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Experimental determination of the E2-M1 polarizability of the strontium clock transition
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To operate an optical lattice clock at a fractional uncertainty below 10−17, one must typically consider not
only electric-dipole (E1) interaction between an atom and the lattice light field when characterizing the resulting
lattice light shift of the clock transition but also higher-order multipole contributions, such as electric-quadrupole
(E2) and magnetic-dipole (M1) interactions. However, strongly incompatible values have been reported for the
E2-M1 polarizability difference of the clock states (5s5p) 3P0 and (5s2) 1S0 of strontium [Ushijima et al., Phys.
Rev. Lett. 121, 263202 (2018); Porsev et al., Phys. Rev. Lett. 120, 063204 (2018); Wu et al., Phys. Rev. A
100, 042514 (2019)]. This largely precludes operating strontium clocks with uncertainties of a few 10−18, as the
resulting lattice light shift corrections deviate by up to 1×10−17 from each other at typical trap depths. We have
measured the E2-M1 light shift coefficient using our 87Sr lattice clock and find a value of �αqm = −987+174

−223 µHz.
This result is in very good agreement with the value reported by Ushijima et al. [Phys. Rev. Lett. 121, 263202
(2018)].

DOI: 10.1103/PhysRevResearch.5.L012013

The interaction between the optical lattice and the trapped
atom plays an important role in optical clocks with neutral
atoms and has been investigated in several publications: As
the accuracy of optical lattice clocks increases, one must
take into account not only the electric-dipole (E1) interac-
tion between atom and laser field [1] but also higher-order
multipole interactions and two-photon coupling [2–7]. In
electric-dipole approximation, the lattice light shift on the
clock transition cancels for all lattice depths if the lattice is
operated at the magic wavelength [1], but the higher-order
contributions render this general cancellation impossible.
Lastly, the individual contributions to the lattice light shift
depend intricately on the motional state of the individual atom
and thus on the population distribution of the atoms in the
lattice [4,5,8].

Although the description of the light shift as a function
of lattice depth can be simplified [4], the necessary condi-
tions require careful testing and are not met in many cases.
In its general form, several atomic parameters need to be
known accurately, including the difference of the polarizabil-
ities by electric-quadrupole (E2) and magnetic-dipole (M1)
coupling at the given lattice light frequency and polarization.
The most accurate determinations of this atomic parameter
for strontium lattice clocks have been reported by Ushijima
et al. [5] using an experimental approach, where the different
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contributions to the lattice light shift are separated by their
dependencies on the motional state of the atoms and on the
lattice light intensity, and by Porsev et al. [6] based on atomic
structure calculations. Worryingly, these two values are ex-
tremely incompatible with each other, as they differ by about
22 times their combined standard uncertainty.

Given this discrepancy, it becomes difficult at best to accu-
rately correct for the lattice light shift at an uncertainty of a
few 10−18 or less in units of the clock transition frequency
(referred to as fractional units hereafter): Between the two
determinations [5,6], the E2-M1 contribution to the lattice
light shift differs by about 1×10−17 in fractional units under
typical conditions, including a trap depth of around 100Er ,
where Er = h2/(2mλ2

m ) is the photon recoil energy at the
lattice wavelength λm for an atom of mass m, regardless of
which light shift model [4,5] is used (see Fig. 1). Even in the
motional ground state, i.e., in the limit of zero temperature,
the difference exceeds 3×10−18 for any reasonable [9,10]
lattice depth. Hence, the discrepancy cannot be mitigated by
operating at lower lattice depth or by preparing the atomic
sample closer to the motional ground state, e.g., by cooling to
subrecoil temperatures as demonstrated recently for ytterbium
[11].

