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Strong magnetic fields profoundly affect the quantum physics of charged particles, as seen for example by
the integer and fractionally quantized Hall effects, and the fractal “Hofstadter butterfly” spectrum of electrons in
the presence of a periodic potential and a magnetic field. Intrinsic physics can lead to effects equivalent to those
produced by an externally applied magnetic field. Examples include the “staggered flux” phases emerging in
some theories of quantum spin liquids and the Chern insulator behavior of twisted bilayer graphene when valley
symmetry is broken. In this Letter we show that when two layers of the transition metal dichalcogenide material
WSe2 are stacked at a small relative twist angle to form a moiré bilayer, the resulting low-energy physics can
be understood in terms of electrons moving in a strong and tunable staggered flux. We predict experimental
consequences including sign reversals of the Hall coefficient on application of an interlayer potential and spin
currents appearing at the sample edges and interfaces.
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Moiré bilayers are formed when two atomically thin layers
are stacked at a small relative twist angle. The band proper-
ties of moiré bilayers are easily tuned by changes in twist
angle, stacking, and gate voltage, making moiré materials
a versatile platform for studying many aspects of electronic
physics [1–24].

The low-energy physics of moiré WSe2 is well cap-
tured by the moiré Hubbard model H = H0 + HI describing
interacting electrons hopping on a moiré triangular lat-
tice [7–10,25,26]. The interaction part HI is normally taken
to be of the Hubbard type

∑
r Unr↑nr↓ with U > 0 while the

kinetic part of H is

H0 = −
∑
r,r′,σ

tr,r′eiφr,r′ ,σ c†
r′,σ cr,σ . (1)

Here, r and r′ label sites of a triangular lattice, c†
r,σ creates an

electron of spin σ =↑,↓ on site r, and tr,r′ is a positive number
giving the modulus of the hopping amplitude between sites r
and r′. The crucial new feature of the moiré Hubbard model
is the spin-dependent phase φr,r′,σ appearing in the hopping.
This phase arises from the interplay of the moiré structure and
the strong spin-orbit coupling of the individual layers, affects
the band structure as shown in Fig. 1(a), and is experimentally
tunable by varying the “displacement field,” i.e., the voltage
difference between layers.
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Previous work has focused on the role of the phase in
tuning the energy, momentum-space position, and nature of
the van Hove singularities in the dispersion [25–27]. However,
the phase factor may be viewed as the gauge field arising from
a spin-dependent staggered magnetic flux which alternates
between elementary triangles [see Fig. 1(b)]; in other words,
the moiré Hubbard model is properly thought of as a model of
electrons moving in a strong and tunable staggered flux. Here,
we show that the staggered field has important observable
consequences: The Hofstadter butterfly spectrum that emerges
when a uniform magnetic field is applied acquires a nontrivial
structure that implies tunable sign reversals of the Hall con-
ductivity, while spatial gradients of the displacement field or
an interface between two different values of the displacement
field produce spin currents at the edges or interfaces.

Origin of the spin-dependent staggered magnetic field.
While the staggered flux is revealed in band theory calcula-
tions, it is worth discussing it from a general symmetry point
of view. In monolayer form, a TMD material consists of a
triangular lattice of transition metal ions sandwiched between
two triangular lattices of chalcogen atoms. The band structure
has two valleys [28]. In WSe2, the valence band maxima occur
at the Dirac points K0 and K ′

0 of the monolayer Brillouin
zone. Due to the strong spin-orbit coupling, spin is quantized
perpendicular to the plane, such that states near K0 have spin
up while those near K ′

0 have spin down. The two valleys are
related by time reversal.

Stacking two layers of TMD with a relative twist angle
between them creates an enlarged moiré triangular lattice and
enriches the system by an intricate interplay between spin,
valley, and layer degrees of freedom. The low-energy moiré
band structure is well described by a tight-binding model on
the moiré triangular lattice [25,26]. An applied displacement
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FIG. 1. (a) Sketch of the band structure in twisted WSe2 shows
spin-split bands in the presence of a nonzero displacement field,
where the red (blue) indicates the bands from the K0 (K ′

0) valley
of the monolayer TMD, and the solid (open) circle indicates the
bands from the top (bottom) layer. (b) Representation of the hopping
amplitude and phase. The vertices correspond to triangular lattice
sites of the moiré lattice, where a1,2,3 are vectors to nearest neighbors.
The sign of the spin-up hopping phases are represented by the red
arrows, which give rise to the staggered effective magnetic fields
whose signs are marked by ± at the center of the triangles.

