
PHYSICAL REVIEW RESEARCH 5, L012004 (2023)
Letter

Efficient quantum algorithm for solving structured problems via multistep quantum computation
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In classical computation, a problem can be solved in multiple steps where the calculated results of each
step can be copied and used repeatedly. However, in quantum computation, it is difficult to realize a similar
multistep computation process because the no-cloning theorem forbids making copies of an unknown quantum
state perfectly. We find a method based on a quantum resonant transition to protect and reuse an unknown
quantum state that encodes the calculated results of an intermediate step without copying it, and present a
quantum algorithm that solves a problem via multistep quantum computation. We demonstrate that this algorithm
can solve a type of structured search problems efficiently.
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Introduction. Solving a problem on a quantum computer
can be transformed to finding the ground state of a problem
Hamiltonian that encodes the solution to the problem. The
phase estimation algorithm (PEA) [1,2] projects an initial
state onto the ground state of the problem Hamiltonian with
probability proportional to the square of the overlap between
them. However, it is difficult to find a good initial state for a
complicated system. By using amplitude amplification, quan-
tum algorithms can achieve a quadratic speedup over classical
algorithms in preparing the ground state of a quantum many-
body system [3]. In adiabatic quantum computing (AQC) [4],
a system is evolved adiabatically from the ground state of
an initial Hamiltonian to that of the problem Hamiltonian.
The efficiency of AQC depends on the minimum energy gap
between the ground and the first excited states of the adiabatic
Hamiltonian, which is difficult to estimate in most cases. The
quantum Zeno effect [5,6] can be used to keep a quantum
computer near the ground state of a smoothly varying Hamil-
tonian by performing frequent measurements, and has the
same efficiency as AQC.

The structure of a problem is the key for whether or
not it can be solved efficiently on a quantum computer. In
Refs. [7,8], a nested search algorithm was proposed for prob-
lems that can be divided into two (or more) levels described
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by a set of primary and secondary variables, respectively. It
works by nesting one quantum search within another, and
performing a quantum search at a selected level among partial
solutions to narrow the subsequent search over their descen-
dants. The complete solution is constructed through a tree of
partial solutions at different levels. This algorithm achieves
quadratic speedup over the corresponding classical nesting
algorithms, and can be faster than the usual Grover bound
for an unstructured search. In general, the constraints of a
problem contain variables that are coupled to each other, and
the variables may be divided into only a few sets, thus the
search space is still exponentially large.

In the circuit model, a quantum computation is performed
by first preparing qubits in an initial state, then applying a
series of unitary operations, and finally measuring the qubits
to obtain the calculation results. However, in classical com-
putation, a problem can be solved in multiple steps. In each
step, with the calculated results of the previous step as in-
put, one performs a calculation, then checks if the results
satisfy certain conditions; if the conditions are satisfied, then
the calculation of the next step is continued; otherwise, the
procedure is repeated iteratively until the desired results are
obtained. This process is easy to implement in classical com-
putation since the results of each step can be copied and used
repeatedly, and the runtime is proportional to the number
of steps. In quantum computation, however, it is difficult to
realize a similar multistep quantum computation process due
to the restriction of the no-cloning theorem [9,10], which
forbids making copies of an unknown quantum state perfectly.
Calculated results encoded in an unknown quantum state can-
not be used by making copies as in classical computation.
Therefore in multistep quantum computation, if one fails to
obtain the desired results of a step, one has to run the algo-
rithm from the beginning again. This leads to the result that
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TABLE I. Comparison of the performance of some algorithms for solving the structured search problem. The AQC algorithm and the
Grover’s algorithm use the same Hamiltonian evolution path as our algorithm. The performance of the method in Ref. [5] is the same as that
of the AQC algorithm. The term N represents the dimension of the search space.

Algorithms Runtime Determining factors

AQC O(N2) Minimum energy gap between the ground and the first excited states of each adiabatic evolution Hamiltonian
Grover O(

√
N ) Query number of the oracles

PEA O(N ) Overlap between a guess state and the ground state of the problem Hamiltonian
Our algorithm O(log N ) Ratio Nj/Nj−1; here, Nj represents the number of marked states of the jth step

the runtime scales exponentially with the number of steps of
the algorithm, since the success probability of the algorithm
is the product of the success probability in each step.

