allows for the preparation of droplets with
a power size distribution. The radii of the prepared droplets
ranged from 14 to 421 µm.

To place the randomly packed particles in quasi-two-
dimensional (quasi-2D) space, the O/W droplets were
confined between two slide glasses (76 × 26 mm, thickness
∼0.9 mm, S1111; Matsunami, Osaka, Japan). These glasses
were laminated together with ∼50-µm-thick double-sided
tape to nearly match the diameter of the smallest droplet,
∼28 µm [Fig. 1(a)]. To cover the glass surface with an

aqueous phase, the hydrophilicity of the glass slide surface
was improved by using plasma cleaner (PDC-32G; Harrick
Plasma, Ithaca, NY), which reduces the friction with the oil
droplets. This quasi-2D confinement deforms the droplets into
a flat pancake shape and eliminates overlap between droplets.
Hence the center and edges of the droplet can be clearly
identified. The water surrounding the droplet evaporates very
slowly over time (∼5%/h). This process increases the total
area fraction occupied by the droplets (i.e., the packing frac-
tion φ), while maintaining the area of each droplet. Here we
determined the moment at the first avalanche that occurred
as the jamming point and analyzed the packing pattern at
that point. For the confirmation of the shape of the droplets,
we took 3D images. Fluorescent molecules, 10 µM TAMRA
(Sigma-Aldrich), were added to the continuous phase to pro-
vide a clear distinction between the inside and the outside of
the particles, and images were taken with a confocal micro-
scope (FV1200; Olympus). The pancake shape of the particles
and the realization of a 2D system were confirmed by 3D
images [Fig. 1(b)].

Two-dimensional images of droplet packing were acquired
using a camera (a2A5328-15ucPRO; Basler) attached to a
microscope (SZX16; Olympus). The images were analyzed
by using free National Institutes of Health (NIH) software,
IMAGEJ [37]. The droplets in the images were detected by
binarization after removing noise with a median filter and fast
Fourier transform (FFT) bandpass filter. When the distance
between the droplet surfaces was less than 1 pixel, the droplets
were determined to be in contact with each other [Fig. 1(c)].
The automatically detected contacts were confirmed on the
microscope image and were well matched, with an error of
approximately 4%. As shown in the microscopic image of
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Fig. 1(c), water outside the particle appears blue, while the
particle surface with a large refractive index difference ap-
pears as a black ring. We judged that the particles were in
contact if the black rings with neighboring droplets appeared
to be connected without gaps in the confirmation.

Numerical calculations were performed by molecular dy-
namics simulations. The radii of the particles r were randomly
set according to a given power size distribution r−a using the
inversion method. Exponent a was changed to a range −5 <

a < 10, keeping the size range rmax/rmin = 102, where rmin

and rmax are the lower and upper bounds of the distribution,
respectively.

The packing was prepared by compression referring to
some previous reports [31,38]. The particles have a repulsive
potential U :

U = ε

2
(ri j − Di j )

2�(ri j − Di j ), (1)

where Di j is the distance between the ith and jth particles, ri j

is the sum of the radii of the ith and jth particles, and �(x) =
1 for x > 0, otherwise �(x) = 0. Initially, 4000 circular parti-
cles were randomly placed in a square space with side length
L with periodic boundary conditions. The units of the length
and the energy were set to be L and ε, respectively. Particles
were relaxed to a local minimum of energy using the fast
inertial relaxation engine (FIRE) algorithm [39]. Sufficient
relaxation was determined to be completed when the maxi-
mum of the net force on each particle fell below 1.5 × 10−9.
While the pressure per particle after the relaxation, p, was
lower than the certain value pthres = 10−5, the system was
compressed by �φ = 10−3 and relaxed repeatedly. In order
to approach the jamming point, a method of compression
and decompression [31] was employed. If p was higher than
pthres, the packing fraction was decreased by �φ. If it was
lower, �φ was multiplied by 0.5, and the packing fraction
was increased by �φ. This procedure of compression and
decompression was repeated until p was in the range of ±2%
around pthres.

Common pattern of packed particles. We analyzed the
randomly packed particles with power size distribution r−a

in 2D at the jamming point and compared them with the
bidisperse system. Figure 1(d) shows a microscopic image
of the packing pattern of bidisperse droplets. The packing
fraction was 0.85 ± 0.01. To avoid crystallization, two dif-
ferently sized particles were mixed. The ratio of the radii r
was approximately 1 : 1.5. From this image, we calculated the
distribution of the particle radius, N (r), and the distribution
of the contact number, ν(z), as shown in Figs. 1(f) and 1(g).
The solid curve in Fig. 1(f) is the multiple-Gaussian fitting for
N (r), which shows that N (r) has two peaks, a characteristic of
a bidisperse system. During the analysis of the contact number
z, particles with z � 2 (not included in the contact network)
were successively removed as rattlers. The contact number
distribution ν(z) has one peak, which seems to be Gaussian
as suggested by previous work on bidisperse particles [40].
The average value is 〈z〉 � 4.3, which is similar to the ideal
value 〈z〉 = 4.

