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Dynamics of three-dimensional stepped cracks, bistability, and their transition to simple cracks
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Slow cracks may be simple, with no internal structure. The leading edge of a simple crack, the crack front,
forms a single fracture plane in its wake. Slow cracks may also develop segmented crack fronts, each segment
propagating along a separate fracture plane. These planes merge at locations that form steps along fracture
surfaces. Steps are not stationary, but instead propagate within a crack front. Real-time measurements of crack
front structure and energy flux reveal that step dynamics significantly increase energy dissipation and drastically
alter crack dynamics. Simple and stepped cracks are each stable. By extending the use of energy balance to
include 3D crack front structure, we find that, while energy balance is obeyed, it is insufficient to select the
energetically favorable crack growth mode. Transitions from stepped cracks to simple cracks occur only when
their in-plane front lengths become equal and a perturbation momentarily changes step topology. Such 3D crack
dynamics challenge our traditional understanding of fracture.
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Cracks generally cause materials to fail, as they strongly
amplify any remotely imposed stresses at their leading edge.
Linear elastic fracture mechanics (LEFM) predicts that math-
ematically singular stresses will develop, in effectively 2D
materials, at a crack’s tip [1,2]. Crack propagation ensues via
“energy balance”; when the elastic energy released per unit
crack advance (energy flux into a crack’s tip), G, is balanced
by the fracture energy, �, the dissipated energy per unit crack
advance. G is often called the energy release rate.

Let us now define a “simple” crack as a crack having no
secondary structure [3]; a simple branch cut in 2D materials.
In real 3D materials, a singular crack tip becomes a singular
crack front that extends across the sample thickness, normal
to the propagation direction. Simple cracks in 3D, like their
2D analogs, have no internal structure; they are invariant to
translation along the crack front. So long as this invariance
is not broken [4], 2D theories will fully describe their mo-
tion [1,5] and structure [6]. Simple cracks produce featureless,
mirror-like, fracture surfaces.

Crack fronts are, however, not necessarily simple. Crack
fronts may contain nontrivial, often dynamic, internal struc-
tures that, in their wake, create nontrivial structure on
fracture surfaces [7–10]. This structure is generally accom-
panied by strongly enhanced dissipation. Within rapidly
propagating crack fronts, complex structure may develop dy-
namically [7–9] as a result of a simple crack’s instability to
short-lived frustrated crack branching. This instability takes
place at velocities that are a significant fraction of cR, the
Rayleigh wave speed.
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“Stepped cracks”, as shown schematically in Fig. 1(a),
are a very different type of nontrivial crack front. Stepped
cracks are formed immediately upon crack initiation, when
materials are subjected to small (even infinitesimal) antiplane
shear (Mode III) in addition to the dominant tensile (Mode I)
loading [11,12]. Such mixed mode loading excites an unstable
helical mode within the crack front [13,14] that causes a single
crack front to break up into separate segments. Let us define
the x, y, and z directions as, respectively, the propagation,
crack opening, and sample thickness directions. Each crack
front segment will propagate within an xz plane that is slightly
offset in y. Segmented crack fronts thereby form, in their
wake, fracture surfaces that are separated in y, and slightly
overlapping (in z). The segmented fracture planes, within their
overlapping regions, will merge at distinct “step locations” in
z, thereby forming steps on the resulting fracture surface. We
define the distance, h, between these separated planes as the
“step height”.

Step locations are not stationary, but move within slowly
(v � 0.1cR) propagating crack fronts. This motion produces
faceted fracture surfaces in amorphous materials [15–17].
Studies in hydrogels revealed that steps that are oriented about
±45◦ to the crack’s propagation direction possess the distinct,
characteristic 3D structure [18] described in Fig. 1(a). They
are topologically stable once formed [18]; so long as this
topology is not broken, steps will stably propagate.