field preserves the moiré translation symmetry, the threefold
rotation symmetry C3 of the moiré lattice, and time-reversal
symmetry T . From this symmetry point of view, the only
place that the displacement field can affect the electron’s
dynamics is through modifying the hopping term by a spin-
dependent phase factor exp(iφr,r′,σ ) as shown in Eq. (1) [29].
The concrete dependence of this term on the displacement
field can be obtained from first-principles calculations [8].
Due to the C3 symmetry and the time-reversal symmetry T ,

the phase fields are constrained to the following form,

φr,r+an,σ = σφ, n = 1, 2, 3, (2)

where σ = +1 for spin up, −1 for spin down, and the com-
bination of C3 symmetry and interlayer inversion means that
φ = 0 at zero displacement field. Here, a1,2 are the two in-
dependent Bravais lattice vectors of the triangular lattice,
and a3 = −(a1 + a2) [see Fig. 1(b)]. For simplicity we only
retained the nearest-neighbor (NN) hopping term. Then, H0

of the moiré Hubbard model is simplified to H0 = H↑
0 + H↓

0 ,
where the spin-up part is

H↑
0 = −t

∑
r

∑
n=1,2,3

eiφc†
r+an,↑cr,↑ + H.c., (3)

and the spin-down part is obtained by the time-reversal sym-
metry operation.

Standard gauge invariance arguments show that the net
phase accumulated around the triangular plaquette r → r +
a1 → r − a3 → r is 3σφ, and that accumulated on the ad-
jacent plaquette is −3σφ. Thus, for a uniform displacement
field, the electrons feel a staggered magnetic field, which al-
ternates in sign between adjacent triangles so the net effective
magnetic field is averaged to zero [see Fig. 1(b)]. We now
consider some physical consequences of the staggered field.

Displacement field tunable Hofstadter butterfly. The com-
bination of a uniform magnetic field and a periodic potential
leads to a self-similar recursive spectrum, known as the “Hof-
stadter butterfly” [30]. The Hofstadter butterfly is modified
by a staggered magnetic field [31]. The modifications are

FIG. 2. (a)–(c) Evolution of the Hofstadter butterfly in the presence of a uniform magnetic field �B for different values of the displacement
field-induced phase φ ∈ [0, π/6]. (d) shows the Hofstadter butterfly at φ/π = 3/12 and is related to (b) under inverting the sign of �B due to
the symmetries discussed in the main text. (e) and (f) The Hall conductance as a function of chemical potential or the phase φ shows a change
of the sign of Hall conductance, estimated at twist angle θ ∼ 3◦ and 10 T external magnetic field.
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independent of the sign of the staggered field, so the spectrum
for spin-up and spin-down electrons will be the same.

We have computed the Hofstadter butterfly electronic spec-
trum following from Eq. (3). We present our results in terms
of two parameters: φ, the hopping phase induced by the dis-
placement field defined in Eq. (2), and �B = 2π p/q, the flux
per moiré unit cell (consisting of two adjacent elementary
triangles) arising from the uniform applied magnetic field.
We observe that the spectrum is periodic in φ → φ ± 2π/3,
which is a result of the fact that inserting staggered ±2π flux
can be trivially removed by a gauge transformation [26]. We
further note that the spectrum found for (φ,�B) is identical
to that found for (φ ± π/3,−�B), because a particle-hole
transformation maps φ to φ + π/3 and �B to −�B. Last but
not least, the butterfly spectrum is invariant under a change
in sign of the staggered flux φ → −φ. Following the stan-
dard treatment of the Hofstadter problem [31], the model
parametrized by (φ,�B) can be straightforwardly diagonal-
ized. The symmetry considerations mean that it is sufficient to
look at the energy spectrum for φ ∈ [0, π/6].

Our calculated Hofstadter butterfly spectra are shown in
Figs. 2(a)–2(d) as a function of uniform applied field �B at
several different values of φ. The entire electronic spectrum
is seen to be strongly tunable with displacement field. The
quantization of the spectrum into isolated Landau levels is
visible, along with breaking and reconnection of the subbands
in a manner that depends strongly on displacement field and
applied magnetic field. Breaking and reconnection of Landau
subbands is known to be associated with changes in sign of
the Hall conductance [31]. Figure 2(e) shows the Hall con-
ductivity of the spin-up branch computed from the standard
Kubo formula [32–34],

σ ↑
xy(μ)

e2/h̄
=

∑
ε

↑
m<μ<ε

↑
n

∫
d2k

(2π )2

iεab
(
Ja

k

)
mn

(
Jb

k

)
nm

(ε↑
m − ε

↑
n )2

, (4)

where (Ja
k )mn = 〈�ε↑

m
k |∂a

k Ĥ↑
k |�ε↑

n
k 〉 is the expectation value of

the current operator in the magnetic Bloch state �
ε↑

m
k of mo-

mentum k and energy ε↑
m. As usual, εxy = −εyx = 1 is the

two-dimensional (2D) antisymmetric tensor. The total Hall
conductivity is the sum of the two spin contributions. The
crucial feature is that σ ↑

xy(μ) changes sign as the chemical
potential μ is tuned, and the value of the chemical potential
at which the sign change occurs depends on the strength of
the displacement field. The calculation is estimated at 3◦ twist
angle at experimentally feasible 10-T fields where �B = π/6,
without including the Zeeman shift [26].

