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Information compression at the turbulent phase transition in cold-atom gases
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The statistical properties of physical systems in thermal equilibrium are blatantly different from their far-from-
equilibrium counterparts. In the latter, fluctuations often dominate the dynamics and might cluster in ordered
patterns in the form of dissipative coherent structures. Here, we study the transition of a cold atomic cloud, driven
close to a sharp electronic resonance, from a stable to a turbulent phase. From the atomic density distribution—
measured using a spatially resolved pump-probe technique—we have computed the Shannon entropy on two
different basis sets. Information compression, corresponding to a minimum in the Shannon entropy, has been
observed at criticality, where the system fluctuations organize into high-order (low-entropy) patterns. Being
independent of the representation used, this feature is a property shared by a vast class of physical systems
undergoing phase transitions.
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I. INTRODUCTION

The macroscopic properties of physical systems in equi-
librium can be described in terms of free-energy landscapes
[1,2]. Far from equilibrium, spatiotemporal dynamics are
dominated by fluctuations, which get amplified and often
lead to the formation of coherent dissipative structures [2–5].
Some of these phenomena can be described with a formalism
analogous to the one used in equilibrium phase transitions, a
striking example being the analogy of a laser threshold and
a second-order phase transition [6,7]. Moreover, when phase
transitions involve loss of global symmetry, the statistical
properties can often be captured by a single order parame-
ter, as in the case of stable-to-turbulence transitions [8,9]. In
general, however, despite the existence of several theoretical
models, when it comes to phase transitions of nonequilibrium
systems, evidence of universality is still very poor [10].

In recent years, extensions of the methods used in equilib-
rium to far-from-equilibrium scenarios have been proposed by
resorting to information theory [2,5,11,12]. The latter require
a more limited set of assumptions and find applications
in different fields [13]. Information (Shannon) entropy is
a key quantity in the information theoretical analysis of
phase transitions, playing the role of its thermodynamic
counterpart. In a phase transition, the state of a system may be
described by some generic field � ≡ �(r, t ; δ), where δ is the
stress parameter (often, but not always, the thermodynamic
temperature). Given a complete and orthogonal basis for the
space of square-integrable functions, the field can be uniquely
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identified by the projections onto the basis elements. The
link between the thermodynamic and information theories is
provided by the expansion coefficients: these can be viewed
both as the spectral energy content of the system (that is
spread over several physical modes) and, at the same time, as
the probability distribution which encodes the information of
each mode [5,14]. A phase transition can then be interpreted
as a change in the group symmetries of the field when the
stress parameter attains some critical value δc. Typically,
the transition mechanism can be described by a single (or
few) order parameter ψ , which spontaneously breaks the
symmetry at the critical point [15].

In this paper, we report the observation of information
compression in the stable to turbulent phase transition in a
cold-atom cloud, occurring far from equilibrium when the
cooling laser frequency is set near the electronic resonance
[16,17]. Measures have been performed on a cold rubidium
gas by directly probing various statistically independent real-
izations of the atomic density distribution (the field �) whose
statistical properties are controlled by the cooling laser detun-
ing δ. By varying δ, the system goes from a stable-symmetric
(uniform) phase to a turbulent one, where the global symmetry
is lost and quasicoherent structures emerge. At criticality the
system spontaneously organizes, showing both a long-range
local order and the formation of oscillating global patterns.
We compute the Shannon entropy on two different bases
for multiple realizations of the atomic density distribution
and, at the critical point, an entropy minimum—associated
with information compression—is observed. Remarkably, this
minimum is independent of the representation used, which
points out the transition as a state of maximum organization
and emerges as a potentially universal property of a large
class of phase transitions. Our results provide a tool that can
be easily extended to other far-from-equilibrium scenarios
where a more quantitative description is desired, such as in
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FIG. 1. Snapshots of a single realization of the atomic cloud den-
sity distribution in the stable phase (δ = −3.5�) and in the turbulent
phase (δ = −1.5�). The cold-atom cloud in the turbulent regime is
highly inhomogeneous and is characterized by strong spatiotemporal
dynamics which feature the emergence of quasicoherent structures.
The images have been retrieved with the spatially resolved pump-
probe technique described inx Ref. [16].

the study of biological flows [18], spatiotemporal chaos [19],
or growing interfaces [20].