Once steps are formed, cracks will exhibit complex dy-
namics that result from energy balance coupled to the 3D
dynamics within crack fronts [19]. To understand their dy-
namics, the full 3D structure of the crack front must be
considered. Energy balance is a local concept; for a crack to
propagate, G must equal the fracture energy � at each point z
within the front. Both G and � are generally dependent on a
crack’s local speed v(z). Energy balance is only realized when
the internal structure of the crack front is correctly accounted
for [19], as internal structure governs local energy dissipation.
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FIG. 1. Stepped and simple cracks and how they are visualized
(a) Schematic diagrams of stepped (left) and simple (right) cracks.
Stepped cracks are formed by segmented fronts (blue and red lines)
separated by a small gap, h. The leading front (blue) is flat, while
the trailing front (red) curves to merge with the leading front, defin-
ing a step’s location. Cracks are visualized using two experimental
setups with gel samples surrounded by either air or water. (b) In
air, shadowgraph imaging of the fracture process was obtained using
a collimated beam normal to the sample surface. Bottom: A step-
forming crack. Lensing due to contracting material in z near the crack
tip creates black caustics (yellow dashed curves). (c) Surrounding the
crack with (index matching) water enables crack front visualization,
when imaged obliquely. Bottom: Oblique view of an initially stepped
crack that transitioned to a simple one. The crack front (red), crack
tip openings on the upper (z = w0, green line) and lower (z = 0,
green dashed line) surfaces, and step created on the fracture sur-
face (arrows) are identified. (Right) Simple crack front shape in the
xz plane.

Variations in crack front structure will, thereby, induce strong
variations in both � and v(z).

Here we will focus on the dynamics and stability of
stepped crack fronts. Once steps are excited on a crack front,
crack front dynamics will change dramatically. Despite their
topologically enforced stability [18], once v ∼ 0.1cR, simple
crack fronts are generally observed experimentally in both
gels [4,5,20] and other brittle materials [2,21] until dynamic
instabilities develop at higher v. How are these observations
compatible with the fact that, generically, stepped cracks are
formed upon initiation, unless stringent protocols to suppress
mixed mode loading [19] are enforced?

Our experiments were conducted using brittle polyacry-
lamide hydrogels composed with a 13.8% (w/v) acry-
lamide/bisacrylamide concentration and a 2.6% (w/v) cross-
linker concentration. Both the viscoelastic and poroelastic
effects in these gels are negligible for the time scales that we
will consider [22–24].

As these gels have a Rayleigh wave speed of cR = 5.5 ±
0.15 m/s, they are ideal for studying fracture in “slow mo-
tion”. The fracture dynamics of these gels are identical to
those in other brittle materials, and are well-described by

LEFM [4,5,21]. In particular, the crack tip opening displace-
ment is well described by a parabolic shape away from the
tip region, whose curvature is (see Ref. [25]) as predicted by
LEFM [1,19].

The condition of small-scale yielding is well satisfied for
these gels, however the physics that are taking place in the
dissipative region that give rise to velocity dependence of �

(see Fig. S4 in [25]) are still unclear [19]. This dependence
may be due to poroelastic or viscoelastic effects [26–28].
While nonlinear elastic effects do, in general, occur in the
close vicinity of the tip [6], for the slow velocities considered
here, the size of the nonlinear region is below a single grid
spacing. Moreover, the dissipative zone near the crack tip is
yet smaller, which is <20 μm for these gels [29].

In Figs. 1(b) and 1(c) we present a schematic description of
our experimental system. The experiments utilized gel sheets
of strip geometry (x×y×z dimensions of 40×20×w0 mm),
whose unstrained thickness, w0, varied between 1, 0.5, and
0.25 mm. Samples were loaded in mode I by slow (strain
rate ∼10−3s−1) and uniform displacement along y until frac-
ture initiated. Both the displacement and force are measured.
Strain at fracture was controlled by the initial “seed” crack,
imposed at x = 0 at the center in y of each sample. Seed
cracks of lengths ranging from 4–6 mm yielded 6%–10%
strains at fracture. Any slight tilt (∼1◦) of seed cracks relative
to the xz plane will create steps [11]. We monitored crack
dynamics (in the x direction) in areas (�x,�y) of either
(10.6,6.0) mm or (6.2,3.5) mm, that were centered a few mm’s
beyond the seed crack. Crack dynamics and the near-front
fields were visualized by illuminating this area with a pulsed
(1 μs pulse duration) collimated (LED) beam directed into a
fast camera operated at frame rates between 7000–8000 Hz
with 1920×1080 pixel resolution.

