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Atomic interferometers measure forces and acceleration with exceptional precision. The conventional ap-
proach to atomic interferometry is to launch an atomic cloud into a ballistic trajectory and perform the
wave-packet splitting in momentum space by Raman transitions. This places severe constraints on the possible
atomic trajectory, positioning accuracy, and probing duration. Here, we propose and analyze an alternative atomic
interferometer that uses micro-optical traps (optical tweezers) to manipulate and control the motion of atoms.
This interferometer allows long probing time, submicrometer positioning accuracy, and utmost flexibility in
the shaping of the atomic trajectory. The cornerstone of the tweezer interferometer consists of the coherent
atomic splitting and combining schemes. We present two adiabatic schemes with two or three tweezers that
are robust in the presence of experimental imperfections and work simultaneously with many vibrational states.
The latter property allows for multiatom interferometry in a single run. We also highlight the advantage of
using fermionic atoms to obtain single-atom occupation of vibrational states and to eliminate mean-field shifts.
We examine the impact of tweezer intensity noise and demonstrate that, when constrained by shot noise, the
interferometer can achieve a relative accuracy better than 10−11 in measuring Earth’s gravitational acceleration.
The submicrometer resolution and extended measurement duration offer promising opportunities for exploring
fundamental physical laws in new regimes. We discuss two applications well suited for the unique capabilities
of the tweezer interferometer: the measurement of gravitational forces and the study of Casimir-Polder forces
between atoms and surfaces. Crucially, our proposed tweezer interferometer is within the reach of current
technological capabilities.
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I. INTRODUCTION

Interferometers have a long history of driving scientific
revolutions, from the Michelson-Morley experiment [1], to
the recent observation of gravitational waves [2]. Soon af-
ter the discovery of the wave-particle duality, in the early
years of the 20th century, it was realized that the interference
of massive particles could be harnessed for the purpose of
highly precise measurements [3,4]. Over the years, matter-
wave interference has been demonstrated using a wide range
of masses, including electrons, atoms, and complex molecules
[5,6]. The development of laser cooling techniques has made
cold atoms a popular choice for interferometry due to their
large de Broglie wavelengths and slow velocities, which allow
for long coherence and integration times.

Atomic interferometers (AIFs) come in many forms, but
they all rely on the same fundamental principle; the atomic
wave packet is initially prepared in a specific state and then
coherently divided into two parts that follow distinct paths
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[4]. The quantum wave function in each arm may acquire a
different phase. The two arms are then coherently combined,
and the process of recombination maps the relative phase
shift between them to populations in two output states, which
may be external (e.g., spatial modes, momentum states) or
internal (e.g., spin projections, atomic energy levels). The
most significant distinction between atomic and photonic in-
terferometers is the nonzero mass of the former. This means
that in an atomic interferometer, atoms can be brought to a
complete halt.

To coherently split wave functions of atoms, AIFs have
initially employed diffraction from periodic fabricated struc-
tures [7,8] and optical lattices [9]. These techniques utilize
the exchange of lattice momentum to create sidebands in the
atomic wave function’s momentum distribution, which leads
to a coherent splitting of the atomic path in real space. They
are relatively simple to implement and robust, but they have
low efficiency and limited control over the atomic trajectory.
A different approach is to utilize the coherent absorption of
a single photon [10] or two photons with different wave vec-
tors [11] to generate coherent splitting in momentum space.
One well-known example is the Kasevich and Chu (KC) in-
terferometer [12], which uses stimulated Raman transitions
to drive coherent Rabi oscillations between two momentum
states, which then undergo different kinematic trajectories.
Stopping the oscillation after a quarter of a period (π

2 pulse)
generates a balanced superposition of these states. The KC
interferometer is based on a sequence of π

2 -π -π
2 pulses to
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achieve the splitting, mirroring, and recombining of the atoms,
respectively.

KC interferometers were instrumental in many precision
measurements in the last two decades, including determina-
tion of the gravitational constant [13,14], measurement of the
fine-structure constant [15], testing the equivalence principle
[16], and constraining dark energy models [17], to name a few.
However, they suffer from several shortcomings, including
limited spatial resolution and atomic motion which is geodesic
only (i.e., free fall) and cannot be freely shaped. In particular,
it is not possible to position the atoms at rest at arbitrary
locations. Moreover, to have a long probing duration, the
experimental apparatus tends to be very large, and even then,
the interaction time is limited to a few seconds. AIFs with
three-dimensional (3D) confinement of the atoms would be
a complete change of paradigm [18]. A step in this direction
was recently reported by the group of Müller, who developed
a variant of a KC interferometer that combines trapping the
atoms at the apex of the geodesic motion, reaching a hold-
ing time of 20–60 s [19,20]. However, the atomic motion
was still ballistic, and the maximum separation between the
wave packets was tens of micrometers. Matter-wave interfer-
ence with 3D-confined condensates of bosons and fermionic
pairs was also demonstrated, but only as a tool to study the
coherence of the condensate wave function [21,22]. Specif-
ically, substantial stochastic phase shifts due to interparticle
interactions in these gases make them unsuitable for precision
metrology. Interferometry with a single trapped atom was
demonstrated in a spin-dependent lattice [23]. However, the
maximum separation was around 10 µm, and the holding time
was limited to around 1 ms due to spontaneous scattering from
the lattice.

Here, we propose a scheme for atomic interferometry
that employs mobile micro-optical traps, known as “optical
tweezers,” to trap and manipulate individual atoms. Recent
years have seen significant progress in this field [24–29].
Neutral atoms in optical tweezers have been used in quan-
tum computing as qubits [25,26], in quantum simulation of
many-body phenomena [27,30], and for precision time mea-
surements [31]. We propose to use the tweezers to coherently
split and recombine the atoms and, in between, to hold the
atomic wave packets for tens of seconds with submicrome-

ter positioning accuracy and complete freedom to shape the
atomic trajectory. A key aspect of our proposal is the im-
plementation of atomic splitters and combiners that do not
change the internal state of the atom, are robust in the presence
of experimental imperfections, and work with many vibra-
tional states of the tweezer. Furthermore, we propose to use
fermionic atoms and leverage their Fermi-Dirac statistics to
have between a few tens of atoms and a hundred atoms in a
single run while avoiding systematic interaction energy shifts.
This unique combination will allow high-precision measure-
ment of potentials with submicrometer resolution.