We find a method to protect and reuse an unknown quan-
tum state that encodes the calculated results of an intermediate
step without copying it. Using this method, we present a
quantum algorithm for finding the ground state of a problem
Hamiltonian via multistep quantum computation, and apply
it to efficiently solve a type of structured search problems
that can be decomposed in a more general way than that in
Refs. [7,8], so the search space of the problems is reduced in
polynomial rate to the target state, while it is difficult to solve
them through the usual quantum computation process.

The idea of the algorithm is as follows: We construct an
evolution path from an initial Hamiltonian H0 to a prob-
lem Hamiltonian HP by inserting between them a sequence
of intermediate Hamiltonians {Hl , l = 1, . . . , m − 1}, through
which H0 reaches HP as H0 → H1 → · · · → Hm−1 → HP =
Hm. We start from the ground state |ϕ(0)

0 〉 of H0, and evolve
it through ground states of the intermediate Hamiltonians
sequentially to the ground state |ϕ(m)

0 〉 of HP in m steps. In
each step, the ground state of an intermediate Hamiltonian
is obtained deterministically via quantum resonant transitions
(QRTs) [11,12]. For simulatable Hamiltonians, i.e., Hamilto-
nians that can be simulated efficiently on a quantum computer,
our algorithm can be run efficiently if (i) the overlaps between
the ground states of any two adjacent Hamiltonians and (ii) the
energy gap between the ground and the first excited states of
each Hamiltonian are not exponentially small. The conditions
can be reduced to simpler forms for problems with special
structures.

With the property of being able to solve a problem via
multistep quantum computation, our algorithm can solve a
problem efficiently even when the overlap between an ini-
tial state and the solution state of the problem Hamiltonian
is exponentially small, as long as the above conditions are
satisfied. The success probability of the PEA is exponentially
small in this case. We demonstrate that our algorithm can
solve a type of structured search problems efficiently, while
the usual AQC algorithm (the adiabatic evolution Hamilto-
nian is set as a linear interpolation of an initial and a final
Hamiltonians), which has the same efficiency as the algo-
rithm in Ref. [5], cannot solve this problem efficiently. The
AQC can achieve the same efficiency as our algorithm with
a jagged adiabatic path [13]. We summarize the performance
of the algorithms for solving the structured search problems
in Table I and provide details in Sec. VI of the Supplemental
Material (SM) [14].

The algorithm. We describe the algorithm by using one
of its steps as an example. By optimizing the algorithm in
Refs. [11,12], one qubit is saved in this algorithm. For a
problem of dimension N = 2n, the algorithm requires (n + 1)
qubits with one probe qubit and an n-qubit register R repre-
senting the problem. In the lth step, given the Hamiltonians
Hl , Hl−1 and its ground state |ϕ(l−1)

0 〉 prepared on the regis-
ter R and the corresponding eigenvalue E (l−1)

0 obtained from
previous step, we aim to prepare the ground state |ϕ(l )

0 〉 and
obtain the corresponding eigenvalue E (l )

0 of Hl . The algorithm
Hamiltonian of the lth step is

H (l ) = − 1
2ωσz ⊗ IN + H (l )

R + cσx ⊗ IN , (1)

where

H (l )
R = αl |1〉〈1| ⊗ Hl−1 + |0〉〈0| ⊗ Hl , l = 1, 2, . . . , m,

(2)
IN is the N-dimensional identity operator, and σx, σz are the
Pauli matrices. The first term in Eq. (1) is the Hamiltonian
of the probe qubit, the second term contains the Hamiltonian
of the register R and describes the interaction between the
probe qubit and R, and the third term is a perturbation. The
parameter αl is used to rescale the energy levels of Hl−1,
and the ground-state energy of αlHl−1 is used as a reference
point to the ground-state eigenvalue of Hl , and c � 1. We es-
timate the range of the ground-state eigenvalue E (l )

0 of Hl and
obtain the estimated transition frequency range [ωmin, ωmax]
between states |ϕ(l−1)

0 〉 and |ϕ(l )
0 〉. Then we discretize the fre-

quency range into a number of grids and use them as detection
frequencies of the probe qubit. Procedures for the lth step of
the algorithm are as follows:

(i) Set the probe qubit in a frequency from the frequency
set, and initialize it in its excited state |1〉 and the register R in
state |ϕ(l−1)

0 〉.
(ii) Implement the time evolution operator U (t ) =

exp(−iH (l )t ) for a time t determined by the overlap between
the states |ϕ(l−1)

0 〉 and |ϕ(l )
0 〉 (see Sec. I of SM [14]).