We performed two types of measurements, the first with
gel samples surrounded by air and the visualization direction
normal to the xy plane [Fig. 1(b)]. As in [19,30], defor-
mation fields around the crack tip were measured by the
deformation of a grid mesh of 50×50 mm2 unit imprinted
on the gel’s upper surface. In the near-tip singular region, the
large deformations coupled with volume conservation (gels
are incompressible) caused significant material contraction in
z. The resultant lensing of the incident light created black
caustics [9,31] near crack tips [Fig. 1(b)]. The existence of
caustics prevents measurement of the grid deformation in
regions adjacent to crack tips. When existent, we used caus-
tic centroids to define crack propagation distances and mean
velocities v(t ) = 〈v(z, t )〉z.

When crack front structure is created, to measure detailed
dynamics of crack fronts in z, it is imperative to eliminate
the caustics. To this end, we immersed the gels in a water
bath and performed a second type of measurement [Fig. 1(c)].
As water is nearly index matched to the (aqueous) gel used,
immersion eliminates caustics by preventing lensing of the
light passing near the tip. We visualized crack front dynamics
by illuminating the crack front at an oblique angle of 45◦
relative to the xy plane. The illuminating beam was oriented
normal to x (see [25] for more details) and the transmitted
light was imaged by the camera. In the measurement frame,
for w0 = 1 mm, sample thicknesses contracted in z to w =
0.893 ± 0.05 mm. As simple crack fronts were curved, their
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FIG. 2. Step reflections at free boundaries. (a) Sequence of
in-plane crack fronts bracketing a step reflection (w0 = 1 mm). Ar-
rows denote step locations. (b) (top) Measured fracture surfaces of
frames [1]–[5] in (a) and (bottom) Schematic drawing of crack fronts.
(c) Left: profilometer measurements of the fracture surface of a step
undergoing five reflections prior to its transition to a mirror-like sim-
ple crack (top in 3D, bottom xz plane). Right: v(t ) and step height,
h(t ), dynamics for the five step reflections prior to transitioning to a
simple crack.

integrated lengths, ls, surpassed w and were nearly constant;
ls ≈ 0.945 ± 0.03 mm. For each w0 used, simple crack fronts
were self-similar when scaled by w0 [25].

Stepped cracks generally develop multiple steps at initi-
ation that coarsen or disappear upon subsequent interaction
to a single step in thin sheets [19]. We focus on crack fronts
containing only a single step. Fracture behavior was character-
ized by coupling crack front measurements with post-mortem
profilometric analysis of fracture surfaces (Fig. 2). As shown
in Fig. 1(a), single steps are formed by the overlap of discon-
nected straight and curved segments within the front [18,19].
As the overlapping section has significantly larger dissipation
than other parts of the front, it locally lags behind, and forms
cusp-like shapes within crack fronts in the xz plane. Step
locations were identified by cusp locations [see Fig. 2(a)].

Steps may reflect when encountering a free surface (e.g.,
z = 0 or z = w). Figures 2(a) and 2(b) describe a step’s reflec-
tion from z = 0. In Fig. 2(b) we compare a step’s dynamics
and instantaneous front shapes with profilometric measure-
ments of the step height, h(t ) corresponding to the same
instants in time. A step will always propagate in the direction
(in z) that will shorten its straight segment. As demonstrated
in the frames labeled [1]–[5] in Fig. 2, as the step approaches
z = 0, (1) the straight segment shortens and (2) disappears
when the lagging curved branch impinges on the free surface.
At this point (3), the endpoint (in y) of the curved segment
(the step location) is bent out-of-plane and, itself, becomes
locally loaded under I+III mixed mode conditions. This bent
section then overshoots to h > 0. We believe that this local
mode I+III loading gives rise to a local front segmentation
that, consequently, (4) creates a new step having the opposite

orientation. This “reflected” step then propagates in the oppo-
site direction while (5) growing in height.