The structure of this paper is as follows. In Sec. II we
describe the tweezer AIF in detail. In Sec. III we discuss
the atomic splitting and recombining schemes. We first ex-
plain the general considerations and then present two schemes
based on two and three tweezers. In Sec. IV we present nu-
merical simulations done with realistic noise parameters in
order to estimate the sensitivity and precision of the proposed
interferometer. In Sec. V we discuss two physical measure-
ments where the proposed AIF can be particularly beneficial:
measurement of Casimir-Polder forces and measurement of
the gravitational constant. We summarize and give an outlook
in Sec. VI.

II. TWEEZER-BASED ATOMIC INTERFEROMETER

A schematic sketch of the proposed interferometer is
shown in Fig. 1. An atomic wave packet is prepared and
held in a single optical tweezer. Then, the wave packet is
split coherently into two tweezers, each moving in a different
path, and afterwards it is recombined. By interfering the two
wave packets, one can detect the relative phase shift between
the arms, which arises due to differences in the external po-
tential and dynamics along the paths. Typically, experiments
with ultracold atoms are conducted in an ultrahigh-vacuum
chamber, allowing the atoms to be held for a very long du-
ration (i.e., tens to a few hundreds of seconds). Furthermore,
optical tweezers can have a Gaussian waist of around 1 µm,
in which the atomic wave function is typically localized to
around 200 nm. Combining this with a positioning precision
of a few hundreds of nanometers yields a spatial resolution
better than a micrometer. Two central aspects of the tweezer

FIG. 1. Tweezer-based atomic interferometer. Fermionic atoms are held by an optical tweezer, occupying the lowest vibrational eigenstates.
The tweezer splits and recombines the atomic wave packet coherently, with each part of the wave packet accumulating a different phase as it
travels in a different path through the external potential. The combiner translates the relative phase shift between the arms into a difference in
population (marked by the size of the black sphere). The atoms can be trapped for many tenths of seconds, and the path can be shaped with
submicrometer resolution, giving the interferometer unparalleled precision and flexibility.
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interferometer are the adiabatic atomic splitter-combiner and
the use of identical fermions. The fermionic statistics guaran-
tees that each energy eigenstate of the tweezer (“vibrational”
states) is occupied by at most a single atom and that the atoms
do not interact.

To achieve these conditions, the tweezer can be loaded
from a moderately degenerate Fermi gas (T/TF ≈ 1, where
TF is the Fermi temperature), harnessing the “dimple effect” to
enhance the phase space density [32,33]. Thus the occupation
probability in all low-lying eigenstates can be very close to
unity. After loading the tweezer, the atoms occupying the
highest eigenstates are eliminated by gradually reducing the
trap depth, until the desired number of atoms is reached [33].
The Pauli exclusion principle ensures that at each vibrational
state there is at most one atom at a specific spin state. Note
that to operate the interferometer with many atoms, better
initial conditions of the initial degenerate Fermi gas will be
required. As for the question of the atomic species, there is
an advantage to working with atoms with a higher mass, since
the interferometer will be more sensitive to acceleration and
gravitational potential. In the alkali group, 40K is preferable,
and in the lanthanide group, 171Yb is a promising candidate
[34,35].

It is desirable to operate the tweezer with as many atoms
as possible to reduce the number of repetitions needed to
achieve a certain level of uncertainty. Additionally, having
many atoms in a single run allows one to measure tran-
sient phenomena which cannot be averaged. Our approach to
achieve this is to utilize many vibrational states in a single
tweezer. In Sec. III we present the splitting and recombining
schemes and show that, with the same set of parameters, they
work successfully for many vibrational states. This property
allows for multiple atoms to be used in the interferometer at
the same time [36]. Moreover, the combiner maps differential
phase shifts between the interferometer arms to population
differences in the output ports in a manner that does not
depend on the vibrational state. In this way, a single exper-
imental run using N atoms in a single tweezer is equivalent
to using N tweezers with a single atom each. We estimate that
realistically, 100 atoms can be used in each run, yielding a ten-
fold improvement in the signal-to-noise ratio compared with
a single-atom interferometer. Additionally, the splitting does
not change the atoms’ internal state, making the superposition
robust in the presence of spin-dependent noise. Importantly,
fermionic antisymmetry precludes interaction between the
identical atoms, which avoids systematic shifts.

III. COHERENT SPLITTING AND RECOMBINING

A crucial part of the proposed interferometer is the co-
herent splitting and merging of the atomic wave packet.
We present here two approaches to achieve this, using
two and three tweezers. A tweezer interferometer based on
the two-tweezer scheme is somewhat similar to the optical
Mach-Zehnder interferometer. Our three-tweezer splitter-
combiner scheme, on the other hand, has no optical analog,
to the best of our knowledge. Both schemes are robust in the
presence of experimental imperfections, but the one based on
three tweezers also allows for the detection of errors, a unique

capability that does not exist in any other photonic or atomic
beam splitter.

The adiabatic splitting and recombining scheme is based
on the idea that the initial state, where atoms are localized in
one of the tweezers, and the final state, where the atoms are in
a balanced coherent superposition of being in two tweezers,
are continuously connected through an adiabatic change of
some external parameters. Adiabatic driving is widely used
to manipulate internal states of atoms and molecules. The
version applied to a three-state lambda configuration, known
as stimulated Raman adiabatic passage (STIRAP) [37], has
found wide-ranging applications in many fields of science
[38]. The concept of STIRAP has also been extended to tun-
neling between three spatially separated potential wells [39].
Spatial adiabatic passage (SAP) has been recently demon-
strated experimentally with fermionic 40K atoms in optical
tweezers [40]. The mapping of STIRAP to a two-level system
was explored in Ref. [41]. The notion that atomic interfer-
ometry can be based on a SAP protocol was introduced in
Ref. [29]. The schemes for splitting and combining that we
present below draw inspiration from these aforementioned
works.

There are several characteristics that we aim to achieve
with the atomic splitter. The first characteristic is reversibility:
The process should involve at least two input and two output
ports, and it should be reversible, meaning that application
of the scheme followed by its time-reversed version brings
the atoms back to the original port. The second character-
istic is ease of detection: Occupation in the different output
ports should be easy to detect. Specifically, it is much easier
to detect the population in two spatially separated tweezers
than to distinguish between the population in two different
vibrational states of the same tweezer. The third characteristic
is robustness in the presence of experimental imperfections:
The process should withstand small variations in parameters,
such as duration, trap intensity, and position. Since we want
to use multiple atoms occupying different vibrational states in
parallel, it should ideally also be insensitive to the vibrational
state.

