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Coordinating directional switches of multiagent systems with delayed and nonlinear interactions
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Coordinating directional switches can appear in moving biological groups. Previous studies have demon-
strated that the self-driven particle model can effectively describe the directional switching behaviors, but they
rarely considered the effect of time delay and nonlinear interactions. Additionally, research on directional
switching behavior in multiagent systems is relative few. Therefore we investigate the influence of delayed
and nonlinear interactions on the directional switching movement of multiagent systems, in which response
delay and transmission delay are considered. Our analysis yields the theoretical mean switching time of the
movement direction, revealing that delayed and nonlinear interactions have a significant impact on the directional
switches. Specifically, increasing transmission delay can suppress the directional switches when the response
delay is greater than or equal to the transmission delay, and increasing transmission delay may promote the
directional switching behaviors for large response delay when the response delay is less than the transmission
delay. Furthermore, increasing nonlinearity in interactions may first suppress directional switching behaviors and
then promote the directional switches. Our results offer valuable insights for developing bioinspired multiagent
devices.
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I. INTRODUCTION

The coherence of collective motion in many interact-
ing particles or swarming systems is universally present in
nature, such as foraging ants [1], swarming locusts [2–4],
schooling fish [5,6] or prawns [7], and flocking birds [8–10].
These phenomena have attracted the attention of researchers
[11–16]. Many theoretical and empirical studies have emerged
to explore the underlying rationale that leads to collective
behaviors [1,15,17–19]. Vicsek et al. [19] proposed a pro-
pelled particle (SPP) model to study the directional switching
phenomenon of collective movement groups, where each in-
dividual is considered as a particle, and the moving velocity
of each particle is determined by the average velocity of the
particles in its local neighborhood. Previous studies generally
considered the effects of group density, intrinsic noise, master-
slave relationship and other factors on directional switches
[15,20–22]. Miguel et al. considered a variant of the standard
Vicsek model [15] in which the interaction is given by an
experience-driven scale-free network and discussed the im-
pact of network heterogeneity on the consistency of model
states under different group densities. The model can be re-
garded as a generalization of Vicsek’s model [21], where each
bird modifies its flight direction according to the weighted
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average of its neighbor direction, and the entropy maximiza-
tion equation is used to obtain the values of noise amplitude
and the interaction matrix. Ling et al. introduced an improved
Vicsek model [22] and discussed the effects of group size and
noise on particle trajectories and group order.

Many models in previous studies mainly explored the con-
ditions that most of the collective animals are moving at
the almost same speed. And a common phenomenon in the
biological groups is that collective animals suddenly change
their directions. Buhl et al. studied the directional switching
behaviors of locust larvae and showed that group density is the
major factor affecting the change in direction of locust groups
[2]. Yates et al. obtained that increasing the intensity of noise
can promote the ordered directional switches of locust groups
[4]. Attanasi et al. analyzed the law of information transmis-
sion when the flock turned and found that the deviation of
some individuals from the average movement direction of the
flock is the main reason that caused the directional switches
of the flock [23].

As we know, the cooperative control of multiagent systems
is widely used in many military and civil fields, such as UAV
control [24–26], intelligent transportation [27,28], swarm con-
trol [29–31], and so on. The research on multiagent systems
focuses on the consensus problem [32–36], the convergence
property [37–39], the swarming behavior [40], etc. Gu and
Jiang studied the controllability of leader-follower multiagent
systems [41], proposing several easy-to-use controllability
criteria for multiagent systems. Koh and Sipahi considered
the multiagent consensus dynamics with delay to analyze the
relation between the self-regulation phenomenon and delayed
interaction [42]. If each individual in a group is regarded as
an agent, the entire group can be regarded as a multiagent
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system. Then directional switching behavior can also exist
in multiagent systems such as robot formation. However, the
directional switching behaviors of multiagent systems is less
mentioned. Accordingly, it is very significant to study the
directional switching behaviors of multiagent systems.

Large-scale moving groups will inevitably be affected by
time delay [3,43–46]. Sun et al. investigated a self-propelled
particle model with delayed interactions [3], showing that the
mean switching time is an increasing function of time delay.
The influence of response and transmission delays on the
directional switches of locusts was discussed numerically and
analytically [46], wherein the time required for an agent to
receive information and adjust its status is the response delay.
And the transmission delay is time that the agent receives
information, regardless of the time of processing informa-
tion. The above studies showed that time delay has important
effects on directional switching behavior of groups. In addi-
tion, previous studies often considered the linear interactions
[3,46], ignoring the nonlinearity in interactions [9,47]. Chen
et al. proposed a piecewise function to depict nonlinear in-
teraction [9] which was found by using the sparse Bayesian
learning method and concluded that the strength of nonlinear
interactions can affect the average switching frequency of
motion direction.