Similarly, the distributions of N (r) and ν(z) for polydis-
perse particles were calculated from the microscopic images
[Fig. 1(e)], where the packing fraction was 0.94 ± 0.02. The

inset log-log plots of Figs. 1(h) and 1(i) show their normalized
cumulative distributions, Nn(r) and νn(z):

Nn(r) =
∫ ∞

r N (r′)dr′
∫ ∞

0 N (r′)dr′ , (2)

νn(z) =
∑∞

z ν(z′)
∑∞

0 ν(z′)
. (3)

For this polydisperse system, N (r) has a power size distri-
bution of a � 3 in the region of one order of magnitude, as
shown in Fig. 1(h). The range of the power size distribu-
tion rmax/rmin is approximately 10, where rmin and rmax are
the minimum and maximum cutoff lengths, respectively. The
resulting average contact number was 〈z〉 � 4.5 [Fig. 1(i)].
On the other hand, the contact number distribution ν(z) also
follows a power distribution ν(z) ∝ z−γ , and not a Gaussian,
but decayed more rapidly than N (r) [see insets of Figs. 1(h)
and 1(i)]. The exponent of ν(z) was found to be γ � 3.8.

To investigate the generality of the contact number dis-
tribution for polydisperse systems, ν(z) ∝ z−γ with γ � 3.8,
suggested by the experiments, we numerically produced ran-
domly packed patterns of various polydisperse particles with
different a values. The particle size distributions are shown
in Fig. 2. For a = 1.5 [Fig. 2(a)], rmax/rmin was set to 105.
This is because when a is small, the z distribution becomes too
narrow, and many particles behave as rattlers. The cumulative
distribution makes the cutoff rmax affect regions with large r,
resulting in a downward deviation of the plot.

Figure 3(a) shows examples of numerically produced pack-
ing patterns for a = 1.5, 2, 2.5, 3, and 3.5. For each a,
the normalized cumulative contact number distributions νn(z)
were calculated as plotted in Figs. 3(b)–3(f). Note that ν(z) =
0 [νn(z) = 1] for z � 2, because the rattlers were removed.
Figures 3(b)–3(e) show that ν(z) for a < 3 follows a power-
law distribution with γ � 3.8 independent of a. This exponent
agrees with the experimentally suggested value of γ � 3.8
[Fig. 1(i)]. In addition, we have confirmed that 〈z〉 is ap-
proximately 4 regardless of a, same as that of the bidisperse
system. These results demonstrate a common property for the
contact number distribution of randomly packed polydisperse
particles with a < 3. For a larger exponent (a > 3), deviation
from the common power law was observed [Fig. 3(f)].

To explain the contact number distributions of ν(z) ∝ z−γ

with constant γ � 3.8 in a < 3, we modeled the system with
dimension d with two assumptions: (i) If the particle size
follows a power distribution, then the contact number also
follows a power distribution ν(z) ∝ z−γ for z � d + 1 and
ν(z) = 0 for z � d , for all particles except rattlers are in
contact with at least d + 1 particles. In general, ν(z) cannot be
estimated from r(z), but here we assume a power distribution.
(ii) 〈z〉 = 2d . This assumption is based on the fact that 〈z〉 is
2d at the jamming point, and is easily derived from Laman’s
theorem [41] when d = 2.

From assumption (ii), the following equality holds:

〈z〉 =
∑

z=d+1 zν(z)
∑

z=d+1 ν(z)
= 2d. (4)
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FIG. 2. Cumulative radius distribution N (r) for numerically produced polydisperse systems, r−a. (a), (b), (c), (d), and (e) a = 1.5, 2, 2.5,
3, and 3.5, respectively. The error bars represent the standard deviation of five multiple runs.

For d = 2, this can be expressed as follows using assumption
(i):

ζ (γ − 1, d + 1)

ζ (γ , d + 1)
= 4, (5)

where ζ (z, a) denotes the Hurwitz zeta function. Solving
Eq. (5) yields γ = 3.83 · · · when d = 2, which explains the
property obtained experimentally and numerically (Figs. 1
and 3). The exponent γ � 3.8 is considered sufficient as long
as assumption (i) remains valid. This suggests that the as-
sumption is not satisfied with a > 3 [Fig. 3(f)].