II. TURBULENT PHASE TRANSITION
IN A COLD RUBIDIUM GAS

Experiments have been performed on a magneto-optical
trap (MOT) [21], where around 109 85Rb atoms are cooled
and trapped at approximately 200 µK [22,23]. A spatially
resolved pump-probe diagnostic allows direct access to the
atomic density distribution along a thin section of the atomic
cloud. As a result, the collected images can be safely inter-
preted as two-dimensional (2D) atomic density maps [16].
The experiments have been carried out by keeping the mag-
netic field approximately constant (∇B = 10 G/cm) and the
cooling laser detuning δ ranging from −4� to −0.75� in
steps of 0.25�, with � denoting the transition linewidth. For
each value of δ, a total of 100 measurements have been
performed, effectively probing different system realizations.
Each measurement consists of a loading step, during which
the atomic gas is trapped and cooled until it forms a station-
ary cloud, followed by the MOT unloading, after which the
pump-probe sequence is executed. When the frequency of the
cooling lasers is brought close to resonance, the cold-atom
cloud passes through a sharp transition from a stable, spa-
tially uniform phase to a turbulent phase [16]. Figure 1 shows
the density profiles of the atomic cloud in both phases. The
turbulent regime is characterized by strong spatiotemporal
fluctuations which develop as the cold-atom gas is continu-
ously cooled and trapped in the range δ ∈ [−2�,−0.75�].
Fluctuation power data show the transition effectively taking
place in the interval δ ∈ [−2.25�,−2�]: The resolution on
δ is determined by the laser linewidth, which is of the same
magnitude as the minimum detuning step �δ = 0.25�. The
stable-turbulent transition is marked by an abrupt increase
in the power of density fluctuations and by a peak in the
fluctuation correlation length at the transition onset δ = −2�.
The turbulent dynamics originate from a fluid-dynamic insta-
bility, known as photon-bubble instability [24], which stems
from the strong coupling of the atomic fluid with diffusive

radiation. Photon bubbles leave a clear signature in the atomic
fluctuation density in the form of quasicoherent structures.

III. INFORMATION ENTROPY

Information theory [25] provides the tools to measure the
quantity of information resulting from the observation of an
event. The information content I j [26] is defined in such a way
that unlikely events carry more information and it is computed
as I j ≡ log(1/p j ) = − log(p j ), where p j is the probability of
the jth event,

∑
j p j = 1. The Shannon entropy S is then de-

fined as the average information content per event, S[{pj}] =
−∑

j p j log(p j ). The maximum entropy corresponds to a flat
distribution, in which no outcome is favored: Each obser-
vation produces, on average, a high amount of information.
Hence, by comparing the value of S of the actual probability
distribution to its maximum value attained for a flat distribu-
tion over the same ensemble, we get a quantitative measure
of information compression. Highly compressed ensembles
are characterized by clustered probability distributions which
result in low-entropy values.

In order to interpret critical phenomena, we apply the same
information-theory description to the density field �(r, t ; δ)
by decomposing it onto its basis elements. Independently of
the basis choice, the meaning of low-entropy values is the
same: A low number of highly probable modes dominates
the system dynamics, meaning that less information is needed
to characterize the system, resulting in compression in infor-
mation space. The Shannon entropy defined from the field
expansion onto Fourier modes is called configurational en-
tropy, first introduced in Ref. [27] as a measure for localized
energy configurations. The configurational entropy is defined
in terms of the modal fraction f (k) = P(k)/

∑
k P(k) as

SC = −
∑

k
f (k) log [ f (k)], (1)

where P(k) = ∫
dr e−ik·r〈�̃(r)�̃(0)〉 is the 2D power spec-

trum, �̃(r) = �(r) − 〈�(r)〉 is the 2D atomic density fluctua-
tion, and k = (kx, ky) the wave vector. The symbol 〈·〉 denotes
averaging over all experimental realizations for fixed δ [16].
In the left panel of Fig. 2, we show the power spectra in the
stable and unstable regimes, as well as at the critical point.