At each reflection, steps first lose height and then regrow
while propagating. The step height h starts from a few μm
until stabilizing at h = hmax ≈ 38 ± 3 μm (Fig. 2(c), right).
Propagating steps trace lines, “step lines”, within fracture
surfaces. Step lines bound fracture planes (“facets”) hav-
ing different heights. Repeated reflections form periodic step
lines, tilted approximately ±45◦ relative to x and create climb-
ing facets in y, as shown in Fig. 2(c), left.

Steps lead to increased local energy dissipation by increas-
ing 3D crack lengths by lstep(t ) ≈ 1.4h(t ), (which includes
both their height in y and overlapping regions in z) [18].
Hence, as steps grow with propagation, their mean front
speeds, v(t ), decrease. At the instant of each reflection,
momentarily h(t ) ≈ 0 and v(t ) instantaneously jumps. v(t )
therefore oscillates in phase with repeated step reflections
(Fig. 2(c), right). Over time, however, the mean value of v(t )
“mysteriously” decreases. Step reflections continue until, as at
t = 120 ms in Fig. 2(c), instead of reflecting, a step disappears
upon encountering a free surface. At this point, fronts trans-
form to simple cracks and v(t ) consequently undergoes an
instantaneous jump to a higher speed vs. After this transition,
crack fronts may either slowly accelerate or even propagate at
nearly steady-state speeds.

Let us first consider the energy flux, G, into stepped crack
fronts. At each instant, we calculate G via J-integrals derived
using measured deformation fields. This calculation is valid
since elastic fields are effectively 2D for contours located at
distances much greater than w0. This calculated value of G is,
indeed, equal to that obtained by means of the strip geometry
of the experiment as in, e.g., [5].

Figures 3(a) and 3(b) present two typical examples of
stepped cracks undergoing multiple step reflections before
transitioning to simple cracks. Surprisingly, G is constant in
time regardless of the extremely unsteady motion of the crack
fronts.

We now consider the total dissipation of the stepped crack.
We define �̃ as the total dissipation integrated over the whole
crack front length l ,

�̃ =
∫

l (t )
�(v(z, t ))dz ≈ �(v(t )) · l (t ). (1)

�̃ has units J/m and differs from the fracture energy, �(v)
(dissipation per unit area) which is a characteristic material
property. �(v) can be measured; for v � 0.1cR, �(v) is a
nonlinear, strongly increasing function of v [19]. On the other
hand, �̃ depends extensively on both crack front dynamics
and the total instantaneous length l (t ) = lxz(t ) + lstep(t ). The
in-plane (xz plane) crack front lengths, lxz(t ), are measured di-
rectly [see Fig. 3(c)]. Out-of-plane lengths, lstep(t ) ≈ 1.4h(t ),
are obtained by post-mortem measurements of h(t ).

By energy balance, �̃ = G · w [25]. Since G is constant,
any variation of l (t ) immediately causes a consequent varia-
tion of v(t ). Thus, v(t ) oscillates sharply with periodic step
reflections. Moreover, the continuous decrease of v(t ) from
one reflection to the next [as in Figs 2(c) and 3(a)] implies
that, beyond the periodic variations caused by lstep(t ), l (t )
grows with t . The continuous decrease of v(t ) continues until
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FIG. 3. Energy flux and dissipation during crack motion. (a) v(t )
of two stepped cracks. v(t ) oscillates in phase with step reflections
while decreasing in time. Both examples transition to simple cracks;
v(t ) jumps when steps disappear. (b) Despite the strong variations in
v(t ), the corresponding energy fluxes G(t ) are constant. For each of
the time series in (a) we present G as calculated using the J integral
for each time (symbols). These values are identical to calculated
values of G obtained using the strip geometry (dashed lines). Colors
are as in (a). Inset: uy in mm’s. Dashed line is the contour used in the
J-integral calculation of G at t = 400 ms for black symbols. (c) In-
stantaneous crack fronts, separated by 0.714 ms, as a step propagates
from z = w, reflects at z = 0 and then transitions to a simple crack
when the step returns to z = w. (d) Corresponding v(t ) (black) and
l (t ). (blue) Measured l (t ) and (red) l (t ) derived via energy balance
are indistinguishable.

a transition to a simple crack takes place. At this point, v(t )
jumps sharply.