(iii) Read out the state of the probe qubit.
We repeat procedures (ii) and (iii) a number of times. If

the measurement on the probe qubit results in state |1〉, it
indicates that the register R remains in the state |ϕ(l−1)

0 〉, and
then we run procedures (ii) and (iii) by setting the probe
qubit in another frequency. Otherwise, if the probe qubit de-
cays to state |0〉, it indicates a resonant transition from state
|1〉|ϕ(l−1)

0 〉 to |0〉|ϕ(l )
0 〉 has occurred. The eigenvalue E (l )

0 of
Hl can be obtained by locating the resonant transition fre-
quency of the probe qubit that satisfies E (l )

0 − αlE
(l−1)
0 = ω
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(see Sec. I of SM [14]). The corresponding eigenvector |ϕ(l )
0 〉

can be prepared by running the above procedure at the res-
onant transition frequency [11,12]. With Hl , |ϕ(l )

0 〉, and E (l )
0 ,

we run the algorithm for the next step. Proceeding step by
step, finally we obtain the ground state of the problem Hamil-
tonian. For some problems, the ground-state eigenvalues
of the intermediate Hamiltonians can be calculated analyti-
cally, therefore the implementation of the algorithm becomes
easier.

As the resonant transition occurs, the system is approxi-

mately in a state
√

1 − p(l )
0 |1〉|ϕ(l−1)

0 〉 +
√

p(l )
0 |0〉|ϕ(l )

0 〉, where
p(l )

0 = sin2(ctd (l )
0 ) is the decay probability of the probe qubit

of the lth step, and d (l )
0 = 〈ϕ(l−1)

0 |ϕ(l )
0 〉. The state |ϕ(l−1)

0 〉 is
protected in this entangled state. If the measurement outcome
on the probe is in state |0〉, it indicates the state |ϕ(l )

0 〉 is
obtained on the register R, and then we run the (l + 1)th
step of the algorithm. Otherwise, if the probe is in state
|1〉, it means R remains in the state |ϕ(l−1)

0 〉, and we repeat
the procedures (ii) and (iii) by setting the probe in the res-
onant transition frequency until it decays to state |0〉. By
protecting the calculated result of an intermediate step in this
entangled state, we do not need to run the algorithm from
the beginning once it fails to obtain the desired state in a
step of the algorithm. We just repeat the procedures of the
step until the desired state is obtained. With this property,
the desired state of each step is obtained deterministically
in polynomial time if the conditions of the algorithm are
satisfied. Here, “deterministically” means that by running the
procedures of a step repeatedly, we know exactly when the
desired state of the step is obtained from the measurement
outcome on the probe qubit. The number of times the proce-
dures have to be repeated is proportional to 1/p(l )

0 . Therefore,
the runtime of the algorithm is proportional to

∑m
l=1 1/p(l )

0 ,
which scales linearly with the number of steps of the algo-
rithm, provided p(l )

0 are not exponentially small in the system
size n.

There are various ways to construct evolution paths that
satisfy the conditions of the algorithm. Here, we present two
methods: (i) For a system Hamiltonian H0 + V , by writing
H = H0 + gV (g ∈ [0, 1]) and discretizing the parameter g,
the intermediate Hamiltonians can be constructed as Hl =
H0 + glV (0 = g0 < g1 < · · · < gm = 1) [6]. The parame-
ters gl can be adjusted to make d (l )

0 finite. (ii) The system
Hamiltonian can be a Hamiltonian matrix, and intermedi-
ate Hamiltonian matrices can be constructed by spanning
the system Hamiltonian in a sequence of basis sets with in-
creasing dimension such that the matrix Hl−1 is contained
in a subspace of the adjacent matrix Hl . The dimension
of the basis sets can be adjusted to make d (l )

0 finite. The
path can also be constructed by considering the structure of
the problem.

In the lth step, the probability of the initial state be-
ing evolved to the state |0〉|ϕ(l )

0 〉 reaches maximum at
t = π/(2cd (l )

0 ). Errors are introduced as the initial state
leaks to the excited states |0〉|ϕ(l )

j 〉 ( j = 1, . . . , N − 1)

with probability pj . By assuming E (l )
1 − E (l )

0 	 cd (l )
0 and

αl (E
(l−1)
1 − E (l−1)

0 ) 	 cd (l )
0 , and setting the optimal runtime

t = π/(2cd (l )
0 ) for convenience, we have

∑
j

p j � a2
l c2, (3)

where

a2
l = 4

[
1 − (

d (l )
0

)2]
[
E (l )

1 − E (l )
0

]2 .