Classification of polydisperse systems from the jamming
point. We identified that the common contact number distri-
bution ν(z) ∝ z−3.8 holds for a < 3. To clarify the physical
meaning of the range a < 3 and classification of such poly-
disperse systems, we investigated the jamming transitions for
various polydisperse systems (Fig. 4). Pressure P was nu-
merically calculated over a wide range, −5 < a < 10, where
the particles were compressed by a constant �φ = 10−3 per
step. Figure 4(a) suggests that the jamming point φc has a
maximum value in the range 2 < a < 3. To precisely analyze

the a dependence of φc, we obtained φc with iteration of com-
pression and decompression [31] [Fig. 4(b)]. For extremely
small and large values of a, a = −5 and a = 10, respectively,
φc is close to the well-known value for bidisperse or small-
dispersity systems of ∼0.84 [22,26]. However, φc reaches
a maximum value within the range 2 < a < 3. This means
that the exponent range 2 < a < 3 exhibits particularly strong
characteristics of polydisperse systems.

Characteristic length in packing. We have shown that the
the contact number distributions have a common exponent 3.8
for a < 3 and a significantly higher packing fraction than the
bidisperse system for 2 < a < 3. To explain the reason for
this, here we discuss the implications of this range in terms
of characteristic length scales: We examine the effect of the
upper and lower limits of the particle size, i.e., rmax and rmin,
on the packing pattern.

First, we consider the effect of rmin, based on a compari-
son with an ideal system with rmin = 0. For a < 3, the total
area of particles under rmin,

∫ rmin

0 πr2N (r)dr, can be made as
small as desired by taking rmin to be sufficiently small, which
renders the effect of rmin negligible. However, for a > 3, the

FIG. 3. (a) Examples of numerically produced packing patterns for various polydisperse systems r−a and (b)–(f) corresponding normalized
cumulative contact number distribution νn(z). For (b), (c), (d), (e), and (f), a = 1.5, 2, 2.5, 3, and 3.5, respectively. The solid line indicates an
exponent of 3.8. The error bars represent the standard deviation of five multiple runs.
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FIG. 4. (a) Dependence of pressure P on the packing fraction φ

for various a. (b) Dependence of φc on a.

divergence of
∫ rmax

0 πr2N (r)dr makes the packing of particles
with an ideal distribution undefinable. For the actual system,
we must set a finite rmin because the limit of rmin → 0 cannot
be taken. This means that rmin remains as the characteristic
length for a > 3.

Next, we consider the effect of rmax based on a comparison
with complete packing, which is a packing without voids
constructed by optimal arrangement. In a two-dimensional
system, the minor numbers of small particles make complete
packing impossible for a < 2.3 · · · . The condition of a �
2.3 corresponds to Apollonian packing, which is a complete
packing with the smallest a (=dA + 1, where dA is a fractal
dimension of Apollonian packing) and the smallest number of
particles [33,42]. Similarly, when a is too small for the random
packing, the space around large particles is not sufficiently
filled. The random packing contains voids in comparison to
the optimally ordered Apollonian packing; yet it neverthe-
less achieves a packing fraction of 0.93, which is noticeably
greater than the value of bidisperse systems, ∼0.84. Due to

the scarcity of small particles, large particles contact each
other to form a pattern. Consequently, rmax appears as the
characteristic length.

Thus, for sufficiently large a, a > 3, a characteristic length
rmin emerges, and the scale-free nature is broken, which vi-
olates assumption (i). This is analogous to the absence of
small-length cutoffs in fractal figures. Furthermore, both rmin

and rmax have negligible effects on the pattern in the range
2 < a < 3. This ambiguity in the characteristic length scale
enhances the polydispersity and leads to a high packing frac-
tion for polydisperse systems.

We have demonstrated that the packing of polydisperse
particles with N (r) ∝ r−a has a common property for the
contact number distribution when the exponent a is smaller
than 3. Furthermore, the power distribution with 2 < a <

3 corresponds to the range in which a particularly strong
polydispersity appears during the jamming transition. The
proposed classification based on a may be applicable to vari-
ous polydisperse systems with a power size distribution [6,43]
and general probability distributions by generalizing a as fol-
lows:

a = − ln N (r)

ln r
, (6)

where r 
 1.
Finally, we discuss how our findings contribute to the

understanding and application of polydisperse systems. The
scale-free nature of a polydisperse system may allow us to
derive an exact solution of the jamming point φc at rmin → 0.
In addition, when such polydisperse systems are at very high
packing fraction beyond the jamming point, another com-
mon property may be derived from the analysis of particle
dynamics and shape deformation. Furthermore, the condition
dA + 1 < a < d + 1, where the scale-free nature appears, will
enhance the distinctive characteristics of polydisperse parti-
cles for general dimensions.
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