Based on the above, a self-driven particle model with de-
layed and nonlinear interactions is considered in this paper, in
which response delay and transmission delay are considered,
respectively. We compute the mean switching time (MST) of
mobile agents. The MST is denoted to describe the directional
switching behaviors of moving groups, and the larger the
MST, the directional switches are less likely to occur. Through
numerical and theoretical analysis, we show that MST reduces
with the increase of response delay, i.e., increasing response
delay can promote the directional switching behavior of mul-
tiagent systems. Contrary to the response delay, the increase
of transmission delay can increase the mean switching time,
i.e., suppress the directional switches of multiagent systems.
However, the effects of response and transmission delays will
change in the system where both the delays coexist. The
MST increases with the increase of group size, first increases
and then decreases with the increase of nonlinear interaction,
regardless of response delay or transmission delay.

This paper is arranged as follows. In Sec. II we introduce a
model with response delay and nonlinear interactions, derive
the probability density function and MST, and illustrate the
effects of response delay and nonlinear interactions for multi-
agent systems. In Sec. III we consider the transmission delay
in the model, obtain the probability density function and MST,
and analyze the influence of transmission delay on MST. In
Sec. IV we study the model with both response and trans-
mission delays, and analyze the impact of two time delays on
MST. In Sec. V we end this paper with some discussions.

II. MST FOR MULTIAGENT SYSTEMS
WITH RESPONSE DELAY

In this part, we consider a multiagent system with N agents.
Since each agent only has limited perceptual induction, its
motion is only affected by the agents in its local neighbor-
hood. Thus it is supposed that the neighborhood of the ith

agent is a circle with the ith agent as the center and a certain
distance r as the radius. When the radius of the circle is limited
in the interval � = [0, 1), we can represent the neighborhood
of the ith agent by Ni,r (t ) = { j ∈ {1, 2, . . . , N}| min(di j, 1 −
di j ) � r}, where di j = |Xi − Xj |. The state and velocity of
each agent are denoted by Xi ≡ Xi(t ) ∈ � and Vi ≡ Vi(t ) for
i = 1, . . . , N , respectively. Considering the case that agents
need time to receive and process information, we introduce
a Vicsek model with response delay and analyze its impact
on MST. Therefore the motion of the multiagent system with
response delay and nonlinear interactions can be described by
the following system:

dXi = Vidt,
(1)

dVi = [
F

(
V local

i (t − τ )
) − Vi(t − τ )

]
dt + ηdWi(t ),

where i = 1, . . . , N , η > 0 is the noise strength, dWi are the
standard white noise (independently sampled for each in-
dividual), and V local

i (t ) = (1/|Ni,r (t )|) ∑
j∈Ni,r (t ) Vj (t ) is the

average velocity at time t of the agents within the local
neighborhood of the ith agent. τ stands for response delay,
including the time for the agent to receive information and
adjust the state. Then the ith agent in model (1) updates its
velocity at time t according to the velocity information of its
neighbor agents at time t − τ . The nonlinear interactions are
expressed by the following function [9]:

F (x) =
{

wαx + (1 − wα )sgn(x), |x| > α,

0, |x| � α,
(2)

where wα = 1/(1 + α), and α ∈ [0, 1] is an adjustable param-
eter defining the relative weight in a decision-making manner
that agents take the tradeoff between their motion direction
and the consistency to their neighbors. It is noted that F
vanishes in between [−α, α]. In order to explore the influence
of response delay and nonlinear interactions on the directional
switching behaviors, we ignore the spatial position and only
consider the velocity of agent Vi(t ). Here we suppose all the
agents interact with each other. We define S(t ) as the average
speed of all agents and have S(t ) ≡ V local

i (t ) for arbitrary i.
Then we have

dVi = [F (S(t − τ )) − Vi(t − τ )]dt + ηdWi(t ). (3)

After taking the average of all equations for i = 1, . . . , N , we
can get

dS = [F (S(t − τ )) − S(t − τ )]dt + η√
N

dW (t ). (4)

We first analyze the dynamics of a noise-free time-delay
system. We use the Lyapunov exponent to investigate if the
delayed multiagent system is undergoing a chaotic behav-
ior [48–52]. And the Lyapunov exponent of the system is
calculated by the method proposed by Benettin et al. [53].
Figure 1(a) displays the Lyapunov exponent of response delay
system without noise, and it can be seen that the Lyapunov
exponent is less than 0 for τ < 6.9 and greater than 0 for
τ � 6.9. That is, the response delay system exists in chaos
for τ � 6.9. Figures 1(b) and 1(c) show the time series of
the system for τ = 6.8 and τ = 7. The system shows a stable
stationary state for τ = 6.8, as shown in Fig. 1(b). However,
the system shows chaotic behavior for τ = 7, as shown in
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FIG. 1. (a) The Lyapunov exponent of the system (4) without
noise as a function of the response delay τ . (b) The time series of
the system (4) without noise with τ = 6.8. (c) The time series of the
system (4) without noise with τ = 7.

