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Superconductivity of repulsive spinless fermions with sublattice potentials
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We explore unconventional superconductivity of repulsive spinless fermions on square and honeycomb
lattices with staggered sublattice potentials. The two lattices can exhibit staggered d-wave and f -wave pairing,
respectively, at low doping stemming from an effective two-valley band structure. At higher doping, in particular,
the square lattice displays a much richer phase diagram including topological p + ip superconductivity which is
induced by a qualitatively different mechanism compared to the d-wave pairing. We illuminate this from several
complementary perspectives: We analytically perform sublattice projection to analyze the effective continuum
low-energy description and we numerically calculate the binding energies for pair and larger bound states for
few-body doping near half filling. Furthermore, for finite doping, we present phase diagrams based on extensive
functional renormalization group and and density matrix renormalization group calculations.
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Introduction. There have been substantial efforts [1–4] to
understand superconductivity mechanisms beyond the con-
ventional phonon-mediated [5] electron-electron attraction. In
one category of mechanisms, bare repulsive electron-electron
interaction becomes effectively attractive due to virtual pro-
cesses after projections to the sublattice or bands [6–8].
Recently, exact results for an effective attraction have been
obtained for fermionic honeycomb lattice models with a large
staggered sublattice potential [9–11]. This mechanism can be
essentially captured by a minimal model of spinless fermions
[9], of which the low-energy physics projected to one sublat-
tice shows effective attraction. Such a mechanism has been ar-
gued to be relevant for triplet pairing in materials [10,12–14].

In this Letter we study the pairing of spinless fermions
on the square lattice in addition to the honeycomb lattice
model studied in Ref. [9]. Studying a different lattice can shed
light on the relevance of the proposed pairing mechanism to
layered materials, in which different lattice structures can be
realized [15]. Considering a different lattice contributes to fur-
ther understanding the ingredients of the sublattice projection
mechanism for superconductivity—and, as we show, reveals
qualitatively different possibilities. The effective theory from
a sublattice projection depends on the coordination number of
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the lattices; lattice symmetry is crucial for the realization of
different types of unconventional superconductivity [16–20].

The overall result is summarized in Fig. 1. The quantum
phases are inferred through infinite density matrix renor-
malization group (DMRG) [21,22] data for strong coupling
combined with functional renormalization group (FRG) [23]
data at weak coupling. Superconducting phases are found
in a wide range of interaction parameters in the honeycomb
model while its regime is limited to smaller interactions for
the square model. Compared to a previous study [9], a signifi-
cant difference is that there are two superconducting phases
on the square lattice, the staggered d-wave and the p + ip
topological phases, in contrast to the sole f -wave pairing
on the honeycomb lattice. The d-wave pairing on the square
lattice shares the same origin as the f -wave pairing on the
honeycomb lattice in the sense of inter-valley pairing. The
Cooper pair arises from an inter-valley attraction revealed by
sublattice projection. This requires a next-nearest-neighbor
hopping t ′ to realize a two-valley band structure for the square
lattice. Upon increasing doping, we observe a transition from
staggered d to a topological p + ip [24] superconductor. With
zero momentum, p + ip no longer results from the intervalley
attraction. It does not require the next-nearest-neighbor hop-
ping. Moreover, at stronger interactions, we find evidence for
a transition from superconductivity to inhomogeneous states.

Model and low-energy description. We use the square lat-
tice [Fig. 1(ai)] as an example while the honeycomb model
[Fig. 1(aii)] can be found in Ref. [9] with the same form of
Hamiltonian. The Hamiltonian is taken as

H =
∑
〈i, j〉

[−(tc†
i c j + H.c.) + V nin j]

−
∑

�i, j�
(t ′c†

i c j + H.c.) +
∑
i∈B

Dni, (1)
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FIG. 1. Lattice structure and schematic phase diagrams. (a) Lat-
tice structure for (ai) square and (aii) honeycomb lattices; sublattices
are marked in orange and cyan. (b) Phase diagram for (bi) the square
lattice with t ′ = λ0 and (bii) the honeycomb lattice with t ′ = 0,
inferred from FRG (weak coupling) and DMRG (strong coupling).
For superconducting phases, we plot the momentum dependence of
the susceptibility from FRG. For the p + ip SC phase, a degenerate
pair of dominant eigenvectors is found in FRG, and a mean-field
analysis indicates the linear combination p + ip is favored. Here DW
denotes the density-wave phase, CL denotes a phase separation via
the collapse of electrons on the B sublattice, and FL denotes Fermi
liquids. For the uncertainty in the DMRG data interpretation, see the
discussion in the text.

