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Branched flows in active random walks and the formation of ant trail patterns
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Branched flow governs the transition from ballistic to diffusive motion of waves and conservative particle flows
in spatially correlated random or complex environments. It occurs in many physical systems from micrometer to
interstellar scales. In living matter systems, however, this transport regime is usually suppressed by dissipation
and noise. In this article, we demonstrate that, nonetheless, noisy active random walks, characterizing many
living systems such as foraging animals and chemotactic bacteria, can show a regime of branched flow. To this
end we model the dynamics of trail-forming ants, and we use it to derive a scaling theory of branched flows in
active random walks in random bias fields in the presence of noise. We also show how trail patterns, formed by
the interaction of ants by depositing pheromones along their trajectories, can be understood as a consequence of
branched flow.
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I. INTRODUCTION

High-intensity fluctuation patterns and extreme events are
hallmarks of branched flow, which very generically occurs
in the propagation of waves, rays, or particles in weakly re-
fracting correlated random (or even periodic) media [1–5].
It is a ubiquitous phenomenon and has been observed in
many physical systems, e.g., in electronic currents refracted
by weak impurities in high mobility semiconductors [6,7],
light diverted by slight variations of the refractive index [8,9],
microwaves propagating in disordered cavities [10,11], sound
waves deflected in a turbulent atmosphere [12,13], or by den-
sity fluctuations in the oceans [14]. Wind-driven sea waves
are piled up by eddies in the ocean currents to form rogue
waves [15–19], and tsunamis are focused to a multiple of
their intensity even by minute changes in the ocean depth
[20]. Branched flow dominates propagation on lengthscales
between the correlation length of the medium and the mean
free path of the flow that is traversing it, i.e., a regime between
ballistic and diffusive transport in an environment with frozen
or quenched disorder. An example of a branched flow is shown
in Fig. 1(a).

Experiments that have analyzed the laws of motion of
individual Argentine ants (Linepithema humile) during trail
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formation [21] have inspired us to study if branched flow
can also occur in random walks in biology. In living sys-
tems, motion in general is overdamped and the phase-space
structures responsible for branched flows cannot form. How-
ever, frequently the inevitable input of energy happens in
the form of self-propulsion, and motion is best described
as an active random walk (often referred to as active
Brownian particles) [22–25]. And in many situations, these
biological or biologically inspired active random walks are
subject to bias fields, such as, for instance, the distribu-
tion of food in animal foraging or bacterial chemotaxis but
also of chemicals acting as fuel for self-propelled colloids
[26–29]. In the dynamics of ants, the bias field is representing
pheromones left by other ants along their paths. Using this
example, we show that in active random walks in correlated
random bias fields one can observe the same phenomenol-
ogy of branched flow as in conservative flows, and that
due to the heavy-tailed density fluctuations associated with
branched flow, this can have severe implications on pattern
formation.

The agents in active random walks, however, are usually
not only influenced by the bias fields, but their directional-
ity and/or position are also subject to temporal fluctuations
(which we will assume to be uncorrelated in the following),
leading also to diffusion. We study how this stochastic diffu-
sion destroys branched flow by deriving a universal scaling
theory as the main result of this paper.

Finally, we simulate trail formation by explicitly model-
ing the pheromone deposition along ant trajectories and its
feedback on the trajectories of following ants, resembling the
phenomenology of the experimental observations of Ref. [21],
and we demonstrate its connection to the phase-space struc-
tures of branched flows.
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FIG. 1. Branched flow of ant trajectories. Example densities of
model trajectories of ants exiting from a hole in the center of a disk
with a random pheromone field and leaving the disk at the edge.
Comparison of the dynamics according to (a) the noise-free (γi = 0)
differential equations of motion Eq. (2) with (b) the integrodiffer-
ential dynamics of Eq. (A4) with a detection radius of 30% of the
correlation length of the pheromone field. (c) Example of a random
pheromone field model with density n = 1.0.

II. ANT DYNAMICS

The complex collective and social behavior of ants is of
course governed by many ways of interaction: visual, tactile,
and chemical. Here, following the lead of Ref. [21], we want
to concentrate on a simple model of the dynamics of Argen-
tine ