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The notion of scale-invariant dynamics is well established at late times in quantum chaotic systems, as
illustrated by the emergence of a ramp in the spectral form factor (SFF). Building on the results of the preceding
Letter [Phys. Rev. Lett. 131, 060404 (2023)], we explore features of scale-invariant dynamics of survival
probability and SFF at criticality, i.e., at eigenstate transitions from quantum chaos to localization. We show
that, in contrast to the quantum chaotic regime, the quantum dynamics at criticality do not only exhibit scale
invariance at late times, but also at much shorter times that we refer to as mid-time dynamics. Our results apply
to both quadratic and interacting models. Specifically, we study Anderson models in dimensions three to five
and power-law random banded matrices for the former, and the quantum sun model and the ultrametric model

for the latter, as well as the Rosenzweig-Porter model.
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I. INTRODUCTION

Since the pioneering paper by M. Berry [1], the spectral
form factor (SFF) is considered as one of the key diagnostics
of quantum chaos. Specifically, one says that the dynamics
of a quantum system is chaotic if the SFF after sufficiently
long time follows the so-called ramp, i.e., a linear increase in
time that is predicted by the random matrix theory (RMT) [2].
The SFF is commonly normalized such that different quantum
chaotic systems follow the same ramp, irrespective of the sys-
tem size [3-5]. Emergence of such a scale-invariant dynamical
behavior represents a convenient tool to detect universality of
chaotic dynamics, as shown by a great amount of recent stud-
ies [3-25]. The concept of SFF can be extended to survival
probabilities [26] of initial nonequilibrium wavefunctions,
which, at least within the RMT, also exhibit scale-invariant
dynamics at long times [2,27-29]. Of particular importance
is the time of the onset of scale-invariant chaotic behavior in
the SFF, denoted as the Thouless time #7,. However, f1, may
be very long and it typically increases with system size. For
example, in systems of linear size L that exhibit diffusion, one
expects ttp X L?1[3,3,10,30-32].

The main focus of this paper are the dynamical transitions
from chaos to localization, for which critical behavior in finite
systems is associated with an abrupt transition in eigenstate
properties. The eigenstate transitions are relatively well under-
stood in systems described by quadratic Hamiltonians, with
Anderson localization being a paradigmatic example [33-37].
Recently, a new class of interacting models based on the
avalanche theory [38] was introduced, with the potential to
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provide a stepping stone into a more detailed understanding
of critical behavior at ergodicity breaking phase transitions
[5,38-50].

Motivated by the emergence of scale-invariant dynamics
in quantum chaotic systems, we here ask two questions. First,
does some notion of scale-invariant dynamics persist at criti-
cality? If the answer is affirmative, in which time regimes may
one then expect scale-invariant behavior? In particular, does
one need to wait for very long times, e.g., to the Thouless
time, to observe scale invariance, or does it emerge already at
much shorter times?

The main result of this paper and the preceding Letter [49]
is that for both quadratic systems exhibiting Anderson local-
ization, and interacting systems exhibiting ergodicity breaking
phase transition, the answer to the first question is indeed
affirmative, and that scale invariance at criticality emerges
already in mid-time dynamics, as sketched in Fig. 1. The
central measures of scale invariance are the SFF k, which
exhibits a broad plateau in the mid-time dynamics, and the
survival probability p of site-localized states, which exhibits
a power-law decay. Importantly, both quantities are measured
in units of the typical Heisenberg time (proportional to the
typical inverse level spacing), and are normalized such that
they also exhibit the late-time scale invariance in the chaotic
regime. They hence represent useful indicators of both chaotic
dynamics deep in the chaotic regime as well as the critical
dynamics at the boundary of quantum chaos.

We note that the main results of this paper and the pre-
ceding Letter [49] is to establish the link to the critical
dynamics of interacting systems at the ergodicity breaking
transition point. In the context of quadratic systems, many
studies contributed to the identification of certain properties
that are responsible for the emergence of critical dynamics.
These studies range from the observation of scale invariance
in eigenstate correlations [51] and in short-range spectral
statistics [52], to studies of long-range spectral statistics,
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FIG. 1. Concept of mid-time and late-time dynamics at eigen-
state transition, for the dynamics of the SFF k and survival
probability p of initially site-localized states. We measure time ¢ in
units of typical Heisenberg time 75", such that T =7/r3, and we
normalize k and p such that they approach k = p=1att > 1. The
late-time dynamics is defined as the dynamics in between the scaled
Thouless time 71, = 1y, /t},yp and the scaled typical Heisenberg time
7P = 1. At the transition, the late-time dynamics is preceded by the
scale-invariant mid-time dynamics, where k exhibits a broad plateau,
k ~ k, and p decays with power-law dependence p ~ ay t~#. While
the late-time dynamics are universal in quantum chaotic sense, the
properties of mid-time dynamics, such as the values of K, and g,
depend on the properties of transition point.

in particular their spectral rigidity [53-56]. The long-range
spectral correlations were further argued to be related to
the eigenfunction correlations at criticality in Refs. [55-58],
where the mid-time features of the SFF and survival probabil-
ity were also discussed [58]. The later insights were sharpened
by noting that the emergence of a broad scale-invariant plateau
in the SFF of the Anderson models is a strong indicator
of criticality [4,59]. An important connection to interacting
models was recently made by observing a very similar plateau
in the SFF of the interacting quantum sun (QS) model at the
ergodicity breaking transition point [5].

Here we follow the perspective that the SFF is a survival
probability of a special initial state [60], which is an equal
superposition of Hamiltonian eigenstates. It is then natural to
seek for scale invariance also in survival probabilities of other
initial states. In quadratic systems, several studies contributed
to the understanding that the survival probability of the initial
site-localized states exhibits a power-law decay in the vicinity
of Anderson transition [61-63]. This observation paved way
towards scale invariance in mid-time dynamics, as well as to-
wards making the connection of the power-law exponent with
the wavefunction fractal dimension [63—65]. The first contri-
bution of our Letter [49] was to introduce the scaled survival
probability p mentioned above, which exhibits scale invari-
ance in both mid- and late-time dynamics at criticality. The
later quantity allows for establishing the connection between
the power-law exponent and the wavefunction fractal dimen-
sion also in other quadratic models such as the Aubry-André
model. The main contribution of [49] was then to generalize

these findings to the QS model of the avalanche theory, which
exhibits scale-invariant mid-time and late-time dynamics at
the ergodicity breaking transition point. In this paper we first
provide a comprehensive overview of the subject, and then
go beyond the Letter [49] by studying a broad range of dif-
ferent models, ranging from the quadratic models such as the
Anderson models in dimensions three to five and power-law
random banded matrices, to the interacting models such as
the QS model and the ultrametric model defined within the
avalanche picture, as well as the Rosenzweig-Porter model
that we consider as a separate class of models. Moreover,
we also explore to which degree scale invariance in survival
probabilities emerges for other initial states, such as plane
waves, and we find that it indeed exhibits certain fingerprints
of scale invariance, in particular at weak multifractality.

The paper is organized as follows. In Sec. II we define
the models studied in this paper. In Sec. III we introduce
the measures of quantum dynamics, i.e., the SFF and survival
probabilities, and we comment on their similarities. In Sec. [V
we discuss the key properties of scale-invariant dynamics
in the chaotic regime and at criticality, and we introduce
the scaled survival probabilities that are the central object
of investigation. Numerical results for the quadratic models,
interacting models and the Rosenzweig-Porter model are pre-
sented in Secs. V, VI, and VII, respectively. In particular,
we establish similarity between the quadratic and interacting
models, and we highlight subtle differences present in the
Rosenzweig-Porter model. We summarize our findings in Sec.
VIII, and we conclude in Sec. IX.

II. MODELS

In this section we introduce the models that exhibit eigen-
state transitions and whose critical dynamics are studied in
this paper. We split them into two main categories, quadratic
models and interacting models, and finally we also con-
sider the Rosenzweig-Porter model as a separate category of
models.

A. Quadratic models

We start with the well-known Anderson model [33] on a
d-dimensional hypercubic lattice of linear size L,

D
H=-7) e, +een+y ey, O]
i=1

(i)

where é; (éj) are the fermionic creation (annihilation) op-
erators at site j, J is the hogping matrix element between
nearest-neighbor sites, i1; = ¢;¢; is the site occupation oper-
ator, and ¢; are the on-site energies. The later are independent
and identically distributed random variables, drawn from
a box distribution €; € [-W/2, W/2]. We consider periodic
boundary conditions. Since the model is quadratic, the number
of lattice sites coincides with the single-particle Hilbert space
dimension, D = L?.

Theoretical arguments suggest the transition in this model
to occur in dimensions d > 2 [34]. In three dimensions (3D),
numerical studies of transport properties of single-particle

eigenstates in the center of the energy band [66—68], based
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on the transfer-matrix technique, showed that the system is
insulating at W > W, =~ 16.54J [69], and at W < W, it be-
comes diffusive [63,70,71]. The value of the transition point
W, grows with the dimension d and was accurately calculated
using numerical techniques [4,31,71-76]. At the transition,
the model exhibits subdiffusion [63] and multifractal single-
particle eigenfunctions [37,73,77]. The transition point is
energy dependent, i.e., at W > W, all single-particle states are
localized in site-occupation basis, while at W < W, the system
exhibits a mobility edge [78].