Here, we report on an independent experimental determi-
nation of the E2-M1 light shift coefficient �αqm(λm) of the
clock transition in neutral strontium (probed on the mF =
±9/2 and �mF = 0 transitions). Our measurement procedure
follows an approach similar to the one presented in Ref. [5].
We measure the differential light shift between samples with
different motional state distributions at a fixed lattice depth
in an experimental apparatus that uses the same interroga-
tion laser [12] as our previous system [13] and a vertically
oriented, one-dimensional optical lattice. The procedure used
to measure differential frequency shifts is similar to those
described in previous publications [13–15]; i.e., we run two
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FIG. 1. Lattice light shifts estimated using the value of the
E2-M1 light shift coefficient �αqm reported by Porsev et al. [6] or by
Ushijima et al. [5], respectively, for different models (dots: Ref. [4];
squares: Ref. [5]) and experimental conditions (see text) when the
lattice light shift is equalized for trap depths of 77Er and 149Er .

interleaved frequency stabilization loops with different exper-
imental conditions in the same apparatus.

While Ushijima et al. [5] compared population distri-
butions in the axial ground state and in the first excited
motional state to increase the sensitivity to �αqm, we induce
the difference in motional state distribution by turning on
or off selected cooling and filtering steps during prepara-
tion. Following transfer of the laser-cooled atoms from the
second-stage magneto-optical trap into the optical lattice at a
fixed depth of about 149Er , we either proceed to spectroscopy
without further cooling and filtering or transfer atoms to
lower-lying axial vibrational states by sideband cooling on
the 689 nm (�F = 0) transition and remove atoms in higher-
lying vibrational states by reducing the trap depth to about
30Er for several tens of ms before spectroscopy at a lattice
depth of 149Er . The latter procedure is similar to the one
described in Ref. [16] but uses a lower lattice depth due to the
vertical orientation of the lattice beam. Overall, this results
either in a nonthermal distribution near the axial motional
ground state with strongly truncated high-energy tails in both
the axial and radial degrees of freedom (“cold atoms”) or in a
nearly thermal distribution with substantially higher average
energy in the external degrees of freedom (“hot atoms”). We
observe a differential lattice light shift of �y(hot − cold) =
201(24)×10−19; the instability of this measurement is shown
in Fig. 2.

We combine this measurement with a second measurement
using the “cold” motional state distribution at trap depths
of 149Er (“hi”) and 77Er (“lo”) to separate the light shift’s
dependence on �αqm from its dependence on other atomic
coefficients, in particular, on the E1 light shift coefficient
�αE1. We measure a differential light shift of �y(hi − lo) =
−173(73) × 10−20. Finally, we use sideband spectra on the
clock transition (Fig. 3) to determine the lattice depth from
the corner frequencies of the sidebands [17] and to character-
ize the vibrational state distribution (see below) in each case.
We assign a fractional uncertainty of 5×10−2 to the lattice
depth in order to account for potential errors, e.g., variations
of the lattice intensity over time.

We require a model of the lattice light shift to interpret the
measured light shifts and extract a value for �αqm. We use the
model reported in Ref. [4] as it accounts for the dependence
on both the axial and the radial vibrational states and thus
is well suited to describing the truncation of the population
distribution, especially, but not only, in the low-temperature
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FIG. 2. Total Allan deviation of the measured differential lattice
light shift between the high- and low-temperature configurations
described in the main text. The line indicates an instability of
2.5×10−16/

√
τ (s), where τ is the measurement time.

configuration. The light shift as a function of the lattice depth
U in units of Er is described by [4]

δνclock = n5�αqm + [(n1 + n2)�αE1 − n1�αqm]U
1
2

− [�αE1 + (n3 + n4 + 4n5)�β]U

+ [2�β(n1 + n2)]U
3
2 − �βU 2. (1)
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FIG. 3. Sideband spectra recorded at a lattice depth of 149Er

with (lower trace) and without (upper trace) applying sideband cool-
ing and truncating the population distribution. The smaller amplitude
ratio of the red and blue sidebands as well as the much narrower
width of the sidebands clearly show that atoms occupy lower mo-
tional states in the former case. We find axial (radial) temperatures
of 2.1 µK (5.7 µK) for cold atoms and 6.6 µK (8.7 µK) for hot atoms.
See the main text for further details. The curves are vertically offset
for clarity.
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The longitudinal (nz) and the radial (nρ = nx + ny) motional
quantum numbers contribute via the factors [4]

n1 = (nz + 1/2),

n2 = [
√

2/(kw0)](nρ + 1),

n3 = (3/2)
(
n2

z + nz + 1/2
)
,

n4 = [
8/

(
3k2w2

0

)](
n2

ρ + 2nρ + 3/2
)
, and

n5 = 1/(
√

2kw0)(nz + 1/2)(nρ + 1).