To illustrate the importance of our adiabatic driving
schemes, let us consider first a simple nonadiabatic π

2 splitter.
The initial state is one tweezer occupied by a single atom
in some vibrational eigenstate and a second empty tweezer
at a close proximity such that there is tunneling. As time
progresses, the atom undergoes tunneling oscillations back
and forth between the two tweezers [42]. If the coupling
between the tweezers is terminated exactly in the midst of
such an oscillation (e.g., by moving the tweezers apart), the
atomic wave packet will be coherently divided between the
two tweezers. This splitting scheme is analogous to a π

2 pulse
in Rabi oscillations. However, it has several disadvantages.
First, the splitting is first-order sensitive to changes in the
process duration. Second, since the tunneling rate is strongly
dependent on the distance, any positioning noise is translated
into fluctuation in the splitting process. The strong distance
dependence also means that the tunneling rate depends on
the vibrational eigenstate; hence this scheme can work only
for a single state. The two schemes we present below follow
adiabatic driving and are therefore robust in the presence of
experimental imperfections and vibrational state occupation.
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A. Two-tweezer atomic splitter-combiner

The two-tweezer splitting scheme starts with two tweezers,
one holding the atoms and the other one empty, positioned
at a large enough distance such that there is no tunneling
between them. There are two parameters that vary in time:
the potential difference between the tweezers (“detuning”),
h̄�, and the tunneling rate, J . The former is controlled by
adjusting the relative power between the beams, while the
latter is determined by the distance d (t ) between the traps.
At t = 0, J is set to zero, and � is set to a small positive
value, which means that the potential of the empty tweezer
is shallower. The protocol is performed by moving one of
the traps towards the other, decreasing the distance d (t ) and
increasing J (t ), and at the same time, the detuning parameter
�(t ) is lowered to zero. When the traps are closest to each
other (tm), �(tm) is zero. Then, the distance d (t ) is increased
again, while maintaining �(t ) = 0.

The protocol described above splits the atomic wave func-
tion evenly between the two traps. To show this, we employ
a tight-binding model. For simplicity, we consider only one
vibrational eigenstate in each tweezer, |ϕi〉, with energy Ei,
where i = 1, 2 identifies the tweezer. The Hamiltonian of this
system, in the rotating-wave approximation, can be written as

H = h̄� |ϕ2〉 〈ϕ2| + h̄
J

2
|ϕ2〉 〈ϕ1| + H.c. (1)

We can describe the state of the system using a Bloch
vector �v = (〈σx〉, 〈σy〉, 〈σz〉), where σi are the Pauli matrices
operating in the two-dimensional subspace of {ϕ1, ϕ2}. The
dynamics of the system is given by the optical Bloch equation:
�̇v = P × �v, where P = (J, 0,�) is the torque vector around
which �v performs precession. The initial state is |ψ〉 = |ϕ1〉.
The initial detuning is chosen as � ≈ ω0, where ω0 is the
tweezer oscillation frequency. This choice is made to have
the largest possible initial � before eigenstates with different
vibrational numbers cross.

These initial conditions correspond to the Bloch and torque
vectors being parallel, each pointing towards one of the poles.
When the tweezers are gradually brought closer and the de-
tuning is changed such that � → 0, the torque vector rotates
to the equatorial plane, and the Bloch vector follows adiabat-
ically. The scheme ends with a gradual decrease of J → 0,
leaving �v in the equatorial plane. This means that the wave
function is |ψ〉 = 1√

2
[|ϕ1〉 + |ϕ2〉], as desired. Importantly,

because the process is adiabatic, it works with any initial
vibrational eigenstate that fulfills the adiabatic condition.
However, it is important to note that due to the nonharmonic
nature of the potential, as more eigenstates are occupied,
parameter adjustments become necessary to account for the
smaller energy differences between higher eigenstates. In ad-
dition, the process should be executed at a slower pace to
ensure that adiabatic conditions are met.

To evaluate the effectiveness of this splitting approach be-
yond the two-level approximation, we employed numerical
solutions of the time-dependent Schrödinger equation using
the split-step Fourier method [43]. Because the coupling is
predominantly in the radial direction, we model the system in
one dimension. Nonetheless, we confirmed our findings in a
two-dimensional setting.

The potential, which consists of two Gaussian tweezer
beams, is given by

V (x, t ) = −V0[e−2 x−d (t )/2
σ2 + (1 − �(t ))e−2 x+d (t )/2

σ2 ], (2)

where the time-dependent parameters are given by

d (t ) =1

2
(dmax + dmin) + 1

2
(dmax − dmin) cos (2πt/T ),

�(t ) =
{
�max(1 − 2t/T ) if t < T/2
0 if t � T/2,

where T is the process duration [see Fig. 3(a)]. The initial
wave function is taken to be a specific eigenstate of one of
the tweezers, calculated by numerical diagonalization of the
Hamiltonian of that specific potential. There are two observ-
ables we calculate at the end of the simulated process: the
probability to be in a given tweezer and the overlap fidelity of
the wave function with the initial eigenstate. The overlap fi-
delity is given by fright(left) = ∫ ∞

−∞ ψ∗(x)ϕ2(1)(x) dx. The time
steps and spatial resolution in the simulation are chosen to
ensure the convergence of these observables. We optimize the
process parameters to get as close as possible to unit fidelity
and a probability of 1/2 in each tweezer.

The simulation results are shown in Figs. 2 and 3. Figure 2
demonstrates that the relative phase between the interferom-
eter arms before recombining is indeed correlated with the
population difference between the output tweezers. It also
shows (second and last panels) that the interferometric loop
works the same for both ground and excited vibrational states.
Remarkably, we find that the splitting scheme works success-
fully even when the minimal distance between the tweezers
is small enough such that there is no barrier and only a
single minimum to the combined potential. In this regime,
the tight-binding approximation does not hold, and the notion
of tunneling needs to be reconsidered. The reason why the
splitting scheme still works is because it is based on adiabatic
following which can be generalized to merged potentials.
Initially, when the tweezers are far apart and the occupied
tweezer has a lower energy, the occupied state is essentially
identical to the eigenstate of only a single tweezer. Then, when
the tweezers are brought closer together and the detuning
is reduced to zero, this state evolves adiabatically into the
symmetric state of the two tweezers. This adiabatic passage
is protected by an avoided level crossing that opens a gap,
which evolves from 2h̄J , when the tweezers are only weakly
coupled, to h̄ω0, when they overlap (ω0 is the harmonic
trapping frequency of the combined potential). Note that if
the initial � is set to a negative value instead of a positive
value, the adiabatic following will end in the antisymmetric
wave function. In this case, there will be a π phase between
the interferometer arms.