Besides a Fourier spectral decomposition, a study per-
formed through a principal component analysis (PCA) offers
a different way to link information compression to the atomic
density distribution. PCA is a model-free approach which
provides a lower-dimensional representation of a given data
set by writing it as a linear combination of statistically un-
correlated normal modes (principal components) [28,29]. By
carrying out PCA over the set of atomic-density maps, we
can portray each individual frame �i(x, y) as the sum of an
average map and a linear combination of orthogonal modes
Um(x, y) [30],

�̃i(x, y) =
M∑

m=1

λm,i Um(x, y), (2)

〈Um,U�〉 = Tr(U†
mU�) = δm�. (3)
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FIG. 2. (a) Radial component of the 2D average power spectrum in the stable and turbulent regimes and at criticality. In terms of magnitude,
the turbulence phase is characterized by much larger fluctuations, when compared to the stable phase. (b) Configurational entropy computed
from the spatial power spectrum as a function of the stress parameter δ. In the stable regime, the flatter power spectrum is reflected onto higher
values of entropy. At δ = −2�, the highly compact spectral distribution is at the origin of the entropy dip.

Above, the additional dependence on the stress parameter
δ was omitted. The coefficients λm, j ≡ Tr(U†

m�̃ j ) are the
projections onto the modes and we further define the mode
variances as σ 2

m = 〈λ2
m,i〉, denoting how much a given mode

Um contributes to representing the ensemble. The number of
principal components is given by the number of degrees of
freedom of each realization [here, it corresponds to the num-
ber of pixels in the charge-coupled device (CCD) camera], and
we order them from the most to the least representative:

σ 2
1 � σ 2

2 � · · · � σ 2
M � 0,

M∑
m=1

σ 2
m = 1. (4)

The advantage of the analysis in terms of principal com-
ponents is that, out of M ∼ 32 000 modes, only a few are
of relevance to characterize the system dynamics. That is
expressed by having σ 2

m ∼ 0 for m > m, with m � M [see
Fig. 3(b)], which lowers the dimensionality of the data set
significantly. The first three PCA modes at three different
values of the stress parameter—in the stable regime (δ =
−3.5�), at criticality (δ = −2�), and in the turbulent regime
(δ = −1�)—are depicted in Fig. 3.

Contrary to Fourier modes, which are independent of the
data set, principal components are retrieved directly from the
data set itself: Fourier and PCA modes are representative of
two different classes of basis decomposition, the former being
an example of “universal” basis and, the latter, of “tailored”
basis. The PCA decomposition allows us to highlight the sim-
ilarities of the system dynamics along the whole range of δ.
Within the same regime (stable or turbulent), density fluctua-
tions are described by analogous sets of principal components.
Far in the stable region, the majority of the fluctuation power,
captured in the first mode, is due to oscillations of the total
number of atoms. Conversely, a limited but larger set of modes
is necessary to characterize the turbulent regime. This is a
feature reminiscent of low-dimensional chaos [31–34].

In complete analogy with the configurational entropy,
information entropy based on the principal component
decomposition can then be defined from the modal vari-
ances as SPCA = −∑

m σ 2
m log(σ 2

m). It follows that high data

compressibility descends from a small amount of oscillating
global patterns whose linear combination is able to describe
the main system dynamics.