where ci, (c†
i ) is the fermionic annihilation (creation) operator

on site i, and ni = c†
i ci. The symbols 〈i, j〉 and � i, j �

denote nearest neighbors and next-nearest neighbors, respec-
tively. We limit our attention to repulsive interaction V > 0
and sublattice potential D � |t | > 0 on the sublattice B. At
half filling and large D, the ground state is expected to have
the A sublattice fully filled and the B sublattice unfilled.
When t ′ = 0, the Hamiltonian exhibits an explicit symme-
try of particle-hole transformation c†

A → cA and c†
B → −cB

combined with spatial inversion that interchanges the sublat-
tices. When t ′ 	= 0, the combined particle-hole transformation
equivalently changes the sign of t ′. In this work we will only
introduce t ′ 	= 0 on the square lattice while t ′ = 0 on the hon-
eycomb lattice, which is motivated by the discussion below.
We focus on electron doping the system near half filling,
where the low-energy physics is controlled by those extra
electrons on the B lattice. The effective model is derived by

(a) (b)

FIG. 2. Band structures of the square lattice’s effective model’s
kinetic part at (a) t ′ = 0 and (b) t ′ = λ0. The right band structure
has two valleys at (0,±π ) and (±π, 0), respectively. The two-valley
structure is absent for t ′ = 0 [in (a)].

a Schrieffer-Wolff transformation [25,26] (for details see the
Supplemental Material [27]). Up to the second order of t , this
effective Hamiltonian contains terms of hopping, correlated
hopping, and interactions: Heff = Hhopping + Hch + HU .

Different parts of the Hamiltonian are introduced as
follows (for details of the coefficients see [27]): Hhopping con-
tains nearest-neighbor 〈i j〉 and next-nearest-neighbor � i j �
terms for the sublattice B,

Hhopping =
⎡
⎣∑

〈i j〉
tBc†

i,Bc j,B +
∑

�i j�
t ′
Bc†

i,Bc j,B

⎤
⎦ + H.c., (2)

where tB = 2λ0 − t ′ and t ′
B = λ0, with λ0 = t2/(D + 2V ). For

most of our calculations, we will either fix t ′ = 0 or t ′ = λ0.
The correlated hopping also includes two terms

Hch =
∑

i jk∈�
λ1c†

i,Bc j,Bnk,B +
∑

i jkl∈�

λ2

2
c†

i,Bc j,Bnk,Bnl,B. (3)

The combinations i jk and i jkl are summed over all possible
ordered vertices of plaquettes in the B sublattice, e.g., 1, 2, 3,
and 4 in Fig. 1(ai). Finally, there are two-, three-, and four-
body density interactions

HU =
∑
〈i j〉

2U2ni,Bn j,B +
∑

〈�i j�
U2ni,Bn j,B

+
∑

[i jk]∈�
U3ni,Bn j,Bnk,B +

∑
[i jkl]∈�

U4ni,Bn j,Bnk,Bnl,B.

(4)

The combinations [i jk] and [i jkl] are summed over all pos-
sible unordered vertices of plaquettes in sublattice B. The
four-body interaction U4 remains repulsive in the full param-
eter region, while other interaction terms turn from repulsion
to attraction when increasing across V/D = 1.

The dispersion of the kinetic part Hhopping depends on
the next-nearest-neighbor hopping t ′. At t ′ = 0 [shown in
Fig. 2(a)], the band minimum is located along the boundary
of the Brillouin zone. The Fermi surface is connected and
has an approximate rotation symmetry. By tuning t ′ such
that |t ′

B/tB| > 0.5, two band minima appear at (0,±π ) and
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(±π, 0), respectively, where the unit of the wave vectors
is 1/a. The low-energy physics is then controlled by these
two valleys which are interchanged under a π/2 rotation.
When tuning to higher doping, the Fermi surface includes
the Van Hove singularities. They are located at (q,±q) with
q = ± arccos(−tB/2t ′

B). The two-valley low-energy physics is
replaced by the one exhibiting new instabilities driven by the
higher density of states. We remark that introducing t ′ on the
honeycomb lattice only brings an overall factor to the band
dispersion.

Two-valley continuum theory of the square lattice model.
To construct the continuum theory in the case with two
valleys, the degrees of freedom for doped electrons can be
decomposed into two valleys: c j = ∑

σ a exp[iKσ · r j]ψσ (r j )
with K+ = (0, π ) and K− = (π, 0), where the fields ψσ (r)
vary slowly at the scale of a, the minimal distance between
two B-sublattice sites.