Once the splitting process is over and the two output
tweezers are taken apart, the gap between the symmetric and
antisymmetric states closes. This fact is crucial for the correct
operation of the interferometer, since the phase shift between
the atomic wave packets is translated into a specific mixing
between the degenerate symmetric and antisymmetric states
of the two tweezer arms. Then, the time-reversed version of
the splitting process achieves the coherent combining, where
the differential phase shift becomes the relative population
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FIG. 2. Numerical simulation of the two-tweezer interferometer with a 40K atom. In the leftmost panel, the optical potential is plotted as
a function of position (horizontal axis) and time (vertical axis). The tweezers have a waist of σ = 1.3 µm and a final depth of 116 µK. The
right tweezer starts with a detuning of � = −2.3 µK. The other four panels show the probability distribution |ψ (x)|2 (represented by the
brightness of the color) with different initial vibrational states n and different relative phases �φ between the arms. The black curves mark
the tweezers’ paths. One can see that the splitting works regardless of the vibrational state and that the relative phase is translated into the
population difference in the output ports.

FIG. 3. Two-tweezer splitting and recombining process with a
π relative phase shift between the arms: simulation of traps with
σ = 1.3 µm and depth of 115 µK. (a) The detuning between the
tweezers � (blue solid curve, left axis) and the separation between
the tweezers’ centers d (red dashed curve, right axis) as a function
of time. (b) The energies of the ground state (solid curve) and the
first excited state (dashed curve) vs time. The color represents the
wave-function shape: green for an atom localized in a single trap
(either left or right) and blue (red) for a balanced symmetric (anti-
symmetric) splitting. The symbols depict the evolution of the energy
expectation value: Left-pointing (right-pointing) triangles represent a
wave packet localized on the left (right) tweezer, and circles represent
a wave packet split between the tweezers. The dynamics depicted by
the symbols is of an atom that is initially in the left trap and then
adiabatically follows the ground state until it is split between both
traps with a symmetric wave function. In the middle of the process, a
relative π phase shift is added between the interferometer arms, caus-
ing the wave function to become antisymmetric. The atom proceeds
to follow the excited state until it is localized in the right tweezer
after the recombination. Similarly, if no phase shift is applied, the
atom ends in the lower branch, which corresponds to the left tweezer.

between the two tweezers exiting the combiner [see Fig. 3(b)].
Importantly, each of the symmetric and antisymmetric states
evolves adiabatically and eventually becomes a state localized
in the left or right tweezer. This evolution maps the phase
difference to the population difference.

B. Three-tweezer atomic splitter-combiner

In this splitting scheme, we employ three tweezers as input
and output ports. The atomic wave packet is confined initially
to the central tweezer, located at x = 0. Two empty tweezers
are centered at a distance of x = ±d , chosen such that the tun-
neling rate is negligible. Their energy detuning is set to � ≈
−ω0. The sequence proceeds by gradually bringing the two
external tweezers closer to the central one while increasing
� → 0. At the minimal distance, the two external tweezers
reverse their velocity, and � = 0. Then, the external tweezers
get farther away while � → ω0. After the process is done, the
central tweezer is empty, while the atomic wave packet is in a
balanced superposition of the two external tweezers. The time
reversal of the process acts as a coherent combiner.

To explain how this scheme works, we once again invoke
the mapping to an effective two-level system |ϕ1〉 , |ϕS〉, where
|ϕ1〉 is an eigenstate of the central tweezer and |ϕS〉 is the
symmetric superposition of the two corresponding eigenstates
in the external tweezers. The coupling J (t ) is again controlled
by the distance between the tweezers, and h̄�(t ) is the energy
detuning between the central and external tweezers. At the
start of the process, the initial state is |ϕ1〉, which means
that the initial Bloch vector points toward one of the poles.
The torque vector starts by pointing towards the south pole,
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FIG. 4. Numerical simulation of the three-tweezer splitter-combiner. The brightness of the color represents the probability distribution,
|ψ (x)|2 (darker is higher). The initial state is an atom in the ground vibrational state of the central tweezer. After splitting, the atom is in an
equal superposition of the two external tweezers, and the central tweezer is empty. We have added various relative phase shifts between the
arms in the middle of the process to demonstrate the operation of the combiner. This simulation assumed a 40K atom and tweezers with a
Gaussian waist of σ = 1.3 µm and a depth of 23 µK.

P = (0, 0,−ω0); then it gradually changes towards the equa-
torial plane, P = (J, 0, 0), crossing at the process midpoint
and continuing towards the north pole, P = (0, 0, ω0). The
Bloch vector follows adiabatically and ends pointing towards
the opposite pole from where it started. This means that the
final state is |ϕS〉, which is the desired output state of the
splitter.

In the recombination, the observable is the population dif-
ference between the central and external tweezers. To see
this, consider a state before combining, |ψ〉 = |R〉 + eiφ |L〉,
where |R〉 and |L〉 are localized eigenstates in the right and left
tweezers and φ is the relative phase shift. We can rewrite this
state as |ψ〉 = ei φ

2 [cos( φ

2 ) |ϕS〉 + sin( φ

2 ) |ϕAS〉], where |ϕS〉
and |ϕAS〉 are the symmetric and antisymmetric superpositions
of |R〉 and |L〉. Due to symmetry, the combiner couples only
the symmetric states |ϕS〉 and the eigenstate in the central
tweezer (|ϕ1〉). The recombination process follows the adi-
abatic following in reverse, transforming the state to |ψ〉 =
ei φ

2 [cos( φ

2 ) |ϕ1〉 + sin( φ

2 ) |ϕAS〉]. The probability of finding an
atom in the external tweezers is sin2( φ

2 ), from which we can
determine the phase. In Fig. 4 we plot the results of 1D numer-
ical simulations with typical experimental parameters. The
simulations demonstrate that a relative phase shift between
the two external interferometer arms is indeed mapped to the
relative population difference between the central tweezer and
the two external tweezers.