The results above are obtained for one spin direction.
The Hofstadter butterfly is independent of the sign of the
magnetic field and therefore is the same for each spin, but
the Zeeman coupling shifts the spectra for spin up rela-
tive to those for spin down by gμBH with g ≈ 9–13, so
σxy(μ) = σ ↑

xy(μ + 1
2 gμBH ) + σ ↓

xy(μ − 1
2 gμBH ). For experi-

mentally feasible fields ∼10 T the Zeeman splitting is about
7 meV, comparable with the 3◦ bandwidth [35]. The tunable
Hall sign change is plotted in Fig. 2(f), at fixed external mag-
netic field and an experimentally accessible chemical potential
near the top of the valence band with Zeeman energy included.
Further reducing the twist angle helps to observe the Hall

FIG. 3. (a) and (b) The spin-up branch of the energy spectra
in the presence of a uniform gradient of displacement field in the
vertical direction. The energy spectrum of (a) and (b) is plotted
in terms of the displacement field gradient φ, which resembles the
famous Hofstadter butterfly. The spectrum is calculated with closed-
boundary conditions on a torus with (N1, N2) unit cells in each of
the primitive directions. The spectrum is insensitive to the initial
values φi(0) and the choice of unit cell, and exhibits an emergent
particle-hole symmetry. Spin Chern numbers C↑ are marked in the
four large central gaps and depend on the geometry of the torus: (a) is
calculated in the geometry shown in (c) or (d), and (b) is calculated in
the geometry shown in (e). The spin Chern number implies a chiral
spin edge current whose direction also depends on the geometry and
is shown by the red arrows in (c)–(e).

sign reversal phenomenon, as it increases the critical chemical
potential at which the reversal occurs.

Displacement field gradient-induced spin current. We next
consider the effect of a spatially inhomogeneous displacement
field in the absence of an external magnetic field. The key
observation is that in the presence of a spatially dependent
displacement field the pseudo magnetic field in two adja-
cent triangular plaquettes no longer averages to zero. As an
example, we consider a displacement field with a constant
spatial gradient, which, without loss of generality, we assume
is perpendicular to the lattice vector a1. For our numerical
studies we have considered the three geometries shown in
Figs. 3(c)–3(e) with the gradient of displacement field directed
vertically as shown. We first consider the noninteracting limit
with U = 0. The Hamiltonian is given by Eq. (3) but the phase
fields now have a spatial coordinate dependence,

φr,r+an = φn + �S · y, n = 1, 2, 3, (5)

where r = xa1 + ya2, and φn are the initial values at y = 0.
A simple counting shows that the modulus of the net

pseudo magnetic field is |�S| in any primitive unit cell (any
two adjacent triangles). However, its sign depends on the
orientation of the unit cell: The pseudo magnetic field for spin
up is negative for the geometry shown in Figs. 3(c) and 3(d)
and positive for the geometry of Fig. 3(e).

The Hamiltonian with the phase specified in Eq. (5) is
easily diagonalized with periodic boundary conditions in an
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FIG. 4. Band structure and interface current in the junction geometry with and without magnetic order. (a)–(d) consider the noninteracting
case without magnetic order. (a) The geometry of the heterostructure, where the displacement fields are uniform in the upper and lower sides
of the junction. (b) The band structure (φ = π/3) plotted in terms of the horizontal momentum kx , which consists of two fans of continuum
states and one isolated state near the band bottom. (c) The interface current calculated when the chemical potential μ/t = 4 for two different
values of φ. The integrated current I (μ), defined as the total current over the entire lower side, as a function of chemical potential is plotted in
(d) for these two values of φ. The magnetic order is assumed nonzero from (e) to (h). The Hartree-Fock bands are shown in (f) and (g), where
the red dotted line is the chemical potential above which the current density are plotted in (h). The current is measured in units of te/h̄.

enlarged unit cell containing q primitive unit cells such that
the phase changes by an integer multiple of 2π across the cell.
The energy spectrum of the spin-up branch is plotted in Fig. 3
as a function of the gradient �S = 2π p/q. These spectra
display similarities to the standard Hofstadter butterfly, but
are distinguished in a couple of aspects: First, in contrast to
the magnetic field-induced butterfly, in the gradient-induced
butterfly Landau fans occur at a large pseudo magnetic field
when �S ≈ π rather than small field values; second, the but-
terflies in Fig. 3 have an emergent particle-hole symmetry, and
are insensitive to the initial values φn=1,2,3.