Next, we introduce the ensemble of power-law random
banded (PLRB) matrices. We define the corresponding PLRB
Hamiltonian as a quadratic Hamiltonian, whose matrix ele-
ments in the single-particle Hilbert space of size D = L are
given by

L
y AT A Mi .
H: th . hi.zh.iz 5] , 2
i:j=:1 ’]Cz C] J Js [1 + (|l _ j|/b)2a]1/2 ( )

i.e., the matrix elements decrease as power laws with distance
li — jl [37,55,56,79]. In Eq. (2), w;; are independent and
identically distributed random variables drawn from a box
distribution, w;; € [—1, 1] [80], but other distributions can
also be considered [55,56,79].

The PLRB model is parameterized by two parameters a
and b, and it exhibits an eigenstate transition at a = 1 for all
b. The single-particle eigenstates are delocalized at a < 1 and
localized in site-occupation basis at a > 1. The model was
designed as a toy model to understand the features typical for
the Anderson model close to and at criticality. At the critical
value a = 1 the system exhibits multifractality [55,56,79,81]
and spectral statistics are intermediate between the Wigner-
Dyson and Poisson statistics [55,56,79]. These properties are
tuned by the parameter b, ranging from strong multifractality
at b <« 1 to weak multifractality at b > 1. Some of the dy-
namical aspects of critical ensembles were considered both
analytically [8§2—84] and numerically [80].

B. Interacting models

In the domain of interacting models we consider two repre-
sentatives, which are both expected to describe the avalanche
mechanism of ergodicity breaking phase transitions.

The first model, dubbed the quantum sun (QS) model
[5,49,50,85], shares many similarities with the initially pro-
posed toy model of quantum avalanches [38,40]. The model
consists of N 4 L spin-1/2 degrees of freedom in a Fock space
of dimension D = 2¥+L It is divided into a quantum dot with
N spins and a remaining subsystem with L spins outside the
dot, described by the Hamiltonian

L-1 L-1
A=R+g Y o"8:8 +3 ns;. 3)
i=0 i=0

The interactions within the dot, denoted by R, are all-to-all
and they exclusively act on the dot subspace. They are repre-
sented by a 2V x 2V random matrix drawn from the Gaussian
orthogonal ensemble (GOE) [86]. The spins outside the dot
are subject to local magnetic fields &; € [0.5, 1.5] that are
drawn from a box distribution. Each of the spins outside the

dot is coupled to one spin in the dot, with the interaction
strength ", For a chosen spin i outside the dot, we randomly
select an in-dot spin #;. The coupling to the first spin outside
the dot (i = 0) is set to one since ug = 0, while at i > 1,
u; € [i —0.2,i+ 0.2] is drawn from a box distribution.

The ergodicity breaking transition in the QS model
is well established both analytically and numerically
[5,38,40,49,50,85]. The analytical prediction for the transition
point is & = 1/ﬁ ~ (0.707 [38,85], while numerical studies
usually observe the transition at similar, but slightly larger
values of critical points « = «, [5,49,50,85]. Here we follow
Ref. [49], which set N =5 and gy = 1 in Eq. (3) and esti-
mated o, &~ 0.716 from the gap ratio statistics. Eigenstates of
the QS model in the middle of the spectrum exhibit ergodicity
at o > «a,, the critical point @ = «, is multifractal, and the
nonergodic phase at o < «, exhibits Fock space localization
[85].

The second model is the ultrametric (UM) model. This
model was initially introduced in the single-particle picture to
study Anderson localization on ultrametric lattices [87-95].
However, recent study has highlighted similarities between
the UM model and the QS model when defined for interacting
systems in a Fock space of dimension D [85]. Following the
convention in the QS model, we define a Fock space of N + L
spin-1/2 particles, with D = 2V*X, The model Hamiltonian
is constructed as a sum of block-diagonal random matrices
Hk with k =0, 1, ..., L. At each k, the matrix structure of
Hy consists of 2% diagonal blocks of size 2Ntk x 2N*k,
We sample each random block independently from the GOE
distribution and use normalization such that

0 _ RY . L—k
Hk —W, 1_1,...,2 y (4)
see [85] for details. Here, the superscript i denotes the ith
random block. We sample its matrix elements in analogy to
the QS model, hence R® = \/LQ(A + AT) € 2NFk 5 2N+ The
full Hamiltonian of the UM model then reads

L
A=H+J. Y oH. aecl01). 5)
k=1

The first term Hy of size 2V x 2V describes the initial quantum
dot that consists of N spin-1/2 particles in the absence of
coupling to the external particles. The sum in the second
term mimics the exponentially decaying coupling between
the dot and the kth localized spin-1/2 particle through the
exponentially decaying values of . Additionally, we have
also included the parameter J. tuning the overall perturbation
strength, which carries certain analogies with the parameter
go in the QS model in Eq. (3). The UM model exhibits a sharp
transition at . = 1/+/2 and the properties of the transition
point can be tuned by J.. However, here, we fix N = 1,J. = 1
and vary o only.

C. Rosenzweig-Porter model

Finally we consider the Rosenzweig-Porter (RP) random
matrix ensemble [96] and its generalized form [97]. We intro-
duce the corresponding RP model in a form of a quadratic
model given by Eq. (2), for which the Hamiltonian matrix
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elements are given by

AW
hij=hj;= %, (6)
even though later we consider the RP model independently
from other quadratic and interacting models. The parameters
A and c¢ in Eq. (6) are real, and p;; are independent and
identically distributed random variables drawn from a box
distribution, u; ; € [—1, 1] [80].

Previous studies of the RP model reported emergence in
three different regimes [97-101]: at ¢ < 1 the system is fully
ergodic, at 1 < ¢ < 2 the eigenstates are fractal and the sys-
tem is in a nonergodic extended regime, and at ¢ > 2 the
eigenstates are localized in the computational basis. Numer-
ical investigation of the short-range spectral statistics [102]
indicates that there is a change of the nearest-neighbour level
statistics at ¢ = 2 from the GOE to the Poisson statistics. We
refer to this transition as the eigenstate transition in the RP
model. The statistics of the nearest-neighbour gaps at
the transition can be tuned by the parameter A. We note that
the system at the transition, ¢ = 2, is not multifractal but
fully localized [97,102]. This is an important difference when
compared to the PLRB model, which, as we argue in this
paper, is also manifested in the dynamical properties of the
RP model [80,103].

III. MEASURES OF QUANTUM DYNAMICS
A. Spectral form factor (SFF)

We study quantum dynamics of initial states evolved under
the Hamiltonian H. The Hamiltonian eigenspectrum is char-
acterized by the SFF

1
K"(t) = > (N

where E, are eigenenergies of H. The SFF is further averaged
over different Hamiltonian realizations, denoted by {...)n,
which gives rise to

K@) = (K"(1)n. ®)

At long times, K (¢) saturates to the corresponding long-time
value

— 1
K_llirgol((t)—l—), C))
which equals the time-averaged value over a sufficiently large
time interval. The SFF is a Fourier transform of energy level
distances and it gives access to both short-range and long-
range spectral correlations. Here we argue that it may also
represent a useful tool for understanding the behavior of sur-
vival probabilities in the quench dynamics studied below.

B. Survival probability

We are interested in quantum quenches from the eigen-
states {|m)} of the initial Hamiltonian H, to the final
Hamiltonian A with eigenstates {|v)}. The survival proba-
bility of an eigenstate |m) is, for a given realization of the

Hamiltonian H, defined as
2

; (10)

D

D leunlPe ™

v=1

P (1) = |(mle™ ' |m) > =

where we set i = 1, D is the Hilbert-space dimension, c,,, =
(v|m) is the overlap of |m) with |v), and E, is an eigenenergy
of H. The averaged survival probability is defined as

P(0) = ({5 (), ) (1

where (...),, denotes the average over all eigenstates |m) of
the initial Hamiltonian Hy, and {(...); denotes the average over
different realizations of the final Hamiltonian H.

At long times, P(¢) approaches P, which is equal to the
average inverse participation ratio of eigenstates of A in the
eigenbasis of Hy, P = (2, |Com|*)m) s We express P as

D
I_J = <<Z |Cum|4> > =P+ CPD_Vv (12)
v=1 m! H

i.e., as a sum of the nonzero asymptotic value

P = lim P, (13)
D—o0
and a part that vanishes in the thermodynamic limit D — oo
as « D77, where y > 0 is the fractal dimension. We distin-
guish between two scenarios that give rise to nonzero Py, > 0:
the case of a mobility edge, when a fraction of eigenstates
|m) are localized in the eigenbasis spanned by |v) and the
remaining fraction is not localized, and the case of complete
localization when all eigenstates |m) are localized. When us-
ing Eq. (12), the definition of y as the fractal dimension is
only meaningful in the former case.

C. Relationship between the SFF and survival probability

A common interpretation of the SFF (7) is that it is only
a measure of the Hamiltonian spectrum {E,}. An alternative
perspective that we pursue here is that the SFF can be viewed
as the survival probability (10) of a special initial state |T'),
namely the infinite-temperature pure state

1 D
T) = — 14
IT) ﬁgw, (14)

such that K7 (t) — Pl (t), and the averaging is then only
performed over different Hamiltonian realizations. This re-
lationship is valid for any Hamiltonian A that dictates the
dynamics.