At low doping, we ignore the three- and four-body in-
teractions in HU . The continuum Hamiltonian includes a
kinetic part with anisotropic masses

∑
σ ψ†

σ ∂2
x ψσ/2mxx

σ +
ψ†

σ ∂2
y ψσ/2myy

σ at two valleys and a two-body interaction term.
There are two contributions to the two-body interaction in the
continuum limit, the correlated hopping terms in Eq. (3) and
the two-body repulsion terms Eq. (4). In the long-wavelength
limit, the interaction can be written as

∫
d2r gψ†

+(r)ψ+(r)ψ†
−(r)ψ−(r), (5)

where g = (16U2 − 32λ1)a2 = 16a2[−4t2/(D + 3V ) +
8t2(D + 2V ) − 4t2/(D + 3V )] < 0, indicating two-particle
ground states are always intervalley bound states. A possible
low-doping superconducting (SC) state arises from a
condensate of intervalley pairing 〈ψ+(r)ψ−(r)〉 	= 0. In
terms of microscopic fields, we find a total momentum
(π, π ), dx2−y2 pairing with an order parameter 〈cic j〉 =
[(−1)ix+ jy − (−1)iy+ jx ]�(i − j), where � is odd under a π/2
rotation. While the pair has nonzero total momentum, the
above reasoning for the pairing is the same as that for f -wave
SC of low-doping honeycomb model [11]. For finite doping,
realizing pairing with (π, π ) center-of-mass momentum is
frustrated by the shape of the Fermi surfaces. This could lead
to a transition to incommensurate (not observed) or other SC
phases. Inferring the possible SC at finite doping from the
bare Hamiltonian of the projected model is no longer simple.
The complication comes from the interactions projected on
the Fermi surface. Nevertheless, we can show that for the
intravalley interaction, the correlated hopping in the projected
model can induce bare attractive interaction term between
pairs of fermion modes on the Fermi surface with zero net
momentum, for details see the Supplemental Material [27].
Thereby the possibility of intravalley pairing, likely p-wave
pairing, is suggested. We will later discuss the role of Van
Hove singularity for SC, which is independent of the role of
projected interactions.

Binding energies for few-particle doping. Next we show
our numerical results of pair and larger bound states formation
in the dilute doping limit. Binding energies can be deduced
from the difference between one-particle doping energy and
energy per particle of n-particle doping; the data for the

effective model (D/t = ∞) are plotted in Fig. 3. (Our data
for D/t = 5, 10 can be found in Ref. [27].) From the data, we
can infer that at D/t = ∞, there can be a stable dilute pairing
phase for the honeycomb lattice with V/D � 1. The pairing
phase is not favored for the square lattice with t ′ = 0, but it
can exist with t ′ > 0. For t ′ = λ0, the condition for pairing
phase is V/D � 0.6.

We also determine the momenta of the few-particle ground
states. The momentum of a pair for the square lattice with
t ′ = λ0 and the honeycomb lattice, are respectively (π, π )
and (0,0). Recall that two valleys of the honeycomb lattice
are located at ±K (standard notation [28]), and those of the
square lattice model are located at (π, 0) or (0, π ). This along
with finite pair binding energy results indicates an inter-valley
pairing mechanism and explains the absence of it in the case
of t ′ = 0 with the absence of valleys. The two-valley structure
allows stable pairing, for which a sufficient attraction between
fermions in different valleys exists but no attractions sufficient
for larger bound states. The latter condition can be usually met
with weak coupling as the intravalley coupling is less relevant
in the dilute doping limit.

Numerical study of the quantum phases at finite doping.
The above few-body and continuum theory results provide an
indication of superconductivity at low doping and its instabil-
ity for large interactions. In the following, we apply DMRG
and FRG to infer the quantum phases of the full models with
D = 10 and t ′ = λ0 (square) and t ′ = 0 (honeycomb) at finite
fermion doping from weak to strong coupling (details see the
Supplemental Material [27]); the results are summarized in
Fig. 1. The dx2−y2 - and f -wave superconductivity of square
and honeycomb lattice expected at dilute doping are observed
by both methods. Upon increasing doping of the square lattice
by approximately 0.1, our FRG calculation indicates a p + ip
superconducting phase. In the honeycomb lattice model, the
f -wave superconductivity persists for higher doping, corrob-
orating the main claim of Refs. [9,11]; but our DMRG data
suggest the absence of superconductivity at the Van Hove
singularity ν = 1

4 , in contrast to Refs. [9,11]. Recall that near
the Van Hove singularity the two-valley picture breaks down.

