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Observation of Majorana-like bound states in metamaterial-based Kitaev chain analogs
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We experimentally demonstrate that Majorana-like bound states (MLBSs) can occur in quasi-one-dimensional
metamaterials, analogous to Majorana zero modes (MZMs) in the Kitaev chain in terms of mode spectrum and
mode wave functions. In a mechanical spinner ladder system, we observe a topological phase transition and
spectral-gap-protected edge MLBSs. We characterize phase controllable hybridization and the decaying and
oscillatory nature of these MLBS pairs. It is shown that the hybridization can be tuned to yield the analog of
parity switching in MZMs. We find strong agreements with theory.
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In the past decade, the rich cross fertilization of ideas
between the studies of electronic and mechanical systems has
led to the discovery of exciting new states of matter, including
physical behaviors driven by topology [1–6]. For example, a
Chern insulator with one-way edge modes was demonstrated
using an array of gyroscopes [7,8]. Among electronic mate-
rials, topological superconductors have gained prominence as
candidates for hosting Majorana zero modes (MZMs), which
are potential building blocks of fault-tolerant quantum com-
puting [9–20]. The Kitaev chain [21], consisting of electrons
hopping on a lattice subject to p-wave pairing, provides an
excellent prototype for realizing MZMs as topologically pro-
tected edge states [22–25]. Remarkably, these modes have
remained elusive in solid state systems despite tremendous
efforts [26–33]. Nevertheless, MZMs have continued to in-
spire experimental realizations of analogous modes in other
systems [34,35], including metamaterials. Even key traits for
error-free MZM qubits, such as non-Abelian braiding, have
recently been proposed in classical metamaterial systems [36].

In this Letter, we present a mechanical metamaterial ladder
system made of magnetically coupled spinners, and demon-
strate that it closely parallels several salient features of the
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Kitaev chain, including the distinct presence of Majorana-like
bound states (MLBSs). Previous work by two of the cur-
rent authors and collaborators [37] established a mapping of
Hamiltonian matrices between the Kitaev chain and a system
of two coupled Su-Schrieffer-Heeger (SSH) chains [38], char-
acterized by alternating bond strengths schematically shown
in Fig. 1(b). This further enables the mapping of the mode
spectrum, mode wave functions, and the properties that de-
pend only on the mode spectrum and wave functions. A signif-
icant benefit of these mappings is that the SSH ladder system
can be realized in a variety of bosonic, fermionic, and clas-
sical systems. Although MLBSs in these systems may not be
exactly equivalent to MZMs, for example, in the ground state
degeneracy, which depends on what the SSH ladder is made
of, MLBSs are topologically protected by spectral gaps. In a
coupled split-ring-resonator system, Guo et al. [39] observed
one such metamaterial realization of MLBSs and a topological
phase transition up to finite size effects. Here, our work on
the spinner system explores a topological phase transition for
sufficiently long ladders, thus eliminating size effects, and
reveals the crucial properties of the MLBS at the edges that
were theoretically predicted [37,40–42] but never realized.

In what follows, we demonstrate the remarkable analogs
to Kitaev chain features in metamaterials, including spec-
tral characteristics of topological and nontopological phases,
oscillatory, decaying MZM wave functions, and switching
behavior in fermion parity, which forms the basis of MZM
qubits. The Kitaev chain is described by the Hamiltonian
[21,37]

HK = 1

2i

∑
n

(ω − �)anbn+1 + (ω + �)an+1bn + μanbn,

(1)

where an and bn are the Majorana operators, ω the nearest-
neighbor electron hopping amplitude, � the p-wave super-
conducting order parameter, and μ the chemical potential.
One of the two topological gapped phases, hosting midgap
MZMs, occurs at |μ| < 2|ω| and � > 0 and the other at
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FIG. 1. Phase transition for a long ladder system (left) and phase-controllable hybridized MLBSs for a short ladder system (right).
(a) Picture of the experimental setup for a system of length N = 13. Rotatable spinners and magnetically coupled arms are highlighted and
fixed spinners and arms without magnets are shaded. The scale on the right is 5.0 cm. (b) Schematic diagram for the SSH ladder system pictured
in (a). The rotatable spinners are represented by black circles (θn) and open triangles (ϕn), and the fixed spinners by gray squares. The purple
ellipse shows the unit cell. The red and blue lines denote the intrachain coupling βr = 230 Hz2 and βb = 100 Hz2, respectively, and the green
line the interchain coupling βg. (c) Topological phase transition for the long N = 13 system signaled by the emergence of midgap MLBSs.
The measured frequency squared ( f 2) for normal mode versus βg is shown for various interchain coupling βg. The red dots correspond to the
midgap MLBSs, while the black dots correspond to bulk states. The gray areas represent the theoretical bulk bands in the limit of the infinitely
long system. The two critical interchain couplings, βg,c = 330 Hz2 for the phase transition and βg,o = 300 Hz2 for oscillatory MLBSs, are
marked on the top axis. (d) Schematic diagram for the short N = 5 system. (e) Spectra obtained by actuating the θ1 spinner and measuring
at the θ1 and ϕ5 spinners, shown in red and blue dots, respectively, within the bulk gap for the topological phase with βg = 100 Hz2 and βr