The main goal of this paper is to study survival probabil-
ities from different types of initial states, including the state
(14) that provides the link to the SFF, with the focus on the dy-
namics at criticality. Specifically, the initial states are of three
types. (a) The one from Eq. (14), for which the survival prob-
ability corresponds to the SFF. (b) Product states |m) = |I)
in site occupation (computational) basis for quadratic models,
and in Fock space for interacting models. We refer to this
type of states as site-localized (Fock-space-localized) states.
(c) Product states in quasimomentum occupation basis, |m) =

k) = LD >, € |I), which correspond to conventional plane

waves for quadratic models, and to plane waves in the Fock
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space for interacting models. For brevity we refer to them as
plane waves for all models under consideration.

We note that in the special case of the GOE matrices,
there is an exact asymptotic relationship between the SFF and
survival probabilities from other types of initial states such as
site-localized (Fock-space-localized) states and plane waves.
We further elaborate on this relationship in Sec. IV B in the
context of Eq. (23).

The choice of the initial states imply the value of the time
averaged P from Eq. (12). In the case (a), it follows from
Eq. (9) that P.o = 0 and y = 1. In the case (b) one gets Py, =
0 in the fully delocalized regime of H, while Py, > 0 in the
localized regime or in the regime with a mobility edge. If the
initial wave function at the transition exhibits (multi)fractal
properties in the eigenbasis of H, one expects y < 1. In the
case (c) one again gets Py, = 0 and y = 1 for all cases under
consideration here. We note, however, that the latter is not the
case in the Aubry-André model [49].

We study survival probabilities in the units of scaled
time 1,

T =1/t tI‘_Iyp =2m /SEYP, (15)

where t,t}p is the typical Heisenberg time, SEYP is the typical
level spacing, SEYP = exp[{{In(E,;1 — E,)),)u], and (...},
denotes the average over all pairs of nearest levels. We note
that in Hamiltonian systems, the SFF is commonly studied
after spectral unfolding that removes the impact of the density
of states. However, if one seeks to establish the connection of
the SFF with the survival probabilities, which are measured
either as a function of raw time ¢ or the scaled time 7, no
unfolding is carried out. In Appendix A we compare the
SFF with and without unfolding, and we show that the main
features of our results are independent of this choice.

IV. SCALE INVARIANT DYNAMICS

As discussed in introduction, a well-established universal-
ity of the SFF occurs in the quantum chaotic regime, when
the SFF follows the so-called ramp, predicted by the RMT
[2,27-29]. Specifically, the quantity that actually exhibits the
scale-invariant (i.e., L-independent) behavior in the quantum
chaotic regime is the normalized SFF k(t),

_ K(7)
k(t) = ik (16)

such that at long times one gets k(t > 1) = 1. The nor-
malized k(r) from Eq. (16) has been applied in recent
studies of quantum chaos in interacting systems, see, e.g.,
Refs. [3-5,14,25,31,49]. For brevity we refer to the normal-
ized SFF as the SFF.

In what follows, our main goal is to explore whether a
similar form of scale-invariant behavior can also be observed
at eigenstate transitions from quantum chaos to localization.

A. From SFF to survival probability

Inspired by the scale-invariant behavior of the SFF in the
quantum chaotic regime (16), and the relationship between
the SFF and survival probabilities from Sec. III C, we now
explore features of scale invariance in survival probabilities.

In Ref. [49] we introduced the scaled survival probability
p(t), henceforth survival probability,
P(t) — P

PO = (17)
which should be considered as an analog to the SFF defined
in Eq. (16). In particular, the survival probability saturates at
long times to p(tr > 1) = 1, and the subtraction with P, is
used to make sure that in the case of mobility edges in the
spectrum, P(t) decays to zero in the thermodynamic limit
D — o0. As discussed above, for certain initial states such as
those that make the connection to the SFF, one gets Py, = 0
and hence no subtraction is needed in Eq. (16). Also, we will
show in Sec. VII that at the eigenstate transition in the RP
model, at which the eigenstates are fully localized and hence
P = P, for site-localized initial states in finite systems, again
no subtraction is needed in Eq. (17).

Below we illustrate scale invariance of survival proba-
bilities for the studied initial states in the case of GOE
Hamiltonians, and in the remainder of the paper, see
Secs. V-VII, we numerically test scale-invariant properties at
criticality for various other models.

B. Scale invariance of GOE Hamiltonians

The case in which the Hamiltonian is represented by a GOE
matrix serves as a benchmark for quantum chaotic dynamics
as it allows for establishing analytical predictions [2]. Here
we provide exact expressions for survival probabilities from
all the initial states studied in this paper. More generally, these
results will also serve as a motivation in the subsequent sec-
tions in the search for scale-invariant dynamics at criticality.

For concreteness, we define the GOE Hamiltonian in anal-
ogy to Eq. (2), where the matrix elements #; ; are i.i.d. random
numbers drawn from a Gaussian distribution with zero mean
and variance 2 (1) for the diagonal (off-diagonal) matrix
elements. Analytical predictions for the survival probability
from initially site-localized states, evolving under the GOE
Hamiltonian, were derived in [27-29]. While Refs. [27-29]
focused on the particular initial state, we here adapt the for-
mula therein to describe the survival probabilities of all initial
states under consideration. We first express time in units of
the corresponding Heisenberg time t = ¢ /tgp from Eq. (15),
which is tgp = 2«/5 for the GOE Hamiltonian. In this units,
Eq. (8) from Ref. [29] can be written as

1-P |:DJI2(4D1)

Piop(T;P) =

51 (ZDT)z—bz(t):|+F, (18)

where J| is the Bessel function of the first kind, and the two-
point function b,(7) [2] is given by

by(t) =[1 — 27 + tIn(1 +20)]10(1 — 1)
+{rIn[2T + /27 — D] — 1}O(r — 1). (19)

The first term on the right-hand side of Eq. (18) quickly
vanishes at T > 1 and hence the limit Pgog — P is reached
at long times t > 1.

For the GOE Hamiltonian, the time-averaged survival
probabilities P (12) have P, =0 and y =1 for all initial
states of interest. Hence, the dependence of P on P can be
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FIG. 2. The GOE results for psap(7;c,) from Eq. (20) at D =
2500. Main panel: kg (7), piSSs(t) and plos(t), see text for defi-
nitions. Inset: kgop(7), 3pkS5 (t) — 2 and 2p%(t) — 1. The curves
exhibit a perfect collapse, as expected from Eq. (23).

expressed as the dependence on the coefficient cp. For the
site-localized states one expects P = 3/D [27-29], while for
the infinite-temperature state in Eq. (14) [i.e., the SFF] one ex-
pects P = 1/D and for the plane waves one expects P = 2/D.
According to Eq. (12), this gives cp = 3 for the site-localized
states, cp = 1 for the initial state in Eq. (14), and cp =2
for the plane waves. Then, following Eq. (17) we rescale the
survival probability from Eq. (18) to obtain

1| _J*4Dr)
Pcoe(T;cp) CP|: 2Dy

- bz(f)} +1, (20)

where we assumed (1 — cp/D)/(1 — 1/D) — 1.

The term in Eq. (20) that contains the Bessel function is the
only term that contains the information about the Hilbert space
D, however, it quickly decays to zero since its envelope func-
tion is given by 1/(c,8mw D*t?). It is then clear from Eq. (20)
that at sufficiently long times pgog becomes scale invariant,
i.e., it only depends on t for all system sizes. The crossover
time to the scale-invariant dynamics is nowadays known as the
Thouless time, which in the case of GOE Hamiltonians scales
as To0g = (3/m)#/(24/D). Scale invariance of pgog(7) in
the GOE case can be understood as the extension of the scale
invariance of the SFF kgog(7) from Eq. (16). Specifically,
Eq. (20) suggest that

kcoe(t) = ¢, pcoe(T; cp) + (1 —¢p), 21

and hence kqop(T) = pgop(T; cp = 1), giving rise to the well-
known expression for the GOE ramp in the SFF,

koor(téor < T S 1) ~ 1 —by(1) =21 — tIn(1 + 27).
(22)

Beyond the emergence of scale invariance at T > Tl it is
also interesting to consider the relationships between different
survival probabilities, which are valid for arbitrary time t.
Let us define plé’E)E(‘L’) = pcoe(T; ¢, = 3) for the initial site-
localized states and pl)(t) = pgor(T; ¢, = 2) for the initial

102f 1 "GOE numerical :»_‘4,4*""'-.—
r ‘g;";;:— GOE analytical
/J{’
- 2 ‘;—
1 107“r \ \
ﬁ 1071 1
X
k, T-avr.
- Kcok
1072k co
4 | | | | 1
10~ 1

T

FIG. 3. Numerical results of the SFF k(7) from Eq. (16) (green)
compared to the analytical prediction for the SFF k;og(7) from
Eq. (21) (dashed black) at D = 2500. We additionally perform the
running average to obtain t-averaged k(t) (dashed-dotted blue).
(Inset) Details in the comparison of the GOE ramp from Eq. (22)
to the numerical results that show slight differences in the slope of
the ramp.

plane waves. Equation (21) then implies

kgor(T) = 2pRp(t) — 1 = 3p1§6E(r) —2. (23)

This relation will also be tested in the dynamics at criticality
in the next sections.