Fig. 1(c). And we can observe the directional switching be-
havior in Fig. 1(c).

We then analyze the response delay system with noise. To
obtain the MST, our analysis is divided into the following
three steps. Firstly, the potential function is calculated. Sec-
ondly, the analytical expression of Pst is obtained. Thirdly,
the theoretical result of MST is obtained by parametrizing the
time delay.

Assume P(s, t ) is the probability density of the stochas-
tic process denoted by Eq. (4). The probability of the
global velocity average S(t ) ∈ [s, s + ds) can be expressed
by P(s, t )ds. And the P(s, t ) satisfies the following delayed
Fokker-Planck equation [54]:

∂

∂t
P(s, t ) = − ∂

∂s

∫
R

[F(sτ ) − sτ ]P(s, t ; sτ , t − τ )dsτ

+ η2

2N

∫
R

∂2

∂s2
P(s, t ; sτ , t − τ )dsτ , (5)

where sτ = s(t − τ ), and P(s, t ; sτ , t − τ ) is the joint prob-
ability density of S(t ). Let Pst (s) = limt→∞Pst (s, t ) be the
stationary probability distribution (SPD) of S(t ), and by using
the small delay approximation method [54], the first-order
approximation of Pst (s) can be obtained as follows:

Pst (s) = AN

η2
exp ( − φ(s)), (6)

where A is a normalized constant satisfying
∫ ∞
−∞ Pst (s)ds = 1,

and φ(s) is the potential. To get the theoretical expression of
Pst , we first calculate the potential function φ(s) defined as
φ(s) = −2NVeff (s)/η2, where the Veff is

Veff (s) =
√

N

2πη2τ

∫ s

0
ds′

∫ ∞

−∞
dsτ [F(sτ ) − sτ ]

× exp

(
− [sτ − s′ − (F(s′) − s′)τ ]2

2η2τ/N

)
.

Since the F is a piecewise function, we consider the following
two cases. Firstly, when |s| � α we have

Veff (s) =
√

N

2πη2τ

∫ s

0
heff (s′)ds′, (7)

with heff (s′) = ∫ ∞
−∞(−sτ ) exp(− [sτ −s′−(−s′ )τ ]2

2η2τ/N )dsτ . With fur-
ther calculation we get

heff (s′) =
∫ ∞

−∞
(−sτ ) exp

(
− (sτ − s′ + s′τ )2

2η2τ/N

)
dsτ

=
∫ ∞

−∞
−μ exp

(
− μ2

2η2τ/N

)
dμ

− ψ (s′)
∫ ∞

−∞
exp

(
− μ2

2η2τ/N

)
dμ

= −ψ (s′)
∫ ∞

−∞
exp

(
− μ2

2η2τ/N

)
dμ

= −ψ (s′)
√

2η2τ/N
∫ ∞

−∞
exp(−υ2)dυ

= −ψ (s′)
√

2πη2τ/N, (8)

where ψ (s′) = (1 − τ )s′, μ = sτ − ψ (s′), υ = μ√
2η2τ/N

, and∫ ∞
−∞ exp(−υ2)dυ = √

π . Therefore we obtain that

Veff (s) =
√

N

2πη2τ

√
2πη2τ

N

∫ s

0
−ψ (s′)ds′

= − (1 − τ )

2
s2

(9)

and

φ(s) = N

η2
(1 − τ )s2. (10)

Secondly, we analyze the case of |s| > α and have

Veff (s) =
√

N

2πη2τ

∫ α

0
ds′

∫ ∞

−∞
dsτ (−sτ )

× exp

(
− (sτ − s′ + s′τ )2

2η2τ/N

)

+
√

N

2πη2τ

∫ s

α

ds′
∫ ∞

−∞
dsτ [F(sτ ) − sτ ]

× exp

(
− [sτ − s′ − (F(s′) − s′)τ ]2

2η2τ/N

)

� V 1
eff + V 2

eff . (11)

For V 1
eff , using the previous case analogically, we can get

V 1
eff = − (1 − τ )

2
α2. (12)

For V 2
eff we denote

V 2
eff (s) =

√
N

2πη2τ

∫ s

α

h′
effds′, (13)

where

h′
eff (s′) =

∫ ∞

−∞
[F(sτ ) − sτ ]

× exp

(
− [sτ − s′ − (F(s′) − s′)τ ]2

2η2τ/N

)
dsτ . (14)
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Then we calculate

h′
eff (s′) =

∫ ∞

−∞
[wαsτ + (1 − wα )sgn(sτ ) − sτ ]

× exp

(
− [sτ−s′−(wαs′+(1−wα )sgn(s′)−s′)τ ]2

2η2τ/N

)
dsτ

= −
∫ ∞

−∞
(1 − wα )sτ exp

(
− [sτ − ψ (s′)]2

2η2τ/N

)
dsτ

+
∫ ∞

−∞
(1 − wα )sgn(sτ ) exp

(
− [sτ − ψ (s′)]2

2η2τ/N

)
dsτ

� I1 + I2, (15)

where ψ (s′) = (1 − τ + wατ )s′ + τ (1 − wα )sgn(s′). Using
μ = sτ − ψ (s′) and υ = μ√