and βb identical to those for (c). A single degenerate MLBS peak in (c) is split into two MLBS peaks due to the enhanced hybridization.
(f) Phase difference between the ϕ5 and θ1 spinners, η(ϕ5) − η(θ1), versus f 2, revealing phase-controllable MLBSs. (g)–(i): Three examples
of the accelerometer signals, proportional to the rotation angles, versus time for lower MLBS, in-between, and upper MLBS, as marked by
arrows. The red and blue lines represent the oscillations of the θ1 and ϕ5 spinners. (See Appendix B for typical spectra and gap versus βg, and
see Supplemental Material [47] for videos of modes).

|μ| < 2|ω| and � < 0, while nontopological gapped phases
arise at |μ| > 2|ω|.

Mechanical systems of magnetically coupled spinners
[43–46] have recently been used to simulate a number of elec-
tronic tight-binding Hamiltonians. The spinner ladder system
pictured in Fig. 1(a) shows the metamaterial analog of the
SSH ladder in Fig. 1(b). Here the electron hopping translates
to the interspinner magnetic interaction controlled by the dis-
tance between magnets, and the electronic eigenstate energy
maps to the frequency squared ( f 2) for the spinner normal
modes. With magnets attached to selected spinner arms, near-
est neighbors connected by the red, blue, and green lines in
Fig. 1(b) have attractive interactions, parametrized by normal-
ized positive constants βr , βb, and βg, respectively. As marked
by solid circles and open triangles in Fig. 1(b), the system is
bipartite, and the rotations of the spinners are represented by
θn and ϕn with n = 1, . . . , N within each sublattice for the
system of length N . One of the spinners is driven externally,

and attached accelerometers monitor oscillations. Details of
the setup are provided in Appendix A and Refs. [43–45]. The
normalized Lagrangian for the spinner system is

L = T − U1 − U2, (2)

where

T = 1

8π2

N∑
n=1

θ̇2
n + ϕ̇2

n (3)

is the normalized kinetic energy, and

U1 = α

2

N∑
n=1

θ2
n + ϕ2

n (4)

with a positive coefficient α and

U2 =
∑

n

βbθnϕn+1 + βrθn+1ϕn + βgθnϕn (5)
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TABLE I. Mapping between the parameters of the SSH spinner
ladder system [Eq. (5)] and the electronic Kitaev chain [Eq. (1)]. For
the spinner system, the θn and ϕn represent the rotation angles of
the spinners, the βb and βr the intrachain interactions, and the βg

the interchain interaction, as shown in Figs. 1(b) and 1(d). For the
Kitaev chain, an and bn are the Majorana operators, ω the nearest-
neighbor electron hopping amplitude, � the p-wave superconducting
order parameter, and μ the chemical potential [37].

SSH spinner ladder system θn ϕn βb βr βg

Electronic Kitaev chain an bn ω − � ω + � μ

represent the normalized potential energy. While the term U1

shifts the spectrum by a constant, the term U2 has the form
identical to HK in Eq. (1), depicted by the mapping shown
in Table I. This mapping allows us to explore the analogy
between the metamaterials and electronic systems through
direct excitations of spinners, as shown in videos in the Sup-
plemental Material [47].