The results of the above discussion are illustrated in Fig. 2
at D = 2500. In the main panel of Fig. 2 we show kgop(7),
PEE(T), and p%i (). The SFF kgop(t) exhibits a sharp
decay until it hits the GOE ramp at the Thouless time THOF. In
contrast, the other survival probabilities exhibit a broad min-
imum, which is also referred to as the correlation hole [29].
From these results only, one may not be able to exclude the
possibility that the Thouless time T5CF depends on the specific
type of initial states. However, when one plots the rescaled
survival probabilities 3pl%%:(t) — 2 and 2pf(t) — 1 from
Eq. (23), see the inset of Fig. 2, one observes a perfect collapse
of all survival probabilities suggesting that, as expected, THOF
is independent of the choice of the initial state.

While the results in Fig. 2 are obtained from the analytical
expressions, we also test them numerically and compute & (1),
PP (1), and p'°°(7) of the GOE Hamiltonians. We first verified
(not shown) that the relationship between these quantities,
given by Eq. (23), also holds for the numerical results. Thus
it is sufficient to only focus on the SFF k(7). Figure 3 com-
pares the numerical and analytical results k(t) and kgog(7),
respectively. The numerical results follow the behavior of
the analytical result, and we smoothen the noise by carry-
ing out the running averages in time. The inset of Fig. 3,
however, highlights that the numerical result differs from the
analytical result, since the numerical result lies higher than
the analytical one and it follows a slightly different slope of
the ramp. We attribute this deviation to the lack of spectral
unfolding and filtering in the numerical results for the SFF.
In Appendix A, see Fig. 20, we compare the SFFs with
and without unfolding and filtering, and we show that in the
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former case the numerical results fit the analytical predictions.
In the reminder of the paper, when the results are compared to
the GOE predictions, they are always compared to the numer-
ical results for the GOE Hamiltonians. In Appendix B we also
provide further details about the numerical averaging over
Hamiltonian realizations and the extraction of the Thouless
time Ty

C. Arguments for scale invariance at criticality

We now turn our attention to criticality and give arguments
for the emergence of scale invariance in quadratic models.
Perhaps one of the earliest papers addressing scaling prop-
erties at criticality is Ref. [51], where the two-particle spectral
function was investigated. The study revealed a novel scaling
form of the two-particle spectral function emerging at the
critical point (and coexisting with diffusive behavior), which
was conjectured to be a consequence of the fractal struc-
ture of eigenstates at criticality. The ansatz of Ref. [51] was
then argued to be consistent with the emergence of power-
law behavior seen in the survival probabilities from initially
localized states, i.e., P'°°(¢) o ¢t~ [62,64,65,82,83]. The stud-
ies confirmed that the power-law exponent 8 is related to
the multifractal dimension of the eigenstates at criticality
[62,64,65,82,83] even though they did not investigate sys-
tematically the system size dependence of P'°(¢). While the
ansatz of Ref. [51] predicts scale-invariant properties, we
note that it is based on properties of eigenstates within a
microcanonical window around critical states. General initial
states may ultimately be projected to all eigenstates and the
scale invariance might be hindered in P'°°(¢) by the effect of
mobility edges.

Our ansatz for the scaled survival probability, introduced in
Ref. [49] and in Eq. (17) of this paper, generalizes the above
considerations. For the initial site-localized states it predicts
the scale-invariant power-law decay at criticality,

Pty =apt?, 24)

where ayp and B are fitting parameters. In particular, the
ansatz from Eq. (17) includes two refinements: first, the
survival probability is subtracted by P, which is neces-
sary in order to observe scale invariance in models with
mobility edges, such as the Anderson models, and second,
time is measured in units of the typical Heisenberg time
tgp. The later is crucial in models such as the Aubry-André
model [49], in which the typical and the average Heisen-
berg time scale differently. These refinements give rise to
two important advantages of the ansatz: First, the scale in-
variance is not only present in the power-law regime in the
mid-time dynamics, but also in the late-time dynamics (as
in the SFF), and second, it allows for a generalized rela-
tionship between the fractal dimension y and the power-law
exponent S,

y =nB, with 1)° =D", (25)

where n determines the scaling of the typical Heisenberg time
with the Hilbert-space dimension D. We note that the ansatz of
scale-invariant power-law decay as in Eq. (24) seems to work
also for driven critical systems [104].

We here add two remarks. The first is that that the scale-
invariant power-law decay of p'°(r) in Eq. (24) implies
scale invariance of the power-law decay of the subtracted,
but unscaled survival probability P'°(t) — P,, in the mid-time
dynamics. This statement is illustrated by rewriting Eqs. (17)
and (12) as

PY(t) = Po = cpD 7 agt P (137)" (26)
which, using the relationship from Eq. (25), yields
P(t) — Py = cpaot ". 27

The second remark is that the reverse of the first remark
is not true. This can be illustrated by the power-law de-
cay P°°(t) — Py, o t—#, which may emerge in the localized
regime in finite systems [49,62]. However, the latter do not
imply scale invariance of p'°(z) in the mid-time dynamics
[49]. Here, the dynamics is dominated by the projection to
localized eigenstates, for which the ansatz from Ref. [51]
is lost.

A seemingly different, but not unrelated aspect is the scale
invariance of the SFF at criticality. Early study addressed the
level statistics at criticality focusing on short-range statis-
tics [52], which was shown to be neither of Wigner surmise
nor of Poisson statistics. The long-range spectral correlation
[53,54], measured by spectral rigidity, were further argued
to be related to the eigenfunction correlations at criticality
[55,57,58]. Remarkably, in Ref. [58] the connection between
the power-law decay of P'°°(¢) and the plateau in the SFF K ()
was conjectured. Then, it may not be unexpected, at least for
quadratic models, that the scale-invariant power-law decay of
p'°(1) is accompanied by the scale-invariant plateau in the
SFF k(7). Recent studies [4,5] investigated system-size de-
pendence of the plateau in the SFF k(7) and indeed observed
a scale-invariant behavior.

V. RESULTS FOR QUADRATIC MODELS

A. From single-particle quantum chaos to localization

We start our analysis of the dynamics with two quadratic
models, the Anderson model (1) and the PLRB model (2).
We first study the dynamics across the critical point at a fixed
system size L, and we focus on the unscaled SFF K(7) from
Eq. (8) and the survival probability P(t) from Eq. (11).

Figure 4 shows K(t) and P(tr) in the PLRB model at
different values of the parameter a while keeping the param-
eter b fixed. The limit of @ = 0 is, up to normalization, the
limit of the GOE Hamiltonians, and the numerical simulations
fit the corresponding analytical predictions rather well, see
Fig. 4(a). Increasing the value of a but keeping it below the
transition, see Fig. 4(b), produces the most significant effect
to P'°°(r) while K(t) and PP¥(r) change only mildly. At
the transition point a = 1, see Fig. 4(c), P'°°(t) develops a
power-law decay in the mid-time dynamics and K(7) devel-
ops a plateau in approximately the same time regime. We
also note a change in PPV(7), which starts deviating from
the analytical result at @ = 1. In the localized regime, see
Fig. 4(d), the deviations from the analytical results further
increase.
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FIG. 4. K(t), P'°(t), and P?(7) in the PLRB model at b = 0.5
and D =L =20000. (a) a =0, (b) a =0.75, (c) the critical point
a =1, and (d) a = 1.5. Green lines are results before time averaging.
The corresponding results for GOE Hamiltonians from Sec. IVB
(see Fig. 2) are shown as dashed black lines. The dotted lines in
(c) indicate the power-law decay for P'°°(t) and the plateau in K (7).

In Fig. 5 we compare the dynamics in the PLRB model
to those in the 3D Anderson model, in which we vary the
disorder W. At small W/J = 1 the long-time limit of PP¥(7)

3D Anderson model
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FIG. 5. K(t), P'(t), and P?¥(7) in the 3D Anderson model at
D =L3=32768.(a) W/J =1, (b) W/J = 10, (c) the critical point
W/J = 16.54, and (d) W/J = 20. Green lines are results before time
averaging. The corresponding results for GOE Hamiltonians from
Sec. IV B (see Fig. 2) are shown as dashed black lines. The dotted
lines in (c) indicate the power-law decay for P'°(t) to a nonzero
constant and the plateau in K(7) to a nonzero constant.

does not approach the limit of GOE but has a higher value,
see Fig. 5(a). This can be interpreted as a proximity to
the translationally invariant limit where the single-particle
eigenstates are plane waves. Increasing the value of W to
W/J =10 within the chaotic regime, see Fig. 5(b), the
influence of the translationally invariant limit is weaker and
the behavior is similar to the delocalized site of the PLRB
model, compare Fig. 4(b) and Fig. 5(b). At the transition point
W,, see Fig. 5(c), there is even higher similarity with the PLRB
model, compare Fig. 4(c) and Fig. 5(c). Ploc(1) develops a
power-law decay in the mid-time dynamics and K (7 ) develops
a plateau in approximately the same time regime. The
situation is similar in the localized regime, see Fig. 5(d). To
summarize, while the small a and W limits of both models are
distinct, their behavior close to criticality is almost identical.