(see Sec. I of SM [14]). If the energy gaps E (l )
1 − E (l )

0 are not
exponentially small, i.e., bounded by a polynomial function of
the problem size, then al is finite and the error in the lth step is
bounded by a2

l c2. Considering errors accumulated in all steps,
the success probability of the algorithm satisfies

Psucc �
m∏

l=1

[
1 − a2

l c2
]
� [1 − (amaxc)2]m,

where amax is the maximum value of al (see Sec. I of SM
[14]). The coefficient c can be set such that amaxc < 1/

√
m,

then Psucc > 1/e in the asymptotic limit of m. The runtime of
each step is proportional to π/(2cd (l )

0 ), therefore the runtime
of the algorithm scales as O(

∑m
l=1

π

2(E (l )
1 −E (l )

0 )d (l )
0

).

The time evolution operators U (t ) = exp(−iH (l )t ) can
be implemented efficiently using Hamiltonian simulation
algorithms [15,16]. Our algorithm requires performing single-
qubit measurements and resetting the probe qubit to its excited
state; such techniques have been realized in an ion-trap exper-
iment [17]. We now apply the algorithm for solving a type of
search problems with a special structure.

Search problem with a special structure. The unstructured
search problem is to find a marked item in an unsorted
database of N items using an oracle that recognizes the
marked item. The oracle is defined in terms of a problem
Hamiltonian HP = −|q〉〈q|, where |q〉 is the marked state
associated with the marked item. The initial Hamiltonian is
defined as H0 = −|ψ0〉〈ψ0|, where |ψ0〉 = 1√

N

∑N−1
j=0 | j〉. We

consider a search problem with a structure that can be decom-
posed by using m [in order of O(log N )] oracles to construct a
sequence of intermediate Hamiltonians

Hi = Ni

N
H0 +

(
1 − Ni

N

)
HPi , i = 1, 2, . . . , m − 1, (4)

where

HPi = −
∑

qi∈�i

|qi〉〈qi|, (5)

and Hm = HP and �m only contains the target state |q〉, and
�1 ⊃ · · · ⊃ �m−1 ⊃ �m with sizes N1, . . . , Nm−1, Nm = 1,
respectively. If Ni/Ni−1 (i = 1, 2, . . . , m) are not exponen-
tially small, the problem can be solved efficiently in m steps
by using our algorithm.

Define |q⊥
i 〉 = 1√

N−Ni

∑
j /∈�i

| j〉. In the basis

({|qi〉}qi∈�i , |q⊥
i 〉), the Hamiltonian Hi in Eq. (4) can be
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written as

Hi =

⎛
⎜⎜⎜⎜⎝

ξ−1
N · · · ξ−1

N
(ξ−1)

√
N−Ni

N
...

. . .
...

...
ξ−1

N · · · ξ−1
N

(ξ−1)
√

N−Ni

N
(ξ−1)

√
N−Ni

N · · · (ξ−1)
√

N−Ni

N ξ 2

⎞
⎟⎟⎟⎟⎠

− ξ INi+1, (6)

where ξ = 1 − Ni
N and INi+1 is the identity matrix of dimen-

sion Ni + 1. The eigenvalues of the ground and the first
excited states of Hi are E (i)

± = −1±
Ei
2 , respectively, where


Ei =
√

(1 − 2Ni
N )2 + 4 N2

i
N2 (1 − Ni

N ) is the energy gap between
them and reaches minimum

√
11/3

√
3 ≈ 0.638 at Ni/N =

1/3. Let e = (1, . . . , 1)T and 0 = (0, . . . , 0)T be Ni × 1 vec-
tors, respectively, so there are Ni − 1 degenerate eigenstates
|e′

i〉 = (|e⊥
i 〉, 0)T of Hi with an eigenvalue −ξ , where |e⊥

i 〉 is
orthogonal to e. These eigenstates are uncoupled from the
ground and the first excited states of Hi [20]. The condition for
a resonant transition between states |1〉|V (i−1)

− 〉 and |0〉|V (i)
− 〉

is satisfied by setting ω = 1 and αi = (E (i)
− − 1)/E (i−1)

− . The
ground state of Hi is |V (i)

− 〉 = x(i)
1 (e, 0)T + x(i)

2 (0, 1)T. After
normalization, the overlap between the ground states of two
adjacent intermediate Hamiltonians is

d (i)
0 = 〈V (i−1)

− |V (i)
− 〉 =

√
Ni

Ni−1
x(i−1)∗

1 x(i)
1

+ Ni−1 − Ni√
Ni−1(N − Ni )

x(i−1)∗
1 x(i)

2 +
√

N − Ni−1

N − Ni
x(i−1)∗

2 x(i)
2 .