Similar to the two-tweezer splitter, the three-tweezer
scheme also functions effectively even when the traps are
partially merged. This phenomenon can be explained using
the adiabatic theorem. In Fig. 5, we depict the evolution of
the relevant eigenenergies during the process of splitting and
recombining. Due to the avoided crossing effect [44], the
eigenstates |ϕ1〉 and |ϕS〉 are connected by a single smooth
branch, along which the state evolves adiabatically during the
splitting stage. In the combining stage, the symmetric state
of the two external tweezers transitions from |ϕS〉 back to
|ϕ1〉, while the antisymmetric state |ϕAS〉 remains unchanged.

FIG. 5. Adiabatic following in the three-tweezer splitter-
combiner. The curves show the three lowest eigenenergies (divided
by h̄) throughout the process, while the circles follow the evolution
of the atomic energy expectation value. The color represents whether
the wave packet is localized on the central tweezer (green dotted
curve) or is in a symmetric (blue solid curve) or antisymmetric
(red dashed curve) superposition of the side tweezers. A notable
feature of the spectrum is the avoided level crossing, occurring at
approximately 25 ms, which allows the atom to move adiabatically
from the central tweezer to the side tweezers. The splitter output state
is symmetric since the potential is symmetric. After time 50 ms, the
process is time reversed. If the atom remains in a symmetric state,
its wave packet follows back into the central trap. In this simulation,
however, we apply an additional differential phase shift of π between
the two arms in the middle of the process, which is indicated by
the transition of the color of the circles from blue to red. In this
case, symmetry dictates adiabatic following to the antisymmetric
superposition of the two side tweezers.
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It is crucial that the detuning parameter is kept at � < h̄ω0

to prevent coupling between the antisymmetric eigenstate and
the second excited level of the central tweezer, which is also
antisymmetric. This requirement is essential to ensure that
when a relative π phase difference exists between the inter-
ferometer arms, the atom remains in the external tweezers.

There are two main advantages to the three-tweezer
splitter-combiner. First, the process does not need to be fine-
tuned to end at � = 0. It is therefore simpler to implement
and more robust. Second, the process has an error indicator:
After splitting, the central tweezer should be empty. Thus a
measurement of the population at the central tweezer indicates
the fidelity of the splitting process without perturbing the in-
terferometer arms. In the recombination process, we note that
the population in the two external tweezers should be equal
since they are in the antisymmetric state. Therefore the error
indicator, in this case, is any population difference between
the external tweezers. The two error indicators allow us to
reject experimental runs that were severely affected by noise,
thus increasing the interferometer precision.

IV. SENSITIVITY AND PRECISION

The evolution of the wave function is given by |ψ (t )〉 =
e−i(S	/h̄) |ψ (t = 0)〉, where S	 is the action, defined by the
integration over the Lagrangian along the classical path 	:
S	 = ∫

	
L[r, ṙ]dt [5,45]. In our interferometer, defined by

two paths 	1 and 	2 for the two arms, the relative phase
shift acquired by an atom is therefore �φ = 1

h̄

∫
	2
L[r, ṙ]dt −

1
h̄

∫
	1
L[r, ṙ]dt . To assess the sensitivity of the tweezer inter-

ferometer, we consider the simplest scenario where the atom is
split symmetrically, separated to a distance h, where it is held
at rest, and then recombined. We assume that the movements
are symmetric and short compared with the total measurement
duration, T , and therefore do not include their contribution to
the phase difference.

Let us consider for simplicity that the interferometer is
subjected to a uniform acceleration a (e.g., gravity) aligned
parallel to the line connecting the two tweezers. Then, we
can write L = −mxa, where m and x are the atom’s mass and
position along this line. The phase difference is �φ = mha

h̄ T .
T is ultimately limited by the lifetime of atoms in the tweez-
ers, which can be many tens of seconds. Using acousto-optic
deflector (AOD) technology, the distance between tweezers
can be tuned to up to hundreds of micrometers. The distance
can be further increased if the tweezers are generated by
two separate AODs, steered by two piezo-controlled mirrors,
and then combined with a beam splitter. This optical scheme
allows for precise control at short distances using the AOD
and reaching large distances with the piezo mirrors. Thus the
distance between tweezers is only limited by the objective
field of view. We estimate that it should be possible to reach
a separation of 10–50 mm. Taking T = 10 s and h = 10 mm,
we obtain that 40K atoms will acquire a phase shift of �φ ≈
6.2 × 108 rad due to Earth’s gravitational acceleration (a =
g). By increasing the distance between the tweezers to 50 mm
and the waiting time to 40 seconds, the phase difference is
increased to ∼1 × 1010 rad.

Let us compare these numbers with the conventional
Kasevich-Chu atomic interferometer. There, the phase shift

is given by �φ = keffgT 2, with keff being the effective wave
vector of the momentum kick given to split between the two
arms [46]. Taking as typical numbers keff = 4π

780 nm and T =
1 s [14], one obtains �φ ≈ 1.6 × 108 rad for the gravitational
accelerations. More advanced versions of the Kasevich-Chu
interferometer can impart a larger momentum kick of a few
tens of h̄k to a hundred h̄k (k in the Raman laser wave vector),
but this comes with a price of large sensitivity to wave-front
distortions and phase noise of the Raman beams [47].

Ideal operation conditions of the interferometer require that
the two tweezers have the same intensity. Thus, as long as
intensity fluctuations are common to both tweezers, they do
not introduce relative phase noise. Relative fluctuations, on
the other hand, lead to a relative phase shift, thereby impairing
the interferometer’s operation. We now consider a fundamen-
tal source of such relative intensity fluctuations, which is the
shot noise of each beam. Let us denote the peak power of
each tweezer as P0. The average number of photons in each
tweezer during the experiment is N = T P0

h̄ωt
, where ωt is the

tweezer laser angular frequency. The relative phase noise is
given by δφ

�
= √

2 · δN
N , which for a shot noise is

√
2(N )−1/2.