IV. ENTROPY SIGNATURE AT CRITICALITY

We shall now focus our attention on the stress parameter
dependence of SC and SPCA, interpreting the two curves in
terms of spatial complexity and of the resulting modal dis-
tribution, i.e., the power spectrum and principal component
variance. In the right-hand panel of Fig. 2, we observe that,
as δ is brought from the stable to the turbulent region, the
configurational entropy is reduced. In the stable regime, high-
entropy values characterize the highly symmetric, spatially
uniform, physical system. The power spectrum is essentially
flat as a consequence of the fact that the stable regime is dom-
inated by uncorrelated fluctuations (white noise). Conversely,
in the turbulent phase, the power spectrum is dominated by
long-wavelength modes, which, in the real space, witness
the formation of randomly distributed large-scale coherent
structures. In other words, local order implies low values
of configurational entropy. Concerning SPCA, as depicted in
Fig. 3(c), we observe the opposite dependence on δ: Low-
entropy values characterize the stable regime whereas high
values are associated with the turbulent phase. These high
values stem from the increased spatial complexity of the
atomic cloud in the turbulent regime, where a larger number
of principal components is necessary to represent the main
system dynamics.

Remarkably, however, both SPCA and SC show a narrow
dip at the turbulence edge, δ = δc, with δc 	 −2�, which we
show to be related to the onset of the photon-bubble instability
(check Appendixes A and B for details). As the system moves
from one phase to another, it passes through an intermediate
step where it reorganizes. The critical point is characterized by
a divergence in the correlation length—analogous to critical
opalescence [35,36]—in a configuration where both local and
global order coexist. This highly structured state requires a
low amount of information to be described, thus leading to a
maximum in information compression. This quantity is not
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FIG. 3. (a) First three PCA modes in the stable regime (first row), at criticality (second row), and in the turbulent regime (third row);
the color map represents density fluctuations. (b) Modal variance in the same regimes. (c) Entropy computed from the modal variance as a
function of the detuning of the trapping lasers which drive the cold-atom cloud. Low values of entropy descend from a small amount of highly
representative (high variance) modes which describe the system at a given δ.

only a measure of our knowledge of the system, but it is
also a measure of complexity and order of a given spatial
configuration, thus bearing information about the system
physical properties.

Furthermore, theoretical and numerical studies have shown
a configurational entropy dip at the onset of continuous

FIG. 4. Criticality and the onset of photon-bubble instability. The
solid red line depicts the atomic depletion �n/n0 ∼ δc + δ as given
by Eq. (B2) in Appendix B. The dots are the normalized fluctuation
power resulting from the experimental data and the dashed green line
is the universal critical function (δc + δ)1/2, while the dashed blue
line is the best fit (δc + δ)0.372 discussed in the main text. This makes
clear that the onset of the photon-bubble turbulence takes place in
the interval δ ∈ [−2.25, −2]�, compatible with the region in which
information compression occurs.

equilibrium phase transitions [14,37]. Here, the same feature
has been experimentally observed for an out-of-equilibrium
phase transition, thus raising Shannon entropy as a good can-
didate to interpret critical phenomena in light of information
theory.

The universal character of the phase transition can be put in
evidence within the Ginzburg-Landau framework. If we define
the total fluctuation power ψ = ∑

k P(k), the free energy can
be written as

F[ψ] = F0 + a(δc − δ)ψ2 + b

2
ψ4, (5)

with F0 being the free energy deep in the stable phase, and a
and b some positive constants. Minimization of Eq. (5) yields
ψ = [(a/b)(δ − δc)]1/2 for δ > δc and ψ = 0 otherwise. In
Fig. 4, we fit the experimental data to a test function of the
form ψ ∼ |δ − δc|β , and observe that the critical parameter
scales with the critical exponent β (expt.) 	 0.372 ± 0.003. The
experimental value of the exponent must be compared with
that given by the mean-field approximation, β (MF) = 1/2,
which deviates from β (expt.) due to large fluctuations tak-
ing place at the critical point. Experimental measurements
of β in other physical systems are in excellent agreement
with that extracted from Fig. 4—see Ref. [38], where β =
0.37 ± 0.04 was measured for the ferromagnetic transition
in bulk lanthanum strontium manganese oxide (LSMO),
and Refs. [39,40] where similar β values were reported
for turbulent fluid and metal-insulator transitions. The latter
suggests that the turbulent phase transition observed here is
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well described in terms of the fluctuation power and falls into
the universality class of second-order phase transitions.