2η2τ/N
, we have

I1 = −
∫ ∞

−∞
(1 − wα )sτ exp

(
− [sτ − ψ (s′)]2

2η2τ/N

)
dsτ

= −
∫ ∞

−∞
(1 − wα )sτ exp

(
− μ2

2η2τ/N

)
dsτ

= −(1 − wα )ψ (s′)
∫ ∞

−∞
exp

(
− μ2

2η2τ/N

)
dsτ

= −(1 − wα )ψ (s′)
√

2πη2τ/N . (16)

For I2 we can simplify that

I2 = (1 − wα )
∫ ∞

−∞
sgn(sτ ) exp

(
− [sτ − ψ (s′)]2

2η2τ/N

)
dsτ

= −(1 − wα )
∫ 0

−∞
exp

(
− [sτ − ψ (s′)]2

2η2τ/N

)
dsτ

+ (1 − wα )
∫ ∞

0
exp

(
− [sτ − ψ (s′)]2

2η2τ/N

)
dsτ

� I3 + I4. (17)

Then we obtain

I3 = −(1 − wα )
∫ −ψ (s′ )

−∞
exp

(
− μ2

2η2τ/N

)
dμ

= −(1 − wα )
√

2η2τ/N
∫ −ψ (s′ )√

2η2τ/N

−∞
exp(−υ2)dυ

= −(1 − wα )
√

2η2τ/N

[ ∫ 0

−∞
exp(−υ2)dυ

+
∫ −ψ (s′ )√

2η2τ/N

0
exp(−υ2)dυ

]
,

and

I4 = (1 − wα )
∫ ∞

−ψ (s′ )
exp

(
− μ2

2η2τ/N

)
dμ

= (1 − wα )
√

2η2τ/N
∫ ∞

−ψ (s′ )√
2η2τ/N

exp(−υ2)dυ

= (1 − wα )
√

2η2τ/N

[ ∫ 0

−ψ (s′ )√
2η2τ/N

exp(−υ2)dυ

+
∫ ∞

0
exp(−υ2)dυ

]
.

Thus we have

I3 + I4 = −(1 − wα )
√

2η2τ/N

[ ∫ −ψ (s′ )√
2η2τ/N

0
exp(−υ2)dυ

−
∫ 0

−ψ (s′ )√
2η2τ/N

exp(−υ2)dυ

]

= (1 − wα )
√

2η2τ/N

[ ∫ ψ (s′ )√
2η2τ/N

0
exp(−ω2)dω

+
∫ 0

−ψ (s′ )√
2η2τ/N

exp(−υ2)dυ

]

= (1 − wα )
√

2η2τ/N
∫ ψ (s′ )√

2η2τ/N

−ψ (s′ )√
2η2τ/N

exp(−υ2)dυ

= 2(1 − wα )
√

2η2τ/N
∫ ψ (s′ )√

2η2τ/N

0
exp(−υ2)dυ

= (1 − wα )
√

2πη2τ/Nerf (
ψ (s′)√
2η2τ/N

), (18)

where ω = −υ, erf (s) = 2√
π

∫ s
0 e−t2

dt . Therefore we obtain
from Eqs. (15)–(18) that

h′
eff (s′) = (1 − wα )

√
2πη2τ/N

[
erf (

ψ (s′)√
2η2τ/N

− ψ (s′)
]

= (1 − wα )
√

2πη2τ/N

[
erf (

ψ (s′)√
2η2τ/N

− (1 − τ + wατ )s′ − τ (1 − wα )sgn(s′)
]
, (19)

and

V 2
eff (s) =

√
N

2πη2τ

∫ s

α

(1 − wα )
√

2πη2τ/N

[
erf (

ψ (s′)√
2η2τ/N

)

− (1 − τ + wατ )s′ − τ (1 − wα )sgn(s′)
]

ds′.

Under conditions N � 1 and 0 � τ < 1, we can use the
asymptotic expansion of the erf function,∫ s

0
erf (

ψ (s′)√
2η2τ/N

)ds′ ≈ |s|,

and

V 2
eff (s) ≈ −(1 − wα )(1 − τ + wατ )

(
s2

2
− |s|

)

+ (1 − wα )(1 − τ + wατ )

(
α2

2
− α

)
. (20)
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According to Eqs. (12) and (20), we can get

Veff (s) = − (1 − τ )

2
α2 − (1 − wα )(1 − τ + wατ )

(
s2

2
− |s|

)

+ (1 − wα )(1 − τ + wατ )

(
α2

2
− α

)
, (21)

and we have

φ(s) = N

η2
(1 − wα )(1 − τ + wατ )(s2 − 2|s|)