B. Nearest level spacing statistics

We now focus on the scale-invariant properties at crit-
icality. We first demonstrate them for short-range spectral
statistics, i.e., we calculate the ratio of consecutive level spac-
ings of the single-particle spectrum,

= min{éE, 1, SE,} 28)
max{S§E, 1, E,}
where §E, = E,;; — E, is the nearest level spacing. We
define the average nearest level spacing ratio (shortly, the
average gap ratio) as 7 = ((r,),)n, With (...), denoting the
average over all pairs of nearest level spacings and (...)y
denoting the average over 100 Hamiltonian realizations.

- L=1000

0.501- L =2500
- L=5000
" - L =10000
0431, | —20000
b=0.01,0.05
0.401 0.1,0.25,0.5,1

0.501

0.401

0.95

FIG. 6. Average gap ratio 7 in the PLRB model as a function
of a, for several values of b and L. The results in (b) are identi-
cal to those in (a), but zoomed into a narrow window around the
critical point a = 1. The scale-invariant values of 7 at the critical
point in (b) are denoted by the crosses (from bottom to top: b =
0.01,0.05,0.1,0.25,0.5, 1).
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FIG. 7. Survival probability p'*(z) from Eq. (17) in the PLRB
model at the critical point a = 1, for different system sizes L. Differ-
ent panels correspond to different values of the parameter b, ranging
from small b = 0.03 in (a) to large b = 10 in (i). The dotted lines are
the fits oc 7™# from Eq. (24), and in each panel we provide the value
of B obtained from the fit.

While the change of the parameters a and W determines
how close the systems are to the critical point, the parameters
b (in case of the PLRB model) and the dimensionality d of
the hypercubic lattice (in case of the Anderson models) are
expected to change the spectral properties and the eigenstate
properties at the critical point [55,56]. While results for the
average gap ratios 7 of the Anderson models were reported
elsewhere (see, e.g., Refs. [4,76]), we here focus on the PLRB
models.

The results for 7 as a function of a are shown in Fig. 6
for several values of b and L. For each value of b there exist
a scale-invariant value 7 at the critical point a = 1, see the
crosses in Fig. 6(b). By increasing b the scale-invariant value
of 7 increases from the Poisson-like value rp =2In2 — 1 ~
0.3863 [105] to the GOE-like value rgog &~ 0.5307 [106]. The
dependence of 7 on b is summarized in Fig. 19(b) (see below).

The change of the spectral properties at criticality is expected
to be accompanied with the change of the multifractality of
states [79]. In particular, the GOE-like value of 7 is associated
with weak multifractality where y & 1, and the Poisson-like
value of 7 is associated with strong multifractality where y ~
0. We next study an alternative perspective on the degree of
multifractality of the critical wavefunctions, obtained from the
mid-time dynamics.

C. Critical dynamics in the PLRB model

As discussed in Sec. IV C, the survival probability p'°(t)
from Eq. (17) is expected to exhibit a scale-invariant behavior
at criticality, starting from the initial site-localized states. In
particular, p'°(7) is expected to follow a power-law decay
from Eq. (24) at mid-times, which is connected to the fractal
dimension y via Eq. (25).

While Ref. [49] demonstrated these properties for the 3D
Anderson model, we complement them here by the study
of the PLRB model. Figure 7 shows results for p'°(t) at
the critical point a = 1 for different system sizes L and
different values of the parameter b. Results confirm the two
expectations raised above: (a) emergence of scale-invariant
dynamics at both mid-times and late-times, and (b) a
power-law decay p'°(t) oc t7# in the mid-time dynamics,
described by Eq. (24). Different panels of Fig. 7 correspond
to different values of the parameter b, and in each panel we
list the value of the power-law exponent 8 obtained from
the fit. The later is connected to the fractal dimension y via
y = np (25), where n & 1 for the PLRB model. We observe
that 8, and hence y, increases with increasing b, i.e., weaker
multifractality is associated with larger b. The dependence of
B on b is summarized in Fig. 19(a) (see below).

We next study survival probabilities from other initial
states, specifically, the SFF k(7) and the survival probability
from initial plane waves pP" (7). In Fig. 4(c) we studied the
corresponding unscaled quantities K(t) and PP¥(t) at criti-
cality, which were shown to approach at late times (t — 1)
the values K — 1/D and PPV — 2/D. Their values match the
predictions of the GOE Hamiltonians studied in Sec. IV B.
For the quantities k(r) and pPY(7), which are of interest
here, the GOE case implies the relationship k = 2pP¥ — 1, as

PLRB model, weak mulltifractality

1 )
L=1000 \
R L r=2s00 o0
........... b - L=5000 ST 7
~0.1 R L Zi0000 | £ 01 Z
........................................ /
........................ : - 1=20000 | NS >
0.03: 0.03 0
(a) 7 b=125,2.5,5,10 (b) L
0.01 103 1072 _ 01 i 10 0-01 107 1072 _ 01 1 10

FIG. 8. (a) The SFF k(7), and (b) the survival probability from the initial plane waves 2p”¥(t) — 1, in the PLRB model at criticality,
a = 1. Results are shown for several values of b > 1 at weak multifractality, and different system sizes L, as indicated in the legend [the same
parameters as in Figs. 7(f)-7(i)]. The horizontal dotted lines denote the plateau values &, , and the dashed-dotted lines denote the linear ramp
of the numerically evaluated GOE Hamiltonians, cf. Fig. 3. The circles correspond to the extracted Thouless times 7y, at which k(t) approach
the numerically evaluated GOE values. The inset in (b) shows a detail of the additional short-time feature of 2pP¥(7) — 1 compared to k(7).
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FIG. 9. (a) The SFF k(t), and (b) the survival probability from the initial plane waves 2pP*(7) — 1, in the PLRB model at criticality,
a = 1. Results are shown for several values of b < 1 at strong multifractality, and different system sizes L, as indicated in the legend [the same
parameters as in Figs. 7(c)-7(e)]. All other features are identical to those in Fig. 8.

established in Eq. (23). Therefore, in Figs. 8 and 9 we explore
to which degree the similarity between k(t) and 2pP¥(7) — 1
extends to the dynamics at criticality.

Figure 8 shows the results at weak multifractality, b > 1,
and Fig. 9 shows the results at strong multifractality, b < 1.
We observe emergence of a broad plateau in k(t), which is
marked by the horizontal dotted lines in Figs. 8(a) and 9(a).
The plateau emerges in the mid-time dynamics, in which
pl°(1), see Fig. 7, exhibits a power-law decay. This was
first observed in [49] for the 3D Anderson model and is here
complemented by the analysis in the PLRB model.

We extract the two features of k() from Figs. 8(a) and
9(a), which we then further analyze in Fig. 19 of Sec. VIII: the
value of k at the plateau k,, where x refers to spectral com-
pressibility [55,56] responsible for the plateau, and the value
of k at the Thouless time k(t7;). The former characterizes
the mid-time dynamics, see also the discussion in Sec. VIII,
while the latter characterizes the late-time dynamics. Both
values are b dependent, and they decrease with increasing b.

It is interesting to observe that 2pPY(7) — 1 at criticality
indeed shares many similarities with k(7). This similarity is
in particular apparent at weak multifractality, see Fig. 8, for
which it persists both in the mid-time and late-time dynamics.
This similarity can be interpreted as being a consequence
of proximity of the weak multifractal regime to the chaotic
behavior. Still, it contains several nontrivial implications, e.g.,
the extraction of Thouless time can be reliably carried out

from 2pP¥(7) — 1. At strong multifractality, 2pP*(t) — 1 ex-
hibits additional features in the mid-time dynamics, as shown
in the insets in Figs. 8(b) and 9(b). In particular, we observe a
dip below the plateau value k,, which is also associated with
the breakdown of scale-invariant behavior.

D. Critical dynamics in the Anderson models

We complement results for the PLRB model with those
for the Anderson models in hypercubes with dimensions
d =3,4,5. Figure 10 shows the dynamics of the survival
probability from the initial site-localized states p'°°(z). While
the results in d = 3 were already reported in Ref. [49], the
results in d = 4 and 5, see Figs. 10(b) and 10(c), respectively,
establish generality of scale-invariant mid-time and late-time
dynamics at criticality. The exponent B of the power-law
decay in the mid-time dynamics, p'°(t) o« 777, decreases
with increasing the dimensionality d, which implies stronger
multifractality. The shift towards stronger multifractality in
higher-dimensional Anderson models was previously studied
from the perspective of level statistics [76] and optical con-
ductivity [71].