In long ladders, we observe a clear phase transition be-
tween nontopological and topological phases characterized
by midgap MLBSs as a function of the interaction between
SSH chains, which is analogous to the chemical potential in
the Kitaev chain. Figure 1(c) shows f 2 for normal modes
versus the interchain coupling βg for the N = 13 spinner
systems [see Figs. 1(a) and 1(b)] with intrachain couplings
βr = 230 Hz2 and βb = 100 Hz2. Bulk modes, shown as
black dots, are identified from the resonant oscillations of
spinners near the center of the system. In contrast, the red
dot in the spectrum corresponds to the MLBS at one of the
system’s ends, and is prominently identified from measure-
ment of the θ1 spinner. We expect another MLBS mode at
the other end at the same frequency. (See Appendix B for
typical spectra.) Starting from large interchain coupling βg,
the gap in the bulk spectra rapidly narrows as βg decreases,
and closes when βg ≈ 310 Hz2, consistent with the theoretical
phase boundary βg,c = βr + βb = 330 Hz2 (see the top axis).
As βg decreases further, the gap reopens but with a distinct
midgap mode, which marks the topological phase transition.
Bulk bands fall within the theoretically predicted range for the
infinitely long ladder system [37] shown in gray. We conclude
that the N = 13 spinner system realizes the long ladder limit,
thus expanding on the results in Ref. [39], where finite size
effects presented more of a limitation. (See Appendix B for
gap versus βg and theoretical ranges for bulk bands.)

Realizing the short topological systems, we find that
MLBSs from the two ends overlap, and therefore the de-
generate end modes of the long limit hybridize and split in
frequency, in close analogy to hybridization of MZM wave
functions. To first order, the split modes correspond to sym-
metric and antisymmetric combinations of the MLBS up to
a tunable relative phase. For the infinitely long topological
system, theory predicts that MLBSs reside on the θn sublattice
at the left edge and on the ϕn sublattice at the right edge if
βr > βb (as in all cases in this Letter). For the short topo-
logical system with N = 5, schematically shown in Fig. 1(d),
the hybridization and splitting is evident in Fig. 1(e), where
the normalized amplitudes measured at the θ1 (ϕ5) spinner

FIG. 2. Localization of the MLBS for a system with N = 13
and βg = 100 Hz2, a case in Fig. 1(c). (a)–(c) Rotational oscilla-
tion amplitudes of spinners measured for (a) an upper bulk mode,
(b) a midgap MLBS, and (c) a lower bulk mode. (See Supplemental
Material [47] for videos.) The color represents the rotational oscilla-
tion amplitude of each spinner. The stars mark the actuated spinners.
(d) Normalized rotational oscillation amplitudes, |θn/θ1| (red circles)
and |ϕn/θ1| (blue triangles), versus n. The solid and open sym-
bols represent the experimental and theoretical results. (e) Symbols:
semilogarithmic plot of ln |θn/θ1| versus n for the experiments. Line:
linear fit giving a localization length ξexpt = 2.4, consistent with the
theory.

are plotted with respect to f 2 within the gap in red (blue)
dots. To reveal the impact of the significant overlap of the two
peaks, we measure the angles θ1 and ϕ5 versus time at three
frequencies indicated by the dashed lines in Fig. 1(e), that is,
the lower and upper MLBS frequencies, and a frequency in
between, as shown in Figs. 1(g), 1(i), and 1(h), respectively.
The phase differences between ϕ5 and θ1, η(ϕ5) − η(θ1), are
0.77π and 0.07π for the lower and upper MLBSs. In being
close to π or 0, they mimic the theoretical results for an
ideal system without damping, that is, odd or even symmetry.
Similarly, for a series of frequencies in the gap, the relative
phase η(ϕ5) − η(θ1) is plotted as dots in Fig. 1(f). It shows a
continuous change of the phase difference, in agreement with
theoretical results for a damped system shown in a green line.
Here, we emphasize that the tunability of the relative phase
in our system may have future applications in mechanical
memories [48].

Importantly, MLBSs are not only bipartite and decaying,
but also characterized by spatial oscillations. For instance,
for the topological N = 13 system with βg = 100 Hz2 in
Fig. 1(c), rotational oscillation amplitudes of the spinners
for the MLBS are displayed in colors in Fig. 2(b). Here,
it is revealed that the MLBS resides mostly on the θn sites
(circles) near the left edge, unlike typical bulk modes shown
in Figs. 2(a) and 2(c). (See Supplemental Material for videos
[47].) The detailed structure of the MLBS is seen in Fig. 2(d),
where the normalized amplitude for the θn (|θn/θ1|, red solid
circles) is large near the left edge, while amplitude for the
ϕn (|ϕn/θ1|, blue solid triangles) is negligible. These results
qualitatively agree with Ref. [39], but with an important
difference: in our system the decaying amplitude oscil-
lates. Moreover, this oscillation rather successfully matches
theoretical predictions [42] and is the first to realize them.
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For MZMs in the Kitaev chain, theory [42] predicts such
oscillatory wave functions within a circle in the phase diagram
set by μ2 + (2�)2 < (2ω)2. Translated to the spinner system,
the spatial profile of the MLBS localized at the left edge is
given by

θn = A exp

(
− n

ξtheory

)
cos

(
B + 2πn

λ

)
(6)

if βg < βg,o, where ξtheory = 2[ln (βr/βb)]−1 is the localiza-
tion length, λ, A, and B are constants, and βg,o = 2

√
βbβr .