− N

η2
[wα (2τ − 1 − wατ )α2

− 2(1 − wα )(1 − τ + wατ )α]. (22)

As a result, the stationary probability Pst (s) is summarized as

Pst (s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

AN

η2
e[−N (1−τ )s2/η2], |s| � α,

A′N
η2

e[−N (1−wα )(1−τ+wατ )(s2−2|s|)/η2], |s| > α,

(23)

where A′ = LA, L = exp( N
η2 [wα (2τ − 1 − wατ )α2 − 2(1 −

wα )(1 − τ + wατ )α]).
Then, in order to get MST (T (s)) of Eq. (4), we calculate

the mean first passage time, which represents the mean time
cost for a particle jumping from one well of the effective
potential to the other. Assume s = −1 at t = 0, and T (s) is
the first time that the agents escape from the interval (−∞, 0].
For |s| > α we introduce the nondelay model for obtaining the
MST:

ds = [F (s) − s]dt +
√

2ετ dW (t ), (24)

where ετ = η2/[2N (1 − wα )(1 − τ + wατ )], 0 � τ < 1. It
can be seen that Eqs. (4) and (24) have almost the same MST,
because they own roughly the same SPD of the effective aver-
age velocity. The T (s) satisfies the following equation [55]:

(F (s) − s)T ′(s) + ετ T ′′(s) = −1, (25)

with the boundary conditions T (0) = 0 and limT ′(s) = 0, and
yields

T (s) 
 2N

η2

∫ 0

−1

1

Pst (s)
ds

∫ s

−∞
Pst (ζ )dζ . (26)

When s → 0, we approximate the probability density func-
tion [9] as P(s) 
 AN

η2 e[−N (1−τ )s2/η2]. And when s → −1,
we approximate the probability density function as P(s) 

A′N
η2 e[−N (1−wα )(1−τ+wατ )(s2+2s)/η2]. Thus, we get the following:

T 
 2N

η2

∫ 0

−1

1

Pst (s)
ds

∫ 0

−∞
Pst (ζ )dζ


 2NA′

Aη2

∫ 0

−1
exp(

N (1 − τ )

η2
s2)ds

∫ 0

−∞

× exp

[
−N (1 − wα )(1 − τ + wατ )

η2
(ζ 2 + 2ζ )

]
dζ .

(27)

In the process of calculating the above two integrals, we need
to use the following two functions:

erf (x) = 2√
π

∫ x

0
e−t2

dt, erfi(x) = 2√
π

∫ x

0
et2

dt .

For the first integral, we have∫ 0

−1
exp(

N (1 − τ )

η2
s2)ds

=
√

η2

N (1 − τ )

∫ 0

−
√

N (1−τ )
η2

exp(t2)dt

= η

2

√
π

N (1 − τ )
erfi

(√
N (1 − τ )

η2

)
. (28)

For the second integral, we obtain∫ 0

−∞
exp[−N (1 − wα )(1 − τ + wατ )

η2
(ζ 2 + 2ζ )]dζ

=
∫ 0

−∞
exp[−p(ζ 2 + 2ζ )]dζ

= ep
∫ 1

−∞
exp[−p(ζ + 1)2]d(ζ + 1)

= ep

√
p

∫ √
p

−∞
exp(−q2)dq

= ep

√
p

[ ∫ 0

−∞
exp(−q2)dq +

∫ √
p

0
exp(−q2)dq

]

= ep

2

√
π

p
[1 + erf (

√
p)], (29)

where p = N (1−wα )(1−τ+wατ )
η2 , q = √

p(ζ + 1). Hence, we get

T 

√

π2

4(1 − wα )(1 − τ )(1 − τ + wατ )

×
[

1 + erf

(√
N (1 − wα )(1 − τ + wατ )

η

)]

×erfi

(√
N (1 − τ )

η

)
exp

(
N (1 − wα )(1 − τ + wατ )

η2

)
L.

(30)

Through the above analysis, we obtain the theoretical results
of the first-order approximation Pst and MST, and then theo-
retically and numerically analyze the effects of group density,
response delay, and nonlinear interactions on the directional
switching behavior of multiagent systems.

The influence of group size and response delay on direc-
tional switches is shown in Fig. 2. Figures 2(a)–2(c) show the
numerical results of the average speed S obtained using the
standard Euler-Maruyama numerical scheme [56] for different
group densities N = 10, N = 20, and N = 30. It can be seen
that the average velocity switches from S < 0 to S > 0, or
from S > 0 to S < 0, which can be regarded as a directional
switch, representing a phase transition. It can be seen that the
directional switching behaviors are more likely to occur in
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FIG. 2. (a)–(c) The time series of the average speed S obtained from the simulation of system (1) for different group densities N = 10,
N = 20, and N = 30, τ = 0.1, and R = 0.35. (d) The MST as a function of group size N for three different values of response delay τ . (e) The
MST as a function of response delay τ for different values of group size N . The other parameters are set as α = 0.3, η = 0.9. And the results
in (d), (e) are the theoretical estimations obtained from Eq. (30).