Importantly, here � is the phase acquired in each tweezer due
to the optical potential and not due to the external potential.
Thus we obtain

(δφ

�

)
shot noise

=
√

2h̄ωt

T P0
. (3)

As an example, we consider a 40K atom held for 10 s in
a tweezer interferometer with a wavelength of λ = 2 µm, a
Gaussian waist of 1.7 µm, and a power of 120 µW in each
arm. This yields a tweezer depth of approximately 2 µK, for
which δφ

�
≈ 1.3 × 10−8 and δφ ≈ 34 mrad. For this trap, the

ground state width in the radial direction is approximately
0.256 µm, which defines the ultimate spatial resolution of the
interferometer. It is important to note that the number of bound
states in this tweezer potential is much larger than 100, as
we have verified numerically. Hence it can hold more than
100 fermionic atoms in different vibrational states. Clearly,
mitigating all the technical noise sources such that the limiting
factor is the shot noise is an experimental challenge.

Next, we examine the sensitivity of the splitting and re-
combining stages to noise. We assume that the differential
noise between the tweezers has reached the shot noise limit.
By solving numerically the time-dependent Schrödinger equa-
tion, we found that shot noise has no measurable effect on the
performance of the splitter or combiner. However, common
mode fluctuations of the tweezer intensity may still exist. To
asses their impact, we run simulations where we introduce
random variations with zero mean, Vn(t ), to the tweezer am-
plitudes. Vn(t ) is characterized by white noise with spectral
density S( f ) = η2h̄ωt P0, which is η times larger than the
shot noise. In most cases, the amplitude of the common-
mode noise will surpass the shot noise significantly; a typical
number we use is that it will be stronger by around 70 dB.
Additionally, we assume that this noise is uniformly applied
to the tweezers.

For every noise realization, we perform a complete simula-
tion of the interferometer loop and determine the probabilities
of locating the atom in each of the output arms. For a
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TABLE I. Different types of experimental scenarios with a
tweezer-based interferometer. The scenarios vary in the number of
repetitions per deterministic phase, the number of atoms in the
tweezer per run, the duration of each run T , and the total duration
of the experiment.

Number of Number of atoms Total
Scenario repetitions in each run T (s) run time

1 10 1 10 ∼50 min
2 10 10 10 ∼50 min
3 285 100 10 ∼24 h
4 96 10 40 ∼24 h
5 96 100 40 ∼24 h

three-tweezer splitter, we also evaluate after the splitting stage
the probability of finding an atom in the central trap, and we
accordingly randomly determine whether the atom is there.
Such an event signals that the splitting stage has failed, in
which case the numerical experiment is declared unsuccess-
ful. If the atom is not drawn to be at the center, we project the
wave function to the outer tweezer arms, maintaining their rel-
ative probabilities and phase, and proceed to simulate the rest
of the interferometer loop. The relative phase is determined by
adding a deterministic phase which is scanned. Therefore we
repeat the complete simulation 4000 times, each time with a
different noise realization and different deterministic relative
phase in the range 0–2π between the arms. The results of
these simulations were stored and used as a lookup table
to calculate the probability outcomes after the combiner, as
described below.

We consider five different types of interferometry exper-
iments that vary in their probing duration T , the number of
atoms per run, and the number of repetitions per determin-
istic phase (see Table I). Two of the scenarios are “short,”
namely they can be completed in less than an hour, and three
are “long,” taking around a day of data integration. In each
scenario, we choose to have 20 equally spaced determin-
istic phases to simulate a “fringe scan” and determine the
phase shift between the arms, which is due to the physical
phenomenon under investigation. For each of these 20 deter-
ministic phases, a random noise of 34 (68) mrad is added
to account for shot noise for T = 10 s (T = 40 s). This is
justified since after the splitting and during the measurement
time, the tweezers’ amplitudes will be lowered to 2 µK and
then increased back for the combiner stage. If multiple atoms
are involved in a run, they all experience the same noise
realization. In each run, we select the closest phase out of
the 4000 realizations and use its calculated quantum wave
function to determine the output probabilities. Finally, we use
these probabilities to randomly assign an exit port for each
atom. We then fit the numerical data, extract the phase in
the presence of noise, and determine the error relative to the
known physical phase. This procedure enables us to obtain
the expected accuracy of the interferometer in various realistic
scenarios.

There are two main types of events that may occur dur-
ing the measurement and lead to the collapse of the wave
function. The first type involves a collision with an energetic

atom or molecule from the remaining ambient gas within
the vacuum chamber. This process is characterized by the
so-called vacuum lifetime, typically ranging from tens to a
few hundreds of seconds in conventional ultrahigh-vacuum
systems; in cryogenic vacuum systems it can even extend to
thousands of seconds [48]. The second process involves spon-
taneous photon scattering from the trap light. The rate of this
process for a single atom scales as I/�, where I represents
the intensity of the laser and � denotes its detuning from the
strong atomic lines [49]. Therefore it is advantageous to work
with the largest possible detuning and the weakest trap laser
intensity.

For our calculations, we opted for a wavelength of λ =
2 µm due to its compatibility with standard optical com-
ponents and its availability with commercial lasers. For a
tweezer with a Gaussian waist of 1.7 µm and a depth of 2 µK,
as discussed earlier, the average time before a spontaneous
photon scattering event for a 40K atom is approximately 217 s.
Consequently, for a probing duration of T = 10 s, the per-
centage of experimental runs in which scattering occurs in
one of the interferometer arms is around 9%. This percentage
increases to 31% when T = 40 s. It is important to note that in
runs where a collapse occurs, it introduces only a bias signal
without inducing fringe oscillations into the measurement.
This is because the combiner stage results in an even split
when initiated with a wave packet in only one of its incom-
ing ports. Therefore these events only moderately reduce the
contrast but do not introduce systematic errors. Additionally,
the rate of spontaneous scattering may be suppressed due to
Pauli blocking by other fermionic atoms in the tweezer, a
phenomenon observed in a large optical trap [50–53].

The results of the error estimation for the different sce-
narios are presented in Table II. The simulation shows that
the two-tweezer splitter-combiner loop is resilient to noise
up to η ≈ 108, while the three-tweezer splitter-combiner is
slightly more sensitive, becoming nonoperational at around
η ≈ 5 × 107. We find that errors due to uneven division of the
wave form by the splitter-combiner are largely unaffected in a
wide range of noise levels, as long as η < 107. Typical com-
mercial lasers, however, have much lower η values, ranging
from 103 to 104. By comparing the results of scenarios 1 and 2,
the relative advantage of working with several atoms in a run
is clearly demonstrated. By comparing the results of scenarios
3 and 5, we see that the uncertainty is similar, particularly at a
large noise level, while the phase accumulation in scenario 5 is
four times larger due to the longer probing duration. Therefore
we conclude that under this white noise model, and as long as
the phase noise due to shot noise is small enough, the tweezer
interferometer benefits from prolonging its probing duration.