k and w0 denote the wave number and waist radius of the lat-
tice [18], respectively. Here, the light shift coefficients �αqm,
�αE1, and �β are given in frequency units for convenience.
They can be converted to their respective differential polariz-
abilities by multiplying �αqm and �αE1 by hαE1/Er and �β

by h(αE1/Er )2, where h is Planck’s constant and αE1 is the
E1 polarizability of either clock state at the magic wavelength
[1]. We neglect a small traveling-wave term of the lattice
light field in this work. The return loss of the lattice beam is
estimated to be equal to the loss upon a single pass through
the vacuum chamber of 4(2)%, from which we calculate a
traveling-wave contribution to the trap depth of 1×10−4. The
reflected beam has been aligned by maximizing the power
coupled back into the optical fiber delivering the lattice light
to the physics package. We treat the radial degrees of freedom
using the density of states given by Eq. (3) of Ref. [8] for
any given nz, i.e., in the approximations of a dense energy
spectrum in the radial quantum numbers nρ and l and of a
harmonic trapping potential.

We model the population distribution in each case by
Boltzmann distributions with effective radial and axial tem-
peratures (see Fig. 3). The former is derived from the shape
of the respective sideband spectrum, shown in Fig. 3, using
the formalism of Ref. [17], while the latter is adjusted such
that the fraction of atoms in the axial vibrational ground
state matches the observed ratio between the red and blue
sideband amplitudes, taking into account the finite trap depth.
For cold atoms, the radial energy distributions for each axial
vibrational state are truncated according to the reduced trap
depth that is applied during preparation. The mean values
of n1 through n5 are then computed from these population
distributions.

For the hyperpolarizability, the weighted average �β =
458(14) nHz of the light shift coefficients reported in
Refs. [3,5–7,19,20] is used. This leaves only �αE1 and �αqm

as unknown parameters in Eq. (1). We can thus find the value
of �αqm that allows a self-consistent description of our two
measurement results by Eq. (1).

To estimate the uncertainty, we vary the most relevant input
parameters within their uncertainties, derive the variations of
�αqm, and add these in quadrature. We mainly consider the
largest sources of uncertainty, which are the determinations
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FIG. 4. Comparison of values reported for �αqm (Westergaard
et al. [3], Ovsiannikov et al. [21], Porsev et al. [6], Ushijima et al.
[5], Wu et al. [7]).

of the residual E1 light shift coefficient, �αE1, and the tem-
perature of the axial state distribution, i.e., the ratio of the
sideband amplitudes, as well as the statistics of the light shift
measurement between hot and cold atoms; other contributions
are relatively small, including the uncertainty of the lattice
depth.

We find

�αqm = −987+174
−223 µHz, (2)

which is in excellent agreement with the measurement by
Ushijima et al. [5], but differs from the values found by Porsev
et al. [6] and Wu et al. [7], in the former case by more than
seven times the combined standard uncertainty (Fig. 4).

In consequence, we discard the values from Refs. [6,7]
and use the high-accuracy determination from Ref. [5]. Ex-
perimental [22] and theoretical [23] findings that have been
reported by other groups recently are also in clear disagree-
ment with the former. These results allow correcting the lattice
light shift under typical conditions at a fractional uncertainty
of 1×10−18 and better. Nevertheless, discrepancies remain be-
tween some of the results [5,22], albeit at a much smaller level
than before. This highlights the need for further investigation
of the differential E2-M1 polarizability.

The data that support the findings of this work are openly
available in the Supplemental Material [24].
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