(See Appendix C for details.) For the system in Fig. 2, βg =
100 Hz2 is indeed less than βg,o = 300 Hz2 [see the top axis
in Fig. 1(c)], and the theoretical results for the |θn/θ1| and
|ϕn/θ1| plotted in open symbols in Fig. 2(d) agree well with
the experiments. Further, a linear fit of ln |θn/θ1| versus n
for the experiments shown in Fig. 2(e) results in ξexpt = 2.4,
identical to the theoretical value ξtheory. Strong agreement with
the theory confirms that the spatial oscillation seen here is not
due to disorder, but reflects the intrinsic nature of the MLBS
spatial profiles, analogous to the oscillatory MZM wave
functions.

The oscillatory behavior of the MLBSs significantly af-
fects spectral features of the system. Most importantly, when
their hybridization changes its sign, there is a switch between
whether the symmetric or the antisymmetric combination
corresponds to the lower frequency. In the MZM analog,
this behavior results in so-called parity switching [40–42,49].
Here, consequences of the switch are rather profound: the two
end MZMs form a Dirac fermionic state that can be occupied
or unoccupied, essentially a topological qubit, thus giving the
system odd or even parity. In other words, the sign of the hy-
bridization determines ground state parity. To demonstrate the
analog of this switching in the topological spinner systems, we
vary the length of the system, N = 3, 4, . . . , 8, while keeping
the interactions identical to Figs. 1(d)–1(i). Normalized am-
plitudes of the ϕN spinner (resulting from actuating the θ1

spinner) versus f 2 within the bulk gap are shown as solid
symbols in Fig. 3(a). The split of the MLBSs, indicated by
yellow areas in Fig. 3(a) and solid circles in Fig. 3(b), clearly
oscillates as N increases, in agreement with theoretical results,
shown as open circles in Fig. 3(b). Behavior of the spinner sys-
tem analogous to parity switching is most evident in the phase
difference between the ϕN and θ1 spinner, η(ϕN ) − η(θ1),
versus f 2 shown as open symbols in Fig. 3(a). The phase dif-
ference changes approximately from π to 0 as the frequency
increases for N = 5 and 8, but from 0 to −π for N = 3, 4,
6, and 7. The observed switch in the phase difference for the
upper MLBS is displayed in Fig. 3(b) using the background
color for each N , that is, blue for η(ϕN ) − η(θ1) ≈ 0 (even
symmetry) and red for ±π (odd). It agrees with the theory
except for the N = 4 case (purple, odd from the experiments,
but even from the theory) [42,50]. The phase switching seen
here may prove to be a consequential feature when it comes
to designing MZM qubits, because it strengthens the proposal
that the chemical potential be tuned to achieve exactly degen-
erate MZMs in finite Kitaev chains [40–42].

In conclusion, demonstrating the potentiality of research
that connects electronic and metamaterial systems, we ana-
lyzed surprisingly close analogs of MZMs in Kitaev chains

FIG. 3. Split oscillation and phase difference switching of the
hybridized MLBSs as varying the length of the systems. (a) Solid
symbols: Spectra of the topological systems for N = 3, 4, . . . , 8,
obtained by actuating θ1 and measuring at ϕN spinners for the fre-
quencies within the bulk gap. The interactions are kept identical to
those in Figs. 1(d)–1(i). The widths of the yellow areas represent the
splits of the hybridized MLBSs. Open symbols: The corresponding
phase differences, η(ϕN ) − η(θ1). (b) Symbols: Split between the
hybridized MLBSs versus the length of the system, N , for the exper-
iments (solid symbols) and the theory (open symbols). Background
colors: Observed phase difference of the upper MLBS is shown in
blue for close to 0 (even symmetry) and red for ±π (odd), agreeing
with the theory. A disagreement between theory and experiments
occurs for the N = 4 case, shown in purple, likely due to disorder
in the experimental setup [50].

with MLBSs in spinner ladders. While the degrees of freedom
differ, our in-depth realization provides a well-controlled pro-
totype for benchmarking any MZMs that may be discovered
in the future [51]. Further, our studies signal promise for
next-generation metamaterial applications, such as topolog-
ical braiding of midgap states in the case of stacked SSH
ladders [36]. From the metamaterials perspective, states like
MLBSs offer wide possibilities, such as mechanical memory
and device applications.
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APPENDIX A: DETAILS OF EXPERIMENTAL SETUP