multiagent system with low group density. Figure 2(d) shows
the influence of group density on MST for different response
delay. It can be seen that MST is a monotonically increasing
function of N . The larger the N , the larger the MST, that
is, the agents in multiagent systems are easier to maintain
a consistent direction of motion. For any fixed N , it can be
read that the larger the response delay, the smaller the MST.
That is to say, increasing the response delay can inhibit the
direction switching behaviors of multiagent systems. In order
to illustrate the effect of response delay on MST more clearly,
MST is viewed as a function of response delay for different N
in Fig. 2(e). And we see that MST decreases with the increase
of response delay. Therefore the larger the response delay,
the multiagent system has a higher frequency of direction
switches. Comparing Figs. 2(a)–2(c) and Figs. 2(d) and 2(e),
it can be seen that the numerical results obtained from Eq. (1)
and the theoretical results derived from Eq. (30) have the same
conclusion, that is, the larger the group density, the larger the
MST.

Then we compare the analytical result derived from
Eq. (30) with the result obtained from stochastic simulation
based on Eq. (1). Figure 3 illustrates the relationship between
the MST and group density N , for τ = 0.4. The numerical
results of MST can be obtained by performing long-term
stochastic simulations for the original system and counting
the number of directional switches. It can be observed that
the MST increases as the group density N increases. The
theoretical estimation agrees well with the simulation result,
particularly for larger values of N , indicating a high consensus
between the two approaches.

We further consider the impact of group density on
directional switches of multiagent systems from another per-
spective. Figure 4(a) shows the first-order approximation Pst

with different values of group density, where the different
lines are the theoretical results and the different symbols are
the simulation results obtained using the Monte Carlo method.
It can be seen that Pst (s) has two global maxima at s = ±1
and a small peak, and the reason why there are peaks in the
middle of the figures is that the probability density function is
piecewise. When the average velocity is closer to the maxima
(the values of Pst (s) at s = ±1), the probability that the system

FIG. 3. MST as a function of the group density. The theoretical
estimation obtained using Eq. (30) (solid line, diamonds), and the
simulation result obtained using simulations of system (1) (dotted
line, circles). The parameters are set as α = 0.68, τ = 0.4, η = 2,
and R = 0.35.
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FIG. 4. (a) The Pst obtained using Eq. (23) (lines in different
types) vs the Pst obtained using the stochastic simulations of sys-
tem (1) (symbols in different types). Pst as a function of average
velocity S for different group density N = 10 (dotted line, triangles),
N = 20 (dashed line, circles), and N = 50 (solid line, diamonds),
respectively. The parameters are set as τ = 0.5, R = 0.5, η = 0.9,
and α = 0.3. (b) A schematic diagram of the potential function.

keeps the same direction is greater, implying MST is greater.
And Fig. 4(a) displays that when |S| > 0.3, the larger group
density, it is easier for agents in multiagent systems to remain
in the same well, i.e., the directional switch frequency of the
system is decreased. The results are coincident with Figs. 2
and 3. Moreover, the analysis results match well with the
numerical results of the original system. Then Fig. 4(b) shows
a schematic diagram of the potential function. The change of
parameters can lead to the switch of the ball from one potential
well to another, which can be regarded as a phase transition,
and the time required for the switch can be defined as the
transition time. We use the MST to characterize the frequency
of directional switching behavior. The larger the MST, the

FIG. 6. The stationary distribution of Eq. (23) (solid red line) is
compared with the histogram of system (1). The parameter values are
N = 15, η = 0.9, α = 0.25, τ = 0.2, R = 0.5.

smaller the frequency of directional switches, i.e., the smaller
the frequency of the phase transition.

We explore the effect of nonlinear interactions on MST.
Figure 5(a) shows the MST as a function of the nonlinear
interactions index α for three different values of response
delay. It shows that when α < 0.15, the larger the α, the
bigger the MST, and when α > 0.15, the MST decreases
with the increase of α. More specifically, when α < 0.15,
the stronger the nonlinear interactions, the more difficult it is
for individuals in the multiagent system to deviate from the
average movement direction of all agents. When α > 0.15,
the direction switching behaviors of the multiagent system
may occur more frequently. Additionally, Fig. 5(b) shows the
effect of response delay τ on MST for different α. We see
that the larger the τ , the smaller the MST. The result agrees
with Fig. 2. And when α > 0.15, for fixed τ , the larger the
α, the smaller the MST, i.e., increasing the nonlinearity in in-
teractions can increase the number of directional switches. In
Fig. 6 we compare the theoretical probability density function
Eq. (23) with the time series of the average velocity S from
Eq. (1). As seen in Fig. 6, the effect of pairing between the the-
oretical results and the numerical results of the original system
is good, indicating that, above all, the nonlinear interactions