The nontrivial topology induced by the gradient is deter-
mined by the Chern numbers of the butterfly spectrum, i.e.,
the spin Chern numbers, which are marked for the largest four
gaps near the middle of the spectrum and computed following
the Kubo formula in Eq. (4). Since time-reversal symmetry
is preserved by the displacement field, the spin-down branch
has opposite Chern number. As a result, when the chemical
potential and φ are within these gaps, we expect chiral spin-up
current to travel in one direction around the sample edge, with
opposite current for the spin-down edge mode. Therefore a
nonzero spin current is expected. However, this spin current is
not quantized and not necessarily protected because a jagged
edge changes the balance between triangles with opposite val-
ues of staggered fluxes. More detailed discussions of jagged
geometries are left to a future publication.

Spin current at the interface. We now consider an abrupt
change in the displacement field. We focus on the junction
geometry shown in Fig. 4(a), consisting of a sample that
is infinite in the vertical direction, periodic in the horizon-
tal direction, and characterized by a displacement field that

abruptly changes sign. We parametrize this displacement field
by the following:

At y �= 0: φr,r+an = sgn(y)φ, n = 1, 2, 3, (6)

at y = 0: φ1 = 0, φ2 = φ, φ3 = −φ, (7)

where sgn(y > 0) = +1 and sgn(y < 0) = −1 is the sign
function.

The band structure is shown in Fig. 4(b), which typically
consists of two fans of continuum states connected by the
interface isolated states. We also computed the current den-
sity, contributed from all Bloch states below the chemical
potential μ,

Jx(μ, y) =
∫ π

−π

dkx

2π

∫ μ

−∞
dω↑〈�ω↑

kx
(y)|Ĵx

kx
|�ω↑

kx
(y)〉, (8)

where Ĵx
kx

≡ ∂kx Ĥ
↑
kx

is the current operator and �ω↑
kx

is the
Bloch state of momentum kx and energy ω↑. The computed
current exhibits a peak at the interface, as shown in Fig. 4(c).
The spin-down branch contributes an opposite amount of cur-
rent due to the time-reversal symmetry. A net result is zero
electronic current, but a sharp spin current at the interface. The
spin current contributed from hole carriers near the band top is
particularly important to experiments. The integrated current,
defined as the current summed over the entire lower half of the
junction I (μ) = ∫ 0

−∞ dy Jx(μ, y) [36], is plotted in Fig. 4(d)
as a function of the chemical potential μ near the band top.
Note that as in the previous case, the spin current is neither
quantized nor protected from backscattering in this metallic
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phase, as it could be destroyed by impurities that couple states
of the same energy but different kx.

Recent calculations show that at certain values of the
displacement field the ground state of the half-filled model
possesses ±120◦ spiral antiferromagnetic order with the sign
of the spiral depending on the sign of the displacement
field [26]. Magnetic order is most strongly favored when
φ = ±π/6 due to the perfect nesting of the Fermi surface.
Motivated by this, we consider the presence of magnetic or-
der, which we assume is +120◦ order on the upper plane
where φ = +π/6, and −120◦ order on the lower plane where
φ = −π/6. At the interface, the magnetic order is set to zero.
See Fig. 4(e) for the configuration. The magnetic order opens
an energy gap in the Hartree-Fock band within which are
interface localized modes, shown in Figs. 4(f) and 4(g). Simi-
larly, the spin currents are numerically computed in Fig. 4(h).
Thus a sharp junction between two insulating states will re-
sult in spin current protected by the magnetic gap against
backscattering.

Conclusion. The low-energy physics of electrons in
twisted WSe2 involves a staggered flux, of a magnitude
easily tunable experimentally via a variation of the po-
tential difference between the layers. We have shown that
this flux leads to remarkable experimental consequences,
including tunable Hofstadter butterfly spectra, tunable sign
reversals of the Hall coefficient, and spin currents at the
sample edges and interface. The spin currents may be use-
ful for new classes of spintronic devices. More generally,
since internal magnetic fields are generic to twisted moiré
systems, our work motivates further investigations of the
interplay between topological and correlated physics, as
well as experimentally observable consequences of these
fields.
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