To understand both the slow variation of v(t ) as well as
the loss of step stability, we consider in Figs. 3(c) and 3(d)
the detailed dynamics of v(t ) and l (t ) of a stepped crack front
as it approaches the transition to a simple crack. The in-plane
crack front profiles [Fig. 3(c)] continuously vary as the step
first reflects at z = 0 (x = 1.5 mm) then dies at z = w, upon
transition (x = 2.5 mm) to a simple crack. Figure 3(d) shows
that the measured l (t ) continuously increases while the entire
crack front continuously slows, until the sudden transition to
a simple crack.

When measured values of lxz(t ) are not available, l (t ) can
be derived using l (t ) = G · w/�(v(t )). Figure 3(d) demon-
strates that derived values of l (t ) are identical to measured
ones, an additional validation of energy balance. This enables
us to reliably derive l (t ) in gels bounded by air [Fig. 1(a)],
when direct measurements are impossible.

Figures 4(a) and 4(b) present the dynamics and l (t )
evolution of numerous cracks during successive step re-
flections. Figure 4(b) demonstrates that, regardless of the
crack dynamics, l (t ) continuously increases, until a criti-
cal length of about 5.7% above the simple crack length,
ls. After reaching this length, when a step reaches a free
surface (noted at t = t∗), instead of reflecting it disappears
and l (t ) drops instantaneously to ls. The drop in l (t∗)
[in Fig. 4(b) ∼53 μm] corresponds precisely to the excess
front length contributed by steps (lstep

max = 1.4hmax). Thus, as
Fig. 4(c) demonstrates, transitions to simple cracks only
occur when lxz(t ) = ls [25]. This transition is independent
of G and w0.

FIG. 4. Front dynamics are strongly coupled to the lengths of
stepped crack fronts. (a) Crack dynamics during successive step
reflections for eight experiments performed in air with w0 = 0.5 mm.
(b) The evolution of the derived l (t ) from the experiments shown
in (a). The stepped cracks transition to simple cracks upon arriv-
ing at a free surface at t = t∗ only when l (t ) grows to a critical
length. (c) In-plane crack front length at the transition, lxz(t∗), nor-
malized by the simple crack length, ls. Filled (open) symbols are
directly measured (derived) values from experiments in water (air).
Inset: Un-normalized l (t ) at transition for different w0. (d) Stepped
crack velocities, v(t∗) at transitions vs. simple crack velocities after
transition, vs. Predictions (dashed lines) agree perfectly with mea-
surements (points). Colors as in Fig. 4(c).

As G is constant, at the transition to a simple crack v(t )
correspondingly jumps. The velocity at the transition, v(t∗),
is predicted by energy balance via,

l (t∗) · �(v(t∗)) ≡ (
ls + lstep

max

) · �(v(t∗)) = ls · �(vs) (2)

with �(v) shown in [25], Fig. S4. The predicted velocity at
transition, v(t∗), perfectly corresponds to experimental mea-
surements, as shown in Fig. 4(d) for numerous experiments
and different w0.

The topological constraint imposed by a step can force a
crack to arrest, even if G is sufficiently large to enable the
propagation of a simple crack [25]. As l (t ) lengthens, v(t )
may decrease to zero before the step arrives at a free surface.
Under these circumstances, the transition to a simple crack
can not take place, and a stepped crack will simply arrest.
This is demonstrated in Fig. 4(d) as well as in [25]. Thus,
vs corresponding to v(t∗) = 0 is the minimum vs possible for
the transition from a stepped to a simple crack. This minimum
value is strongly dependent on w0 for thin sheets.