In Fig. 11 we then study the survival probabilities from
other initial states, specifically, the SFF k(7 ) and the survival
probability from the initial plane waves pP" (7). The SFF k(7),
see Fig. 11(a), exhibits a plateau in the mid-time dynamics,
which is consistent with the results for the PLRB model in

Anderson model in d dimensions
10
§ - L=12 - L=24 - L=6 - L=12 - L=4 - L=7
o 5 - L=32 - L=14 7 - L=5 - L=8
QQ - L=6
2r -0.28 i (;)‘ o o T019
1r 3D, W/ =16.54 ™ - 4D, Wjj=345 T - 5D, WJ=57.5
102 0.1 1 102 0.1 1 102 0.1 1
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FIG. 10. Survival probability p'°(t) from Eq. (17) in the Anderson models at the critical points, for different linear system sizes L.
Different panels correspond to different dimensionalities d of the hypercubic lattice: (a) d = 3 (the critical point W/J = 16.54), (b) d = 4 (the
critical point W/J = 34.5), and (c) d = 5 (the critical point W/J = 57.5). The dotted lines are the fits o« 7=# from Eq. (24), and in each panel

we provide the value of 8 obtained from the fit.
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FIG. 11. (a) The SFF k(7), and (b) the survival probability from the initial plane waves 2pP¥(7) — 1, in the Anderson models at the critical
points, for different linear system sizes L. Results are shown for different dimensionalities d of the hypercubic lattice: d = 3 (the critical
point W/J = 16.54), d = 4 (the critical point W/J = 34.5), and d = 5 (the critical point W/J = 57.5). The horizontal dotted lines denote the
plateau values k, , and the dashed-dotted lines denote the linear ramp of the numerically evaluated GOE Hamiltonians, cf. Fig. 3. The circles
correspond to the extracted Thouless times 7, at which k(t) approaches the numerically evaluated GOE values. The inset in (b) shows a
detail of the additional short-time feature of 2pP"(t) — 1 compared to k(7 ), which approaches a plateau.

Figs. 8(a) and 9(a), and with the results for the 3D Anderson
model in Ref. [4]. We note, however, that scale invariance
of the plateau in Fig. 11(a) is reasonably good but not per-
fect, which we attribute to the absence of spectral unfolding
and filtering in the calculation of the SFF k(7). In Fig. 21
of Appendix A we show results for the SFF after spectral
unfolding and filtering, for which scale invariance of the
plateau is further improved. In Fig. 19 (see below) we sum-
marize the behavior of 8, k, in the mid-time dynamics, and
7, k(try) in the late-time dynamics, for the 3D, 4D, and 5D
Anderson models.

Finally, motivated by the observation of similarities be-
tween k(7) and 2p'°°(7) — 1 in the PLRB model in Figs. 8 and
9, we ask to which extent this similarity translates to the An-
derson models. Results for the latter are shown in Fig. 11(b).
They share certain similarities with the PLRB model at strong
multifractality, see Fig. 9(b). Nevertheless, they do not show
convincing evidence neither of scale invariance nor of build-
ing a plateau in the mid-time dynamics, at least for the system
sizes of investigation. Still, based on the similarity with the
PLRB models, for which the latter properties appear to be
present at weak multifractality, see Fig. 8(b), we can not ex-
clude that they also appear at strong multifractality in system
sizes much larger than those considered here.

VI. RESULTS FOR INTERACTING MODELS

A. From many-body quantum chaos to Fock space localization

We now study the dynamics of two interacting models,
the QS model (3) and the UM model (5). The initial states
are many-body states, which belong to the Fock space of
dimension D = 2/*N, Previous study has established that
both models exhibit an ergodicity breaking phase transition
from many-body quantum chaos at o > o, to Fock space
localization at o < «,, with the critical point exhibiting
multifractality [85].

We first study the dynamics across the critical point at
a fixed system size L, focusing on the unscaled SFF K(7)
from Eq. (8) and the survival probability P(t) from Eq. (11).
Figure 12 compares the dynamics in both models. The re-
sults exhibit strong similarities in all phases, in particular in

the mid-time and late-time dynamics. These similarities can
be interpreted as the extension of the established similarity
between the two models in Ref. [85] to time domain. In the
ergodic phase, see Figs. 12(a) and 12(b), K(r) and PPV(7)
are close to the GOE predictions, while P°(7) is not. At
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FIG. 12. K(t), P*(7), and PP¥(7) (all green) in the QS model
(left column) and UM model (right column) at L + N = 15, i.e.,
D =21 =32768. [(a),(b)] Ergodic phase at & = 0.8, [(c),(d)] crit-
ical point at o, [, = 0.715 in the QS model at N =5 [49] and
o, = 1/\f2 in the UM model], [(e),(f)] localized phase at o« = 0.6.
Additionally, we show the running averages to K(z) [blue], P'*(z)
[red], and PP¥(t) [orange]. The corresponding results for the GOE
Hamiltonians from Sec. IV B (see Fig. 2) are shown as dashed black
lines. The dotted lines in (c) and (d) indicate the power-law decay for
P'°(1) to a nonzero constant and the plateaus in K (7).
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FIG. 13. Survival probabilities in the QS model at criticality, « = o, = 0.715, for several system sizes L with the Fock-space dimension
D =2 and N = 5. (a) p'(r) from the initially Fock-space-localized states, (b) the SFF k(t), and (c) 2p°" — 1 from the initial plane
waves. The dotted line in (a) denotes the power-law fit from Eq. (24) and the horizontal dotted lines in (b) and (c) denote the plateau values
k,. The thick dashed-dotted lines in (b) and (c) denote the numerical results for the SFF of the GOE Hamiltonians, cf. Fig. 3. The black circles

correspond to the extracted Thouless times .

criticality, see Figs. 12(c) and 12(d), Ploc(1) develops a power-
law decay and K (7) exhibits a plateau. In the localized phase,
see Figs. 12(e) and 12(f), properties of the critical point grad-
ually fade away in both models.

B. Similarity of critical dynamics in QS and UM models

We next focus our analysis on the dynamics at criticality,
o = o,. As before, we study survival probabilities introduced
in Eq. (17) from different initial states, p'*°(t), k(t), and
PP (7).

The survival probability from the initial Fock-space-
localized states p'°(tr) exhibits a scale-invariant power-law
decay in the mid-time dynamics of both models, shown in
Figs. 13(a) and 14(a). The exponent 8 of the power-law decay,
however, depends on the specific properties of the models.
For the model parameters set in Sec. II, the systems are at
moderate to strong multifractality.

The SFF k(t) exhibits a scale-invariant plateau in both
models, see Figs. 13(b) and 14(b). Scale invariance of the
plateau is well converged in the UM model in Fig. 14(b). On
the other hand, in the QS model the tendency towards scale

invariance is apparent but the convergence is not yet optimal.
In Ref. [5] the SFF was studied using spectral unfolding and
filtering, giving rise to clearer convergence towards scale-
invariant behavior.

For the survival probability from the initial plane waves
pPV(t) we study its rescaled version 2pPY(t) — 1, which is
identical to the SFF k(7) in the GOE Hamiltonians (23). This
relationship also holds for both models at criticality in the late-
time dynamics, see Figs. 13(c) and 14(c). As a consequence,
the Thouless times, which are very similar in both models, can
be extracted either from k(7 ) or from 2pP"(7) — 1. However,
at mid-times the validity of the relationship between k(7 ) and
2pP¥(t) — 1 is less obvious due to the emergence of dips in
2pP¥(t) — 1 below the plateau values.

C. Similarity with quadratic models

Apart from the similarity in the mid-time and late-time
dynamics in the interacting QS and UM models, there is also
an apparent similarity between the interacting models consid-
ered here and the quadratic models (the PLRB and Anderson
models) studied in Sec. V. The emergence of this similarity

Ultrametric model

200 2
[=9 - [=12
t—a1yz @ TG (©)
20¢ 1r - L=11
o
Q ~
0.2r /
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gyt 0.1y
10910 ; 0.1 1 103 . 01 1

FIG. 14. Survival probabilities in the UM model at criticality, & = o, = 1/+/2, for several system sizes L with the Fock-space dimension
D =2 and N = 1. (a) p'°(r) from the initially Fock-space-localized states, (b) the SFF k(t), and (c) 2p°" — 1 from the initial plane
waves. The dotted line in (a) denotes the power-law fit from Eq. (24) and the horizontal dotted lines in (b) and (c) denote the plateau values
k, . The thick dashed-dotted lines in (b) and (c) denote the numerical results for the SFF of the GOE Hamiltonians, cf. Fig. 3. The black circles
correspond to the extracted Thouless times try,.
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is nontrivial provided that in the latter case one considers
single-particle states and single-particle spectrum, while in the
former case all quantities are of genuinely many-body origin.

The most prominent features that exhibit similarity in the
mid-time dynamics are the scale-invariant power-law decay
of ploc(r) o< 78 and the plateau value ky of the SFF k(7).
We characterize them by studying the behavior of B8 and
1 — k, in Fig. 19(a) (see below) as a function of the degree
of multifractality (see Sec. VIII for details). The results for
the interacting and quadratic models exhibit, for each of the
measures B and 1 — k,, a nearly perfect collapse to a single
function.

While the above properties hint at the universality in mid-
time dynamics, it is interesting to note that quantitatively
similar behavior can also be observed in the late-time dynam-
ics. In particular, in Fig. 19(b) (see below) we plot 1 — k(tr),
i.e., the distance of the SFF k(7) at the onset of quantum
chaos to its long-time average, and again observe a nearly
perfect collapse. This suggests that fingerprints of criticality
may be encoded in both the mid-time as well as the late-time
dynamics.