In the weak coupling regime (V/D � 0.3), we perform
FRG calculations [23,29] at the one-loop level. We only
include the static self-energy and the static two-particle inter-
action. More particle processes are only included as virtual
processes in the two-particle vertex. The inclusion of the
static self-energy has been shown to cover already the relevant
physics in one-dimensional (1D) systems [30] and can be
argued to cover the relevant physics more generally by power
counting arguments [23]. The static self-energy incorporates
possible further increases of the band gap and deformations
of the Fermi surface. For our simulations, we use the unified
truncated unity (dubbed TU2) approach [31] merging real
and momentum space, which has been demonstrated to fulfill
in the FRG equivalence class [32]. We distinguish different
phases in our FRG simulations by inspecting the eigenvectors
corresponding to the largest eigenvalue of each diagrammatic
channel. Each of these channels corresponds to a different
type of instability and the symmetry of the eigenvector gives
the symmetry of the ordering. The Fourier transformation
of these eigenvectors at the B sublattice are visualized as
insets in Fig. 1. In the strong-coupling regime (V/D � 0.5),
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FIG. 3. Results from exact diagonalization (ED) of the effective model for few-particle doping, with FRG and DMRG of the full model
for finite doping. (a) Energy per particle of the n-particle ground states; the unit is t2/D. Calculations are performed for the effective models
using ED with finite-size extrapolation. From left to right are the square lattice model with t ′ = λ0 and the honeycomb lattice t ′ = 0. Finite
E1 − E2/2 indicates the existence of two-particle bound states. Some paired phase near the dilute limit is indicated by that the energy per
particle E1 − En/n is a constant for every positive even n and larger than the values for odd n. On the other hand, if there is some n, with
E1 − En/n greater than E1 − E2/2, larger bound states are favored. (b) FRG predicted phases and energy scales λc in units of t2/D. Shown on
the left is the square lattice model with t ′ = λ0 and on the right is the honeycomb lattice. We choose V = 2t as the interaction. (c) Cylinder
geometry [(6,0) honeycomb nanotube] and a density plot of an inhomogeneous density profile, indicating phase separation. The densities on
sublattice B are represented by colors, with green for low density and red for higher density. The parameters for the density plot are 1

8 doping,
D = 10, V = 15, and unit cell size 32; only part of the unit cell is plotted. (d) Pair correlation functions for square lattice at 1

64 doping, V = 6,
D = 10, and a tangential direction size of eight unit cells. For definitions of the pair operators see the text; the subscripts m and n can be x and
y. (e) Correlation length evidence for pairing on the infinite cylinder geometry of a honeycomb lattice. The indices for nanotubes are standard
notation for their sizes and shapes. The ξ1 (ξ2) is the single-particle (pair) correlation length. For a larger bond dimension χ used in the iDMRG
algorithm, a tighter lower bound of ξ is obtained. Here a smaller ξ2(χ ) for a larger nanotube is an artifact of the underestimation becoming
more severe for larger systems for fixed χ . The other parameters are 1

8 doping and D = V = 5.

we use DMRG [21,22] to obtain ground states on infinite
cylinder geometries [33]. We consider cylinders with up to
eight sites along the circumference. The counterpart of 2D
superconductivity on the cylinder cannot retain long-range
order because of the Mermin-Wagner theorem. However, the
pair correlation is expected to be dominant over single-particle
correlation. In most common cases, the single-particle excita-
tion of a quasi-1D system is fully gapped (see, e.g., Ref. [34]);
the single-particle correlation length ξ1 is finite, while the
pair correlation length ξ2 can diverge. Thus, observation of
estimated ξ2 � ξ1 serves as evidence for such pairing. The
DMRG estimation [35–37] usually sets lower bounds for
correlation lengths, which become tighter with an increasing
number of variational parameters characterized by bond di-
mension χ [37].

For the square lattice, we find the predicted dx2−y2 -wave
superconductor at low doping within our FRG simulations
with t ′ = λ0. However, the critical energy scale drops rapidly
upon increasing doping and at higher doping (ν ≈ 0.1) we
observe a transition to a px + ipy topological superconductor
with Chern number [38] C = 2. The low-doping phase is

expected from the above bare interaction analysis. Besides
the bare interaction terms revealed above, we speculate a
density-fluctuation-mediated mechanism [39] can be crucial
for stabilizing the higher-doping SC. One observation is a
clear increase of SC energy scale at higher doping closer to
the density state maxima [Fig. 3(b)]. The transition between
the phases seems to be driven by a change of weight within the
particle-particle loop, whereupon doping the dx2−y2 eigenvec-
tor will be increasingly suppressed while the px/py pair will
increase in strength. At stronger interactions (V/D ≈ 0.25)
our FRG breaks down, manifested as a linear ramp-up of the
density-density interaction. This ramp-up marks the break-
down of the perturbative regime and hence FRG cannot be
used to examine the phases. We additionally study the case
t ′ = 0 for which the two valleys are absent, the ramp-up
problem exists at low doping even for weak interaction, and a
C = 1 p + ip is observed for some higher doping [27]. From
the DMRG data (V/D � 0.5 and t ′ = λ0), a finite single-
particle correlation length ξ1 is only consistently found in
low doping, approximately 1