The relative accuracy of the interferometer depends on the
total relative phase induced by the investigated physical phe-
nomenon. We return to the example of measuring the Earth’s
gravitational acceleration with 40K atoms (h = 10 mm, T =
10 s), where �φ ≈ 6.2 × 108 rad. The phase uncertainty lev-
els presented in Table II for scenarios 1–3 allow us to estimate
that, as long as the relative intensity noise is shot noise limited,
the relative accuracy could reach the 10−10 level in a wide
range of common-mode noise levels by separating the wave
packet for 10 s. By extending the probing time to 40 s, this
accuracy can be further improved below the 10−11 level. These
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TABLE II. Error estimation for the tweezer atomic interferometer: simulation results. The table shows the results with several experimental
scenarios, as detailed in Table I. We simulate both the two-tweezer (denoted as type II) and three-tweezer (type III) splitter-combiner schemes.
The fail ratio, available only for type III splitter-combiner, is the probability of finding the atom in the central tweezer after the splitting stage.

Splitter Fail ratio Phase uncertainty (mrad)

η type (%) Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

1 II 87 28 2.4 9 3.8
107 II 90 30 2.3 10.1 3.8
5 × 107 II 193 96 36 44 37
108 II 230 180 173 169 162
1 III 0.2 85 28 2 9 3.5
106 III 1.6 97 30 3.2 9.5 4.4
107 III 13 164 89 60 61 60
5 × 107 III 32 undefined undefined undefined undefined undefined

results and the low sensitivity to common-mode noise are
very promising for the actual implementation of the tweezer
interferometer.

V. APPLICATIONS

The proposed tweezer-based atomic interferometer has the
potential to revolutionize many fields where an extremely
sensitive force detection with submicrometer resolution is
needed. In this section we discuss two concrete examples:
measurement of surface forces due to quantum vacuum
fluctuations (Casimir-Polder force) and measurement of the
gravitational constant.

A. Measurement of the Casimir-Polder force

One of the most striking predictions of quantum field the-
ory is the existence of forces between two objects in empty
space due to the vacuum fluctuations of the electromagnetic
field between them [54]. These forces were first studied by
Casimir in 1948 for two surfaces [55] and later by Casimir
and Polder for an atom and a surface [56]. The full calcu-
lation of these forces using quantum electrodynamics (QED)
is quite complex, but analytical results can be obtained for
certain limiting cases [57]. When the atom is very close to the
surface, the interaction can be described as an attraction be-
tween the fluctuating atomic dipole and its mirror image. The
Casimir-Polder (CP) potential in this case, which is also re-
ferred to as the Lennard-Jones or van der Waals potential,
scales as UCP ∝ 1/z3, where z is the distance to the surface. In
the opposite limit, called the retarded limit, the potential scales
as UCP ∝ 1/z4. The transition between these two regimes oc-
curs at a typical length scale of l ∼ 100 nm. The exact CP
force depends on the surface electrical properties, roughness,
and temperature. Their precise measurement is important to
test approximation methods in QED and as a means to under-
stand material properties. Casimir forces are generally small,
but they have a significant impact at the nanoscale, mak-
ing them crucial for nanotechnology applications, specifically
microelectromechanical systems (MEMSs). Additionally, a
thorough understanding of these forces is necessary before
searching for new physics beyond the Standard Model at very
short length scales [58–60].

The force between two surfaces has been measured with
increasing precision since the late 1990s, with good agree-
ment between experiments and theory [61–65]. The CP force
between an atom and a surface has been measured with
increasing accuracy since 1975 using various techniques,
including atomic-beam-deflection experiments [66,67], laser
spectroscopy of atoms near a wall [68], interaction with
a diffraction grating [69], quantum reflection experiments
[70–72], ultracold atoms bouncing off of an atomic mirror
[73–75], and measurement changes of the oscillation fre-
quency of trapped 87Rb Bose-Einstein condensates near a
surface [58,76]. There are significant discrepancies between
theory and experimental results, mainly due to the difficulty in
measuring directly the force acting on a single atom. Most of
the experiments relied on measuring the CP force using kine-
matic effects or spectroscopic probes. A notable exception is
the experiment by Perreault and Cronin, where a diffraction-
based atomic interferometry was used and the Casimir-Polder
potential was manifested as an additional phase shift of the
interference fringes due to the interaction with the grating at
close proximity [69]. However, the signal was very weak and
had large uncertainty, mainly due to the short interaction time.

The tweezer-based atomic interferometer is perfectly
suited to measure the phase shift induced by the CP interaction
thanks to its ability to precisely position the atomic wave
packets for a long duration. The idea of the measurement
is depicted in the inset of Fig. 6. One tweezer arm will be
positioned close to a surface, where it will acquire a phase
shift due to the Casimir-Polder potential, while the second
reference arm will be 100 µm away, where the potential is
negligible. In Fig. 6, we present a calculation of the relative
phase shift acquired due to the CP potential versus the dis-
tance of the first tweezer from the surface. The phase shift
is calculated in the retarded limit UCP(z) = −C4/z4, since the
tweezer position z � l , where l ≈ 118 nm [77]. The constant
C4 = 1.64 × 10−55 J m4 was taken from Ref. [77], where it
was calculated for 40K atoms near a metallic surface. The
effect has a similar order of magnitude with a dielectric sur-
face [78]. We have also verified that the nonadditive effect of
the tweezer on the CP potential for our tweezer parameters is
negligible [75]. In Fig. 6 we also present the expected relative
accuracy of this measurement, assuming for each point the
operating conditions of scenario 2 in Table I. Our calculation
shows that with the tweezer AIF, one can map the CP potential

043300-9



NEMIROVSKY, WEILL, MELTZER, AND SAGI PHYSICAL REVIEW RESEARCH 5, 043300 (2023)

FIG. 6. Measurement of the Casimir-Polder force using a
tweezer atomic interferometer. The experiment we consider is de-
picted in the inset: One arm is at a short distance from a metallic
surface (x axis), and a second reference arm is positioned 100 µm
away. The calculated relative phase shift between the arms due to
the retarded CP potential is shown as blue circles (left y axis), and
the corresponding relative accuracy using scenario 2 in Table I is
shown as red squares (right y axis). The number of points in this
graph was chosen such that it would be possible to acquire the data
in approximately 24 h.

in the region 1  z < 20 µm with very high precision. For ex-
ample, at a distance of 5 µm, we estimate a measurement with
relative precision of ∼10−3. Most importantly, the suggested
interferometric measurement can yield a direct, precise, and
model-independent determination of the CP force.