The system is made up of two parallel SSH chains with
alternating intrachain couplings, shifted with respect to each
other and coupled by a constant interchain interaction. Each
spinner has six arms with magnets attached to the arms in the
0◦, 180◦, and 240◦ (0◦, 60◦, and 180◦) directions for the top
(bottom) chain, as highlighted in Fig. 1(a) in the main text.
The red, blue, and green lines in Fig. 1(b) indicate different
nearest-neighbor interactions, represented by the normalized
positive parameters βr , βb, and βg between the magnets sep-
arated by the distances dr = 5.0 mm, db = 8.0 mm, and dg,
respectively. The root-mean-square voltages from attached
accelerometers divided by frequency squared ( f 2) are used as
the quantities proportional to the oscillation amplitudes.

APPENDIX B: TYPICAL SPECTRA, GAP VERSUS
INTERCHAIN COUPLING βg, AND THEORETICAL

RANGES FOR BULK BANDS

Typical spectra of the normalized amplitude versus f 2 for
the long N = 13 ladder systems are shown in Figs. 4(a), 4(b),
and 4(c) for the topological insulator, metallic, and nontopo-
logical insulator cases, respectively (see the left panels in
Fig. 1 in the main text).

According to the theory [37] for the infinitely long SSH
ladder system, the outer boundaries of the bulk bands are at

f 2 = α ± (βr + βb + βg), (B1)

while the inner boundaries are at

f 2 = α ± |βr + βb − βg|, if βg > βg,G, (B2)

f 2 = α ± |βr − βb|
√

1 − β2
g/4βbβr, if βg < βg,G, (B3)

where βg,G = 4βbβr/(βb + βr ). With the parameters for the
systems studied, we obtain βg,G = 280 Hz2 indicated on the
top axis in Fig. 4(d), and the ranges for the upper and lower
bulk bands shown as the gray areas in Fig. 1(c) in the main
text. The theoretical gap size Gtheory is found to be

Gtheory = 2|βr + βb − βg|, if βg > βg,G, (B4)

Gtheory = 2|βr − βb|
√

1 − β2
g/4βbβr, if βg < βg,G. (B5)

The gap sizes versus the interchain coupling βg for the experi-
ments and theory are displayed as dots and lines, respectively,
in Fig. 4(d), showing a good agreement.

FIG. 4. (a)–(c) Spectra measured for the long N = 13 ladder sys-
tems with the interchain coupling βg = 99, 313, and 571 Hz2 to show
the examples of the spectra for the topological insulator, metallic,
and nontopological insulator phases, respectively. The red, green,
and blue lines represent the spectra obtained by actuating the θ1, ϕ6,
and θ7 spinners, respectively, and measuring at the same spinners.
Each peak corresponds to a mode, shown as a dot in Fig. 1(c) in
the main text. The peak for the midgap MLBS is prominent in the
topological phase, as seen from the red line in (a), and is represented
as a red dot in Fig. 1(c). (d) Band gap versus βg, showing topological
phase transition as βg decreases from around 600 Hz2. The dots and
lines represent the experimental and theoretical results, respectively.
The numbers above the dots represent the intermagnet distances,
dg, between the two SSH chains. The three tick marks on the top
axis represent the three critical values of βg, that is, βg,c for the gap
closing, βg,o for the oscillatory MLBS spatial profile, and βg,G for the
gap function, as discussed in the main text and Appendices B and C.

APPENDIX C: DETAILS OF MLBS SPATIAL
PROFILE FROM THEORY

The theory [42] predicts that the MLBS localized at the
left edge for the infinitely long ladder system satisfies ϕn = 0,
θn+1 = −θnβg/βr − θn−1βb/βr , and θ2 = −θ1βg/βr . Depend-
ing on the sign of βg − βg,o, where βg,o = 2

√
βbβr < βg,c, the

solution for θn has different forms:

θn = Ae−n/ξ cos (B + 2πn/λ), if βg < βg,o, (C1)

θn = (A + Bn)e−n/ξ , if βg = βg,o, (C2)

θn = Ae−n/ξ+ + Be−n/ξ− , if βg,o < βg < βg,c, (C3)

where ξ = 2[ln (βr/βb)]−1 and ξ± = 1/ ln{2βr/[βg ±
(βg

2 − 4βbβr )1/2]} are the localization lengths, λ = 2π/

arccos (−βg/2
√

βrβb) is the wavelength, and A and B are
constants.
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