FIG. 5. (a) MST as a function of nonlinearity index α for three different values of response delay τ . (b) MST as a function of response
delay τ for different values of nonlinearity index α. The other parameters are set as η = 0.9, N = 15. The results are the theoretical estimations
obtained from Eq. (30).
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FIG. 7. (a) MST as a function of group size N for three different values of transmission delay ω, α = 0.3 and η = 0.9 are fixed. (b) The
MST as a function of transmission delay ω for different group size N , α = 0.3 and η = 0.9 are fixed. (c) MST as a function of nonlinearity
index α for three different values of transmission delay ω, N = 15 and η = 0.9 are fixed. The results are the theoretical estimations obtained
from Eq. (36).

have an important influence on the directional switches of
multiagent systems.

III. MST FOR MULTIAGENT SYSTEMS
WITH TRANSMISSION DELAY

The transmission delay also exists in the communication of
multiagent systems and represents the time which a moving
agent receives the velocity information from its local neigh-
bors. Thus we take the transmission delay into account in the
following model:

dVi = [
F

(
V local

i (t − ω)
) − Vi(t )

]
dt + ηdWi(t ), (31)

in which F (x) is same as the last part, and ω > 0 is the
transmission delay. It is noted that the delay does not include
the time for the agent to adjust its state. Consequently, the
velocity at time t of the ith agent is determined by its own
velocity at time t and the mean velocity of its neighbors at
time t − ω. Similarly, the average speed S(t ) of all the agents
satisfies the equation

dS = [F (S(t − ω)) − S(t )]dt + η√
N

dW (t ). (32)

Then P(s, t ), the probability density function of the global
average velocity S, satisfies the following delayed Fokker-
Planck equation:

∂

∂t
P(s, t ) = − ∂

∂s

∫
R

[F(sω ) − s]P(s, t ; sω, t − ω)dsω

+ η2

2N

∫
R

∂2

∂s2
P(s, t ; sω, t − ω)dsω. (33)

We use the small delay approximation method [54] to obtain
the first-order approximation of the SPD as

P∗
st (s) = DN

η2
exp[−φ(s)], (34)

where D is a normalized constant, and the potential φ(s) is

φ(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ns2

η2
, |s| � α,

N

η2
[(1 − wα )(1 + wαw)(s2 − 2|s|) + wα (1 − w

+ wαw)α2 + 2(1 − wα )(1 + wαw)α], |s| > α.

(35)

And the MST of the multiagent system with transmission
delay is approximated as [55]

T (N, ω) 
 2N

η2

∫ 0

−1

1

P∗
st (s)

ds
∫ s

−∞
P∗

st (ζ )dζ


 2NG′

η2

∫ 0

−1
exp(φ(s))

∫ s

−∞
exp( − φ(ζ ))dsdζ



√

π2

4(1 − wα )(1 + wαω)

×
[

1 + erf

(√
N (1 − wα )(1 + wαω)

η

)]

× erfi

(√
N

η

)
exp

(
N (1 − wα )(1 + wαω)

η2

)
G′,

(36)

where G′ = exp(−N[wα (1 − ω + wαω)α2 + 2(1 − wα )(1 +
wαω)α]/η2). Through the above analysis, we can explain the
impact of group density, transmission delay, and nonlinear
interactions on MST.

Figure 7(a) shows the MST as a function of group density
for different values of transmission delay. It can be seen that
the MST is a monotonically increasing function of N . Specif-
ically, the larger the group density, the lower the frequency of
directional switches of multiagent systems. And for any fixed
N , increasing transmission delay can increase MST. Further,
Fig. 7(b) displays the MST as a function of transmission delay,
and we can get that the larger the transmission delay, the
larger the MST, i.e., the directional switching behaviors of the
multiagent system is gradually decreased with the increase of
transmission delay. To find the impact of nonlinear interac-
tions on MST, we analyze the connection between MST and
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FIG. 8. MST as a function of group density. The theoretical
estimation obtained using Eq. (36) (solid line, diamonds), and the
simulation result obtained using the simulations of system (31) (dot-
ted line, circles). The parameters are set as α = 0.668, ω = 0.3,
η = 2, and R = 0.35.

nonlinear interactions in Fig. 7(c). Figure 7(c) plots the MST
as a function of the nonlinear interactions index α for different
values of transmission delay. It can be observed that the MST
increases with the increase of nonlinearity interactions index
α in the case of α < 0.15 and decreases with the increase of
nonlinearity index α in the situation of α > 0.15, and these
results are consistent with Fig. 5(a).

We compare the analytical result derived from Eq. (36)
with the numerical result obtained using Eq. (31). Figure 8
illustrates the relationship between the MST and group den-
sity N for ω = 0.1. The numerical results of MST can be
obtained by performing long-term stochastic simulations for
the original system and counting the number of directional
switches. As the group density N increases, the MST is also
increases. The simulation result aligns closely with the theo-
retical estimation, especially for larger values of N .