One practical issue to consider is to have a design that
ensures that the sample does not partially block the tweezer’s
Gaussian beam. Our solution, plotted in the inset of Fig. 6, is
to shape the sample as a triangle. It is based on the assumption
that at a given atom-surface distance z, a surface area of
approximately 10z × 10z is large enough to approximate suf-
ficiently well the infinite-surface limit. The triangular shape
of the sample allows us to move the tweezer towards the base
of the triangle as it is taken farther from the surface. This way,
the ratio between the distance and the relevant surface area is
maintained, as well as a clear solid angle.

B. Measurement of the gravitational constant

The value of Newton’s gravitational constant G determines
the strength of the gravitational force between two masses,
and its precise value is crucial for a wide range of applications,
including the study of celestial bodies and the prediction of
the orbits of satellites and planets. There have been many
attempts to measure G over the years using a variety of tech-
niques, including torsion balances, Cavendish balances, and
spacecraft tracking. Still, G is the least known of all funda-
mental constants, with a slow improvement in its accuracy.
The value of G provided by the 2018 Committee on Data of
the International Science Council (CODATA) has a relative
uncertainty of 2.2 × 10−5 [79], considerably larger compared
with other constants, such as the fine-structure constant (1.5 ×
10−10), the electron mass (3 × 10−10), or the vacuum electric

FIG. 7. Schematic (not to scale) of the proposed experiment to
measure the gravitational constant. The tweezer cone angle is de-
termined by the waist of the Gaussian beam, which in this case is
σ = 1.5 µm.

permittivity (1.5 × 10−10). The reason for the relatively high
uncertainty in G is the weakness of gravity compared with the
other forces. Most worrying are the inconsistencies between
measurements performed using different techniques, or even
between those performed with the same method.

In 2007, the Kasevich group published the first measure-
ment of Newton’s gravitational constant using atom inter-
ferometry [13]. Their experiment used a dual-interferometer
setup to eliminate the influence of Earth’s gravity while being
sensitive to the gravitational force of a nearby 540 kg source
mass. This groundbreaking experiment had a relative accuracy
of 4 × 10−3, and the value it reported for G was 1.0028 higher
than the recommended 2018 CODATA value. A second deter-
mination of G with atom interferometry was reported in 2014
by Tino’s group [14]. This experiment also employed a dual-
interferometer setup, and it had a 516 kg source mass. It had a
smaller relative uncertainty of 1.5 × 10−4 and is the only atom
interferometry measurement included in the 2018 CODATA
determination of G. However, its reported value of G is 2.4
standard deviations lower than the CODATA recommended
value.

We suggest a different approach to measuring G using
tweezer atom interferometry. Our approach, shown in Fig. 7,
benefits from the ability to position the atoms near a test
mass for a long duration, in a geometry that eliminates the
effect of Earth’s gravitational field. We propose using a 253 kg
tungsten source mass, which is shaped as a sphere with a
radius of 20 cm cut at an angle of 141◦. This shape is de-
signed to avoid clipping the tweezers’ Gaussian beams. The
atomic wave packets in the two arms of the interferometer
are positioned in a plane perpendicular to Earth’s gravity that
also contains the center of the cut sphere. This configuration
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cancels out the effect of Earth’s gravitational potential in
the interferometric measurement without the need for a dual-
interferometer setup. The wave packets are placed at distances
of 1 and 50 mm away from the center of the cut sphere, where
the latter should be as large as possible. The experiment can
be conducted with and without the source mass to eliminate
systematic deviations.

The interferometer sequence begins by splitting the atomic
wave packet and moving the two tweezers to the two po-
sitions. The wave packets are held in these positions for a
duration T before moving back and being recombined. The
fringe scan can be done by changing the duration T + �T ,
with |�T | < 20 ms. For T = 10 s, the phases accumulated
by 40K atoms due to the sphere’s gravitational potential are
∼798 and ∼615 rad for the short and long distances, re-
spectively. With the estimated phase uncertainty of scenario
3 (see Tables I and II), and assuming that all the experimental
parameters are known with high enough precision, G could be
determined with a relative accuracy of ∼1.3 × 10−5. A longer
probing duration of T = 40 s (scenario 5) can reduce the un-
certainty to ∼5 × 10−6. Lastly, employing heavier fermions,
such as 171Yb, can reduce the uncertainty by the mass ratio,
namely by a factor of 4.275. The proposed experiment can
determine the gravitational constant using an alternative ap-
proach with an uncertainty that has the potential to go below
the current CODATA value.

VI. SUMMARY

We have presented an alternative approach to atomic
interferometry which is based on ultracold fermions in recon-
figurable optical tweezers. The interferometer key elements
are the adiabatic splitter and combiner schemes, together with
the ability to prepare many atoms in different vibrational

states and use them together in a single run of the inter-
ferometer. Thanks to the small size of the optical traps, the
wave packets are positioned with submicrometer precision,
and their path can be freely controlled. In particular, the wave
packet can be held completely stationary for long probing
duration. The remarkable advancements in optical tweezer
technology, driven by its potential in quantum computation,
have culminated in substantial progress in recent years, ren-
dering it sufficiently mature for the practical realization of
these concepts.

The unique capabilities of the tweezer interferometer can
be transformative in many fields of science. We have dis-
cussed in detail the case of measuring the Casimir-Polder
surface forces and determination of the gravitational constant.
Another interesting application is to map the gravitational
forces at short distances to test non-Newtonian gravity theo-
ries [80–82]. The proposed interferometer can also be utilized
to search for quantum gravity effects, e.g., detection of entan-
glement between two different configurations of an atom and
a mechanical oscillator [83]. Another promising application is
to study material properties in condensed matter. Specifically,
the tweezer interferometer can be used to measure forces of
localized topological defects such as vortices or skyrmions.
Furthermore, the interferometer’s sensitivity enables precise
mapping of magnetic fields in proximity to surfaces.

Note added in proof. Recently, we became aware of a
related work [84].
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