VII. RESULTS FOR THE ROSENZWEIG-PORTER
(RP) MODEL

Previous two sections have established similarity in the
critical dynamics in the quadratic and interacting models.
Here we show that the RP model exhibits a slightly different
behavior that, although consistent internally, features distinct
mid-time critical dynamics at the eigenstate transition.

A. Transitions in the RP model

Even though we defined the RP model in Sec. IIC as a
quadratic model with random on-site potentials and all-to-all
hoppings, the model is different from the other models con-
sidered so far since it is expected to exhibit two transitions, at
¢ =1 and ¢ = 2. In the context of this paper we argue that
only the second transition (at ¢ = 2) can be considered as
the eigenstate transition with scale-invariant critical dynamics.
At this transition, the short-range spectral correlations change
from the GOE statistics to the Poisson statistics at any A
[102]. Here we are mostly concerned with the properties of
long-range spectral correlations [24,97,103,107].

We first study the dynamics at and in the vicinity of the
first transition at ¢ = 1. In Fig. 15, we show an example of
the unscaled survival probability P(t) from Eq. (11) as well
as the SFF K (7). We vary the parameter ¢ while keeping the
parameter A fixed. Figure 15(a) shows that the limit of ¢ = 0
is, up to normalization, the limit of the GOE Hamiltonians,
and the numerical simulations fit the corresponding analytical
predictions very well. Increasing the value of ¢ within the
range ¢ < 1, see Figs. 15(b) and 15(c), gives rise to the visible
differences in P'°°(t), while K () and PP"(t) remain virtually
identical. Above the transition point to the nonergodic ex-
tended phase, i.e., at ¢ > 1 shown in Fig. 4(d), the deviations
of K(t) and PP¥(7) from the analytical results become more
apparent.

Next we study the dynamics at and in the vicinity of the
second transition at ¢ = 2. By increasing c toward the value

RP model
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FIG. 15. K(t), P*(7), and PP¥(t) (all green) in the RP model
at A =0.5 and D =L =20000. (a) ¢ =0, (b) ¢ =0.75, (c) the
first critical point ¢ = 1, and (d) ¢ = 1.25. Additionally, we show
the running averages to K (blue), P (red), and PP* (orange). The
corresponding results for the GOE Hamiltonians from Sec. IV B (see
Fig. 2) are shown as dashed black lines. At ¢ = 1 the SFF K (7) fully
matches the GOE prediction.

¢ = 2, the results for K(t) and PPV (t) further deviate from
the GOE predictions, see Figs. 16(a)-16(c). In particular, the
agreement between K(7) and the GOE predictions is only
preserved at long times close to the Heisenberg time ty = 1.1t
is interesting to note that by increasing c, PP¥(t) approaches
the time dependence of K(t), and at ¢ > 2, see Fig. 16(d),

K, Ppw' Ploc E'll
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FIG. 16. K(t), P(7), and PP¥(7) (all green) in the RP model
at A = 0.5 and D = L =20000. (a) ¢ = 1.5, (b) ¢ = 1.75, (c) the
second critical point ¢ = 2, and (d) ¢ = 2.25. Additionally, we show
the running averages to K (blue), P (red), and PP* (orange). The
corresponding results for the GOE Hamiltonians from Sec. IVB
(see Fig. 2) are shown as dashed black lines. The dotted lines in
(c) indicate the plateau in K(t) = 1/D.
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FIG. 17. Survival probability p'°*(z) from Eq. (29) in the RP model at the critical point ¢ = 2. (a) A = 0.5, (b) A = 1, and (c) A = 1.5.
The horizontal dotted lines can be interpreted as the fits p'°(t) o« =# from Eq. (24), with 8 = 0 in all panels. Results are shown for different
linear system sizes L = 1000, 2500, 5000, 10 000, 20 000, which perfectly overlap.

they indeed become very similar. This excludes the validity
of the relationship k(7) = 2pPY(r) — 1 from Eq. (23), which
is further confirmed in the next section where we study scale
invariance of the dynamics at ¢ = 2.

Another important aspect concerns the mid-time dynamics
of K(t). Figure 16(c) shows that at ¢ = 2, which we refer to
here as the eigenstate transition, K (t) develops a plateau, sim-
ilarly to the critical points for eigenstate transitions in other
models under considerations. However, the plateau value is
maximal in the sense that it equals the long-time average.
As discussed in the next section, this is consistent with the
absence of the decay of P'°°(t) in the mid-time dynamics,
which is indeed observed in Fig. 16(c).

B. Critical dynamics in the RP model

We now focus on the dynamics at the critical point ¢ = 2,
and we study the survival probabilities p'°°(t) in Fig. 17,
and k(t), pP™(r) in Fig. 18. The most important property
of the critical point at ¢ = 2 is that Hamiltonian eigenstates
are localized [97,103], in contrast to all other critical points
considered before. This has implications both for the time
dependence in the mid-time dynamics, as well as on the scale
invariance since it requires a refinement of the definition of
the survival probability p'°(7).

As a consequence of localization at the critical point one
needs to consider Eq. (12) with some care. For the initial

site-localized states, we observe Plo¢ = P;gc for any finite
system under consideration. Then, there is no need to apply
Eq. (17), but a simpler rescaling,

Ploc ( T )
Ploc

which is analogous to the one applied to the SFF in Eq. (16), is
sufficient to observe scale invariance. The resulting p'°(7) is
plotted in Fig. 17 at ¢ = 2 and several values of A, exhibiting
perfect scale invariance.

Another important feature of Fig. 17 is the absence of any
decay of p'°°(t) in the mid-time dynamics for all values of A.
This can be interpreted as a power-law decay with 8 = 0, and
hence the fractal dimension is y = 0, which is consistent with
localization. A manifestation of this property is the emergence
of a plateau in k(r) in the mid-time dynamics, shown in
Fig. 18(a), which equals k, = 1. We note that the plateau is
more clearly visible in the unfolded and filtered version of the
SFF k() shown in Fig. 22 of Appendix A. A certain tendency
towards scale invariance is also manifested in the dynamics of
2pP¥(t) — 1 shown in Fig. 18(b), however, as already noted
in the context of Fig. 16(c), the time evolution of the later
quantity can not be related to k(7).

The main properties of the RP model are summarized in
the next section, see Fig. 19, and compared to other models.
For the long-time dynamics, one can show that the RP model

pIOC(.L,) —

(29)

RP model
25 25y ~L=1000 - L=10000
o A=05,1,1.5,2 1 - L=2500 - L=20000
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FIG. 18. (a) The SFF k(7), and (b) the survival probability from the initial plane waves 2p°*(7) — 1, in the RP model at the critical point
¢ = 2, for different linear system sizes L. Results are shown for different values of A, as indicated in the legend. The horizontal dotted line
in (a) denotes the plateau value kX = 1, and the horizontal dotted lines in (b) denote the estimates of the plateau values for 2pP*(t) — 1. The
dashed-dotted lines in both panels denote the linear ramp of the numerically evaluated GOE matrices, cf. Fig. 3. The circles correspond to the
extracted Thouless times try,, at which the quantities approach the numerically evaluated GOE value.
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FIG. 19. Characterization of scale-invariant properties at criticality in the (a) mid-time dynamics, and (b) late-time dynamics, see also
Fig. 1. (a) The power-law decay exponent 8 (red) and the distance of the SFF long-time average to the plateau, 1 — k, (blue). (b) The distance
of the SFF long-time average to the SFF at the onset of quantum chaos, 1 — k() (blue), and the normalized average gap ratio 7y from Eq. (30)
(black). The crosses (x) are results for the PLRB model, as a function of the parameter b. For all other models, we assign the corresponding
value of b by matching the values of 7y in the studied model with those in the PLRB model. This yields the 7y versus b curve smooth by
construction. Results for the 3D, 4D and SD Anderson models are marked with circles (o), for the QS model with squares ([J), for the UM
model with right triangles (t>), and for the RP model with left triangles (<).

complies with the universal features observed in other mod-
els, see the next section for details. However, the mid-time
dynamics of the RP model is not consistent with the universal
properties of other models. We attribute localization of the
Hamiltonian eigenfunctions as the main source of deviations,
since all the other models exhibit multifractality at criticality.

VIII. MID-TIME VS LATE-TIME DYNAMICS

We summarize our findings by combining the two perspec-
tives on the properties of the critical points, one obtained from
the mid-time dynamics and another from the late-time dynam-
ics. The mid-time dynamics is characterized by the power-law
exponent B and the distance of the SFF long-time average to
the plateau, 1 — k,, while the long-time dynamics is charac-
terized by the normalized average gap ratio at criticality,

7—}”})

N = (30)

'GOE — I'p

and the distance of the SFF at the onset of quantum chaos (i.e.,
at T = tqy) to its long time average, 1 — k(7). The goal is to
study all these quantities as a function of a single parameter
that determines the degree of multifractality of the critical
wavefunctions. We choose this parameter to be b from the
PLRB model, see Eq. (2). For the other models, we determine
the corresponding value of b by requesting the gap ratio 7y of
that model to match the gap ratio of the PLRB model.

Results are shown in Fig. 19. For the late-time dynamics,
see Fig. 19(b), the curve 7y versus b is smooth by construc-
tion. It is interesting to observe that also the distance of the
SFF long time average to the SFF at the onset of quantum
chaos, 1 — k(tmy), appears to approach a well-defined func-
tion of the parameter b. This observation is in particular
important since we consider both quadratic and interacting
models within the same framework.