Stepped cracks and simple cracks are truly bistable modes
of fracture. For example, for the values of G where v(t∗) =
0, if a simple crack is initiated, it will stably propagate for
all velocities below the micro-branching threshold [19]. This
bistability results from the topological constraints imposed on
stepped cracks. Stepped cracks can not transition to simple
cracks, unless a perturbation is encountered that momentarily
breaks this topological constraint. This is what takes place at
a free boundary—without such a “topological” perturbation,
stepped cracks would either continue uninterrupted or arrest.
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Since, at fracture onset, any small mode I+III mixity will
create steps, we might expect that amorphous materials may
all exhibit slow “topologically” creeping regimes at the on-
set that will “mysteriously” spontaneously jump to dynamic
velocities. Such velocity jumps are, in fact, often observed
in the range of materials [2,32] in which facets are observed.
Our observation which shows that the step reflection will take
place unless lxz = ls is intriguing. l > ls in all of the crack
lengths enclosed within the dashed lines in Fig. 4(b). Despite
the successive reflections that each stepped crack undergoes,
these cracks remain stable to simple cracks so long as lxz < ls.

Why is the crack front length of simple cracks, ls, signif-
icantly larger than the sample width, w? We see [Fig. 3(c)]
that the shape of the crack front is significantly affected by
the free surfaces, which seem to induce crack front curvature.
Figure S2 [25] shows that the simple crack profiles superim-
pose, when scaled by w, for the thin gel samples that we have
used for this study.

When a step appears, lxz < ls because the cusp created
by a typical step will tend to flatten the crack front over a
spatial extent (in z) of δz ∼ 200−300 μm [18]. As δz is on
the order of w, it is not surprising that both lxz < ls and that
the entire front shape near the time of step “reflection” is
influenced by step dynamics (for the nearly quasistatic val-
ues of v 	 cR in this regime). What is surprising is that lxz

grows, from reflection to reflection [Figs. 3(d) and 4(b)]. It
is this growth that enables the transition [Fig. 4(c)] to simple
cracks.

When w becomes much larger, it is not clear that the simple
crack profile scaling shown in Fig. S2 will continue to hold.
It is, however, reasonable that a single step will have a much
smaller influence over the entire crack front, when δz 	 w.
In these cases, we might expect reflections to be rare at a free
surface. Empirically, this seems to be true [33].

The constantly varying crack front profiles that are revealed
in our measurements indicate that the concept of energy

balance must be extended to include crack front shapes and
dynamics, as suggested by Eq. (1). This is true not only for
stepped cracks, where explicit h-dependent contributions to
l (t ) must be accounted for, but even for “simple” cracks since
their curvature in the xz plane is nontrivial [as Figs. 1(c)
and 3(c) show]. So long as measurements of G are performed
at sufficient distances from the crack plane(s), however, the
effective 2D approach inherent in the use of the J-integral is
still valid [see Figs. 3(b) and S3].

In conclusion, we have found two explicit conditions for a
transition from stepped to simple crack to occur: (1) one needs
to momentarily break the topological constraint that enforces
a step, and (2) the in-plane front length must be at least as
long as that of a simple crack. Energy balance is therefore a
necessary, but not a sufficient condition for a simple crack to
propagate. Below the minimum vs in Fig. 4(d), G is sufficient
to enable propagation of simple crack, but the stepped crack
dynamics prefer to cause a crack to arrest [25], instead of al-
lowing the transition to simple cracks to occur. Hence, we see
that 3D fracture dynamics require more complex conditions
than the “simple” condition of energy balance that governs
“2D” crack dynamics.

When considering step dynamics and structure, crack in-
ertia should be irrelevant as v 	 cR. We have, however,
demonstrated that 3D structure and dynamics of these cracks
is still quite complex. Understanding these intriguing ques-
tions poses numerous nontrivial theoretical challenges, and
suggests that “simple” extensions to 2D fracture mechanics
may not be sufficient.
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