64 , and intermediate interaction;
in this case, the pair correlation shows a dominant oscilla-
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tory part, supporting the staggered dx2−y2 pairing [Fig. 3(d)].
We study the geometry with the axial direction along the
shortest lattice unit vector [e.g., that connecting nodes 1
and 2 in Fig. 1(ai)]. We consider two-point correlations
between �x(ix, iy) = cix,iy cix+1,iy , �y(ix, iy) = cix,iy cix,iy+1 and
their Hermitian conjugation. Only the sites on sublattice B are
considered. We observe that the signs of 〈�x(0, 0)�†

x (l, 0)〉
and 〈�y(0, 0)�†

y (l, 0)〉 oscillate in l; we also observe that the
sign of 〈�x(0, 0)�†

y (l, 0)〉 is opposite to the previous two for
a given l . For higher doping, no evidence of convergent ξ1

is found and no evidence for time-reversal symmetry break-
ing is found for the larger bond dimensions implemented.
While these can be features of a quasi-1-D analog of a Fermi
liquid (FL), topological p + ip pairing cannot be excluded.
The particle-number-conserved 1D analog of the topological
p-wave state has been suggested to be adiabatically connected
to an FL [40]; a deeper understanding of the quasi-1D analog
of p + ip is needed to better interpret the data for the p + ip
SC or FL region of Fig. 1(b i). The region for large V/D
denoted by DW in Fig. 1 is characterized by inhomogeneous
densities within the implemented bond dimensions. The 2D
phases are speculated to be charge density waves at sufficient
commensurate doping; other doping could be Fermi liquids or
phases separated by Maxwell construction. The density-wave
patterns are difficult to determine as they may only fit on larger
cylinders than those studied.

For the honeycomb lattice, we observe f -wave super-
conductivity in FRG for a broad range of doping, which
exceeds Van Hove doping 1

4 . The range is slightly smaller
than the random-phase approximation result Ref. [11]. Sim-
ilar to the square lattice, there is also a ramp-up refraining
FRG prediction at stronger coupling. Our DMRG for stronger
coupling shows a broad range for pairing with a single-particle
gap. This is observed for all geometries we studied [see,
e.g., Fig. 3(e)], including the zigzag and armchair nanotube
geometries, denoted by (n, 0) and (n, n) (standard notation
[33]), respectively, where n characterizes the circumference.
However, right at the Van Hove doping ν = 1

4 , most cylin-
der setups, including the largest, point to insulating states
[27]. This feature indicates a possible mechanism of density-
fluctuation-induced SC which can accompany a density-wave
phase at a commensurate filling [18]. This independent mech-
anism for f -wave SC provides an explanation why the phase
extends to higher doping compared to the previous estimation
of the bare interaction [11]. However, the SC energy scale is
not largely enhanced closer to the density of states maxima

[Fig. 3(b)], in contrast to the square lattice. This point is
further supported by the high doping state still being an f -
wave superconductor [18], such that no competition between
the mechanisms is realized. The CL indicates the collapse of
fermions leaving part of the system with vanishing occupancy
on the B sublattice; collapses are usually observed for models
with strong attractive interactions [19,41,42]. The observation
is that the fermions on lattice B always concentrate on part
of the unit cell [see Fig. 3(c)] when increasing iMPS unit cell
size.

Discussion. We examined fermion pairing driven by repul-
sive interaction and a strong sublattice potential for square
lattices and honeycomb lattices. The honeycomb lattice is
confirmed to show f -wave pairing, which can be interpreted
as intervalley pairing. The square lattice’s counterpart of
intervalley pairing is found to give a low-doping d-wave
superconductivity with (π, π ) total momentum. Upon in-
creasing doping, a p + ip topological superconductivity is
found. Because of the role and existence condition of valleys,
the square lattice model with next-nearest-neighbor hopping
can exhibit an asymmetry for electron and hole doping. As an
outlook, one may also include spin degrees of freedom [10,43]
and more types of interactions and hoppings, which serve
as extensions of ionic Hubbard models [44–48]. This may
have implications for real materials and provide the possibility
of the sought-after p + ip superconductivity with topological
order.
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