For the mid-time dynamics, see Fig. 19(a), we observe
that both the power-law exponent 8 and the distance of the
SFF to the plateau 1 — k,, appear to be monotonously increas-
ing functions of b. Even though the quantities are extracted
purely from the dynamics, the results for quadratic models
are fully consistent with the findings of Refs. [55,56], where
similar quantities (fractal dimension and spectral rigidity)
were extracted from the analysis of energy eigenspectra and
properties of eigenvectors. Again, our main result is that also
the critical properties of interacting models may belong to the
same single-parameter function.

The exception to the observed universal properties of
the mid-time and late-time dynamics is the RP model.
Figure 19(a) shows that both B and 1 —k, deviate from
the single-parameter function, since 8 =1—k, =0 in all
cases under consideration. In fact, since the wavefunctions at
criticality are localized, they should rather correspond to the
b = 0 limit of the PLRB model. This does not match with the
properties of other models for which the average gap ratio is
given by the Poisson statistics if critical point is localized. The
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observed deviations only hint at a lack of the correspondence
between the mid-time and late-time dynamics in the RP
model.

IX. CONCLUSIONS

In this paper we studied quantum dynamics of survival
probabilities from different initial states, including those that
define the SFF, and we provided answers to the two questions
posed in the Introduction. The most important statement is
that there exist the notion of scale invariance in quantum
dynamics at criticality. Remarkably, the scale invariance is
observed in quantities that bear direct analogies with the well-
established measures of quantum chaos. Another important
statement is that scale invariance at criticality may be ob-
served at times that are much shorter than those required to
detect quantum chaotic dynamics. These properties open pos-
sibilities to detect fingerprints of criticality at experimentally
accessible time scales (in the so-called mid-time dynamics),
which are much shorter than the longest time scales of finite
systems, characterized within the notion of the Heisenberg
time.

While universality of the chaotic dynamics such as the
emergence of a ramp in the SFF is expected for all quantum
chaotic models, understanding of the universal features at
criticality is far from understood. The survival probabilities
introduced here and in the preceding Letter [49] allow for
establishing similarity of quantum dynamics in different mod-
els. In particular, we established the link within two classes of
models: for quadratic models, between the Anderson model
and the PLRB model, for which connections have often been
explored in the past [37], and for interacting models, between
the QS model and the UM model, for which connections have
been noted only recently [85]. Most intriguingly, however,
we also established similarity in quantum dynamics between
the quadratic and interacting models. One of the possible
outcomes of this result is that ergodicity breaking phase tran-
sitions in the interacting models under consideration may
be described as Anderson transitions in the corresponding
Hilbert spaces.

A common feature of all the models for which similarity in
the critical dynamics has been established is the wavefunction
structure, which is multifractal in the corresponding Hilbert
spaces. This motivated us to quantify features of both mid-
time and late-time dynamics, and express them in terms of a
single parameter that quantifies the degree of multifractality.
Results shown in Fig. 19 suggest that indeed a universal,
single-parameter description of the main dynamical features
is possible. In particular, it allows for understanding the mid-
time dynamics via the late-time dynamics, and vice versa.
We also showed that the RP model represents an exception
from the latter property, and we attributed this by the lack of
multifractal structure in the RP model at the critical point.
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APPENDIX A: UNFOLDING AND FILTERING IN THE SFF

The SFF studied in the main text is defined such that it
allows for making the connection to the dynamics of survival
probabilities. However, the more common implementation of
the SFF includes spectral unfolding and filtering. Below we
quantitatively compare both implementations of the SFF.

The SFF with unfolding and filtering [3,4] is defined as

1/|& ’
k(@) = Z< D ple)e e > :
v=1 H

where {¢,} denote the complete ordered set of the eigenval-
ues {E,} of H after spectral unfolding, p(e,) represents a
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FIG. 20. The SFF in the 3D Anderson model on the cubic lattice
at different linear system sizes L. [(a),(c),(e)] The SFF k(1) after
spectral unfolding and filtering, see Eq. (A1). [(b),(d),(f)] The SFF
k(7 ) without unfolding and filtering, see Eq. (16). (a) and (b) W/J =
10, (c) and (d) the critical point W/J = 16.54, (e) and (f) W/J = 20.
The horizontal dotted lines in (c) and (d) denote the plateau values
of E(r) and k(7). The dashed lines in (a), (c), and (e) denote the
analytical expression for the GOE ramp from Eq. (22), while the
dashed-dotted lines in (b), (d), and (f) denote the numerical result
for the ramp in the GOE Hamiltonians, cf. Fig. 3.
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FIG. 21. The SFF k(t) after spectral unfolding and filtering, see
Eq. (A1), at the critical points of the Anderson models on 3D, 4D and
5D hypercubic lattices, shown at different system sizes L. The dotted
lines denote the plateau values of k(7). The dashed line denotes the
analytical expression for the GOE ramp from Eq. (22).

Gaussian filter, and (...)y denotes the average over different
realizations of the Hamiltonian H.

The purpose of carrying out spectral unfolding is to
eliminate the impact of nonuniform density of states. We
unfold the spectrum using the cumulative spectral function
G(E)=)_,0O(E —E,), where O is the unit step function,
and a polynomial fit g3(E') of degree 3 to G(E). The unfolded
eigenvalues are then defined as ¢, = g3(E,). Consequently,
the local level spacing is set to unity at all energy densities,
and the scaled time 7 is measured in units of the inverse of
this level spacing (times %, which is also set to 1). This means
that the Heisenberg time in this units equals 7y = 1. One
observes similarities between the scaled time 7 and the scaled
time t from Eq. (15), and for the purpose of the numerical
studies in this Appendix, we simply refer to the scaled time
as 7 in both cases.

The role of the Gaussian filter p(g,) is to eliminate con-
tributions from the spectral edges [3]. The filtering function
is defined as p(e,) = exp{— (82”;2)2 }, where & and I'? are
the mean energy and the variance, respectively, for a given
Hamiltonian realization, and n = 0.5 controls the effective
fraction of eigenstates included in k(7). The normalization
zZ={3, |p(e,)|*) i then sets k(t > 1) =~ 1. At the Thouless
time 7, k(t) becomes universal in the sense that it matches
the analytical prediction of the GOE from Eq. (22).

Figure 20 compares the unfolded and filtered k(7) in the
3D Anderson model, studied in [4], with k() studied in the
main text. Results are qualitatively very similar. In the chaotic
regime, see Figs. 20(a) and 20(b), we observe that in the
late-time dynamics after the Thouless time, k() follows the
analytical prediction of the GOE from Eq. (22), while k(7)
better agrees with the numerical results for the GOE Hamil-
tonians. At criticality, see Figs. 20(c) and 20(d), IE(r) exhibits
a clearer plateau in the mid-time dynamics, however, it also
exhibits a dip below the plateau at short times. We also note
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FIG. 22. The SFFs k() from Eq. (16) (solid blue line) and k(t)
from Eq. (A1) (dashed blue line) in the RP model atc = 2, A = 1 and
L = D = 20000. The dotted lines denote the plateau values of k(t)
and k(t), which are both equal to one. The dashed black line denotes
the analytical expression for the GOE ramp from Eq. (22), while the
dashed-dotted black line denotes the numerical result for the ramp in
the GOE Hamiltonians, cf. Fig. 3.

that the plateau value of k() emerges at slightly higher value
when compared to the plateau value of k(7). On the localized
side, see Figs. 20(e) and 20(f), the results are again similar,
apart from the dips at short times that emerge in k(7).

Figure 21 extends the analysis of k(7) at criticality to the
4D and 5D Anderson models. This result should be compared
to Fig. 11(a), in which we show k(7). The tendency for the
emergence of a scale-invariant plateau in the mid-time dynam-
ics is clearer in k(7) in Fig. 21. However, k(1) also exhibits
some deviations when compared to the analytical prediction
for the GOE ramp at late times.

We also study the impact of unfolding and filtering on the
SFF in the RP model. Figure 18(a) shows k(t) at criticality,
which exhibits a tendency toward forming a plateau in the
mid-time dynamics at k, = 1. Figure 22 shows that the emer-
gence of a plateau can be demonstrated more convincingly in
k(t). On the other hand, the agreement between k(t) and the
analytical prediction for the GOE ramp at late times T & 1 is
again less accurate.

APPENDIX B: DETAILS OF AVERAGING
AND THE EXTRACTION OF THOULESS TIME

For the results shown in all figures of the paper, i.e., for
all models and all system sizes, we average over minimally
100 Hamiltonian realizations. For smaller system sizes the
number of Hamiltonian realizations is increased to 500. For
the SFF and other survival probabilities, we additionally use
the running averages in t to reduce time fluctuations.

In several cases we extracted the Thouless time from our
numerical results. At the Thouless time 7, the SFF k(1 =
Trp,) approaches the numerical results for the ramp kgog(tr1)
in the GOE Hamiltonians. We follow Refs. [3,4] to establish
the criterion when do the two curves approach each other. In
particular, we require In [k(t7p)/kcoe(Trr)] < €, where the
threshold ¢ is set to € = 0.05.
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