Next we explain the influence of transmission delay on
directional switches of the multiagent system from the aspect
of probability density function. Figure 9 plots the first-order
approximation P∗

st with different values of group density and
transmission delay, where the theoretical results obtained
from Eq. (34) are drawn as the different lines, and the sim-
ulation results of Eq. (31) are plotted as the different symbols.
It can be seen that P∗

st (s) has two global maxima at s = ±1,
and the probability density function of |S| < α is displayed
by the peaks in the middle of Fig. 9. Figure 9(a) shows that
when |S| > 0.3, the larger the group density, the longer the
time for the agents in the multiagent system to maintain a
unified direction of motion. As shown in Fig. 9(b), the direc-
tional switching behaviors can be more likely to happen in a
small ω. Therefore, we conclude that transmission delay has
great significance on the directional switching behaviors of
the multiagent system. And the theoretical results are in good
agreement with the numerical results of the original system.

IV. MULTIAGENT SYSTEMS WITH BOTH RESPONSE
AND TRANSMISSION DELAYS

In this section we discuss the influence of response and
transmission delays on MST. Then we can take the transmis-
sion delay into the system (3), and the model is as follows:

dVi = [F (S(t − τ ) − ω) − Vi(t − τ )]dt + ηdWi(t ), (37)

where the parameters are same as the system (3), and ω > 0 is
transmission delay. Figure 10 shows the impact of delays on
the MST, and we set ω = θτ with θ = 0.5 (τ > ω), 1 (τ =
ω), 1.5, and 2 (τ < ω). Figures 10(a) and 10(b) display the
effect of two time delays on the MST for N = 20 and N = 30,
respectively. We can see that for τ � ω, with the increase of
ω, the MST increases, which means that it can suppress the
directional switches. For τ < ω, the MST shows an increas-
ing trend with the increase of ω for small response delay τ ,

FIG. 9. P∗
st obtained using Eq. (34) (lines in different types) vs P∗

st obtained using the stochastic simulations of system (31) (symbols in
different types). (a) P∗

st as a function of average velocity S for different group density N = 10 (dotted line, triangles), N = 20 (dashed line,
circles), and N = 30 (solid line, diamonds), respectively, transmission delay ω = 0.5. (b) P∗

st as a function of average velocity S for different
delays ω = 0.1 (dotted line, triangles), ω = 0.3 (dashed line, circles), and ω = 0.5 (solid line, diamonds), respectively, group size N = 10.
The other parameters are set as R = 0.5, α = 0.3, and η = 0.9.
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FIG. 10. MST as a function of the response delay τ for system (37) with different values of transmission delay ω, which is expressed by
ω = θτ for θ = 0.5, 1, 1.5, 2: (a) N = 20, and (b) N = 30. The other parameters are set as α = 0.3, η = 0.9, and R = 0.5.

which can inhibit the directional switches, while for a larger
response delay τ , the MST decreases with the increase of
ω, which can promote the directional switching behaviors. In
addition, comparing Figs. 10(a) and 10(b), it can be obtained
that the larger the group density, the larger the MST. That
is, the increase of group density can reduce the frequency of
directional switches.

V. CONCLUSION

In this paper we studied the directional switching behaviors
of multiagent systems by a generalized Vicsek model which
incorporates both delayed and nonlinear interactions. The
first-order approximation of SPD is derived using the small
delay approximation method. And the analytical expression
of MST of the delayed system is obtained by constructing
a nondelayed system which has the same SPD with it. The
theoretical and numerical results show that the group density,
nonlinear interaction, and time delays can impact on the di-
rectional switching behaviors of the system. More precisely,
MST increases with the increase of group density, i.e., the
frequency of directional switching behavior decreases with
the increase of group density. And with the increase of the
nonlinear interaction index α, MST first slowly increases and
then monotonically decreases, and it can be concluded that
the nonlinear interactions are significant for the directional
switches of the multiagent system. However, the response
and transmission delays have different effects on MST. In
the system with response delay only, the frequency of di-
rectional switches increases with the increase of delay, while
in the system with transmission delay only, the frequency of
directional switching behavior decreases with the increase of

delay. When the two time delays coexist in the system, we
get the conclusion that increasing the transmission can reduce
the frequency of directional switching behavior for τ � ω.
And when the response delay is large enough, increasing the
transmission delay can promote the directional switches for
τ < ω. Our work demonstrates the role of nonlinear inter-
actions and delays in directional switching behavior, which
has some reference significance for the directional switches
of multiagent systems inspired by biology. In addition, in our
model all agents in the multiagent system are assumed to be
located in a same dimension, without considering the location
diversity of agents. In future research we will consider the
situation that individuals in multiagent systems are located in
different dimensions.

The data and all relevant computer codes that support the
findings of this study are available from the corresponding
author upon reasonable request.
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