V. CONCLUSIONS

Phase transitions in driven-dissipative systems are still
far from being completely understood and theories lack
experimental evidence. In this paper we have reported the
observation of a maximum in information compression at
the critical point of a far-from-equilibrium phase transition—
which is the transition of a cold-atom cloud from a stable to
a turbulent phase. Information compression at criticality is
witnessed by a dip in information entropy which has been
computed in two different ways by projecting the atomic
density fluctuations on two distinct basis sets, the Fourier
modes and the principal components. The two modal decom-
positions are associated in a complementary way to system
complexity, one highlighting local order and the other the
presence of fluctuating global patterns. Notably, information
compression at criticality is independent of the representation
used.

The experimental evidence we have provided shows that
information entropy, built on either of two different modal
decompositions, is capable of pinpointing the transition of
a cold-atom cloud from stability to turbulence. If shared by
a vast class of physical systems, this feature could raise in-
formation entropy to a fundamental quantity to develop a
unifying phase transition theory. In the future, a more detailed
analysis of the nonlinear stages of the instability based on the
fluid description is required in order to quantitatively describe
the width of the transition and therefore the validity of the
diffusion approximation considered here. However, such a
study is out of the scope of the present work and deserves
further consideration in a separate publication.
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APPENDIX A: THE DIFFUSION APPROXIMATION
IN OPTICALLY THICK ATOMIC GASES

When the cooling laser is brought close to resonance, the
cold atomic cloud behaves as an optically thick medium. As
a consequence, light transport becomes diffusive and the laser
intensity obeys the following diffusion equation [41–43],

∂I

∂t
− ∇ · (D∇I ) = 0, (A1)

where D = �2/τ is the diffusion coefficient, with τ being the
photon diffusion time, and � the mean free path. The latter
depends dynamically on the parameters of the atomic cloud
as � = 1/nσL, where n = n(r, t ) is the atomic density and

σL is the photon absorption cross section—which depends on
the laser detuning δ = ω0 − ωa (here, ω0 being the cooling
laser frequency and ωa the atomic transition frequency), as
we will explicitly show below. To couple the dynamics of the
light intensity I with that of the atomic density n = n(r, t ) and
velocity field u = u(r, t ), we make use of a hydrodynamical
model [44,45]

∂n

∂t
+ ∇ · (nu) = 0, (A2)

∂u

∂t
+ (u · ∇)u = − F

m
− νu, (A3)

where m is the atomic mass, ν is the optical damping rate, and
F is the collective force, given by [46]

∇ · F = Qn. (A4)

Here, Q = σL(σR − σL )I/c is the effective charge, with σR de-
noting the absorption cross section for the rescattered photons
[44,46]. Linearization of Eqs. (A1)–(A4) about the equilib-
rium quantities (n0, I0) in the form of plane waves (neglecting
streaming here, u0 = 0),

n = n0 + n1e(ik·r−iωt ), I = I0 + I1e(ik·r−iωt ),

yields the following secular relation [24],

(ω + iν)2 = ω2
p

(
1 + ωd

iω − D0k2

)
, (A5)

where D0 = 1/(τn2
0σ

2
L ) is the diffusion coefficient at equi-

librium, ωp = √
Qn0/m is the plasma frequency governing

the timescale of the self-consistent forces due to multiple
scattering, and ωd = 2D0∇2I0/I0 is the diffusive photon-atom
coupling. A dynamical instability (photon-bubble instability)
takes place if γ ≡ Im(ω) > 0, in which the growth rate is
given by [24]