(7)

The components x(i)
1 and x(i)

2 are functions of Ni/N , and x(i)
1

contributes most to |V (i)
− 〉. If the ratios Ni/Ni−1 are finite,

where N0 = N , then d (i)
0 are finite, and the conditions of our al-

gorithm are satisfied. So the problem can be solved efficiently
through the path in Eq. (4) by setting the optimal runtime in
each step since d (i)

0 can be calculated. The overlap between the
ground states of Hi and HP is proportional to 1√

Ni
|x(i)

1 |, which
increases monotonically as Hi approaches HP.

We find some problems have the structure described above
[18]. As an example, we apply our algorithm to solve the
Deutsch-Jozsa problem (see Sec. II of SM [14]). For the un-
structured search problem with one marked item, only one
oracle can be used to separate the marked item from the un-
marked items, where the ratio of N1/N0 is 1/N . Our algorithm
has the same efficiency as that of the Grover’s algorithm [19]
and the AQC algorithm [20,21] in solving this problem (see
Sec. III of SM [14]).

Comparison of the algorithm with adiabatic quantum com-
puting. In our algorithm, the ground state of the problem
Hamiltonian is induced step by step through QRTs following
a path from the initial Hamiltonian to the problem Hamilto-
nian. It solves a type of structured search problems efficiently.
Applying AQC for this problem with adiabatic Hamiltonian
H (s) = (1 − s)H0 + sHP, s ∈ [0, 1], the minimum energy gap
between the ground and the first excited states of H (s) is
1/

√
N at s = 1/2, and the runtime scales as O(

√
N ).

FIG. 1. Eigenvalue spectrum of the adiabatic Hamiltonian H ′
i (s)

of an intermediate step with Ni/Ni−1 = 1/10 vs the parameter s by
setting the parameter Ni/N at different values. (a) Ni/N = 1/30;
(b) the dashed thin lines represent the case Ni/N = 1/50, and the
solid thick lines represent the case Ni/N = 1/150.

What about running AQC with the same path as our algo-
rithm for solving this problem? We set Ni/Ni−1 to be finite,
thus the conditions of our algorithm are satisfied. Let the
system evolve from the ground state of Hi−1 to that of Hi

under the adiabatic Hamiltonian H ′
i (s) = (1 − s)Hi−1 + sHi.

We set Ni/Ni−1 = 1/10 and calculate eigenvalues of H ′
i (s) for

1 < i < m. In Fig. 1, we draw the energy spectrum of H ′
i (s) vs

s where 0 < s < 1 by setting Ni/N = 1/30, 1/50, and 1/150,
respectively. As Ni/N becomes small, the minimum energy
gap between the ground and the first excited states of H ′

i (s)
decreases quickly as s → 0, and scales as O(1/N2) at the
asymptotic limit of N (see Sec. V of SM [14]). Thus the usual
AQC algorithm cannot solve this problem efficiently using
the path of our algorithm. The reason for this may be due
to the structure coefficients Ni of the problem being used in
constructing the intermediate Hamiltonians. It has been found
that for an adiabatic path constructed in a linear interpolation
of two Hamiltonians, the gaps can become superexponentially
small, and the time for adiabatic evolution is longer than the
time required for even a classical brute force search [13,22].
The AQC algorithm with a jagged adiabatic path [13] can have
the same efficiency as our algorithm in solving the structured
search problem. This approach requires one to project out
the ground state of each Hamiltonian to form an adiabatic
path. In comparison, our algorithm is much simpler, which
needs only one ancilla qubit and its implementation requires
only a Hamiltonian simulation for which there are optimal
quantum algorithms [15,16] for simulatable Hamiltonians. In
Table I, we list the performance of different algorithms for
solving the structured search problem. Detailed comparisons
are discussed in Sec. VI of SM [14].

Discussion. We present a quantum algorithm that solves
a problem through multistep quantum computation in which
an unknown quantum state that encodes the calculated results
of an intermediate step can be protected and reused without
copying it. The runtime is proportional to the number of steps
of the algorithm, provided the conditions of the algorithm are
satisfied. We find a type of search problems with a special
structure can be solved efficiently by using our algorithm. Our
algorithm provides another possibility for universal quantum
computing and developing different quantum algorithms for
other problems.
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