γ = −
(

ν

2
+ ωdω

2
p

ω2
p + D2

0k4

)
. (A6)

Of course, Eq. (A6) and its implications in the quantitative
estimates of the features of the phase transition, namely the
width of transition and the correct amount of information
depletion at criticality, are subject to the diffusion approx-
imation considered in Eq. (A1). In any case, as we show
below, this model is sufficient to describe the critical point of
the transition, and therefore relate the observed information
compression to the onset of photon-bubble instability. Future
investigations would require the analysis of the functional
dependence D ∼ n−2 employed in this work, to address the
late (nonlinear) stages of the photon-bubble instability, and
account for finite-size effects imposed by the trap. All those
aspects, although pertinent, are technically complicated to ad-
dress without sophisticated numerical simulations and are not
critical in predicting the onset of the photon-bubble instability,
as we detail below.

APPENDIX B: DENSITY DEPLETION
AND CRITICALITY NEAR RESONANCE

Near resonance, δ ∼ �, the diffusive term D0k2 dominates
in Eqs. (A5) and (A6). At the onset of the instability, the
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growth of a photon bubble pushes atoms away, leading to local
atom depletion n0 → n0 − �n occurring at the photon-bubble
scale, i.e., k2 ∼ ∇2I0/I0 (notice that ∇2I0 < 0, and thus ωd <

0, for physically relevant situations—the intensity is larger at
the center, as expected for a photon bubble forming at the
center of the cloud). Under such circumstances, the instability
threshold can be approximately expressed as

ω2
pL2

D0
	 ν

2
, (B1)

where we have defined the typical photon-bubble length L =
k−1 and the depleted diffusion coefficient, D0 = D0n2

0/(n0 −
�n)2. Equation (B1) thus yields the depletion as

�n

n0
= 1 − 1

ωpL

(
νD0

2

)1/2

. (B2)

In order to parametrize the depletion in terms of the experi-
mentally accessible parameters, we consider a two-level atom
theory, in which the relevant physical quantities read [45,46]

σL 	 σ0

1 + I/Isat + 4(δ/�)2
, (B3)

Q 	 σ 2
0 I2

cIsat

(
�

2δ

)4

, (B4)

ν 	 −8h̄k2
0

m

I/Isat

(1 + I/Isat )2

δ/�

[1 + 4(δ/�)2]2 . (B5)

Here, σ0 = 3gλ2
0/(2π ) is the resonant cross section (g = 3/7

stands for the degeneracy parameter), λ0 = 780 nm is the
laser wavelength driving the 85Rb D2 transition and k0 =
2π/λ0 is the associated wave vector, � = 2π × 5.89 MHz
is the transition linewidth, and Isat = 1.62 mW/cm−2 is the
saturation intensity [47]. Taking into account some additional
experimental parameters, L 	 4 mm, n0 	 3.7 × 1010 cm−3,
and I/Isat 	 3.5, and considering that in resonance we have
τ ∼ 8�−1 [48], we may plot the atomic depletion as a function
of the detuning in Fig. 4. We can observe that the depletion
becomes critical near δ ≡ δc ∼ −2�, in very good agree-
ment with the behavior of the fluctuation power discussed
in the main text. It is nevertheless important to stress that
although �n has the same critical threshold as the fluctuation
power—making therefore clear that the information compres-
sion observed in the main text is intimately related to the
photon-bubble turbulence phenomenon—it is not the proper
order parameter, since it scales as (δc + δ). Alternatively, the
fluctuation power is the correct order parameter describing the
thermodynamics of the turbulent phase transition, as it falls
in the universality class of the second-order phase transitions,
with the critical scaling (δc + δ)1/2. In any case, it is important
to remark that despite the order of magnitude being correct,
the precision on these estimations is limited by the uncertain-
ties on the local values of the laser intensity and the number
of atoms in the cloud, as well as by the effect of the finite laser
linewidth which tends to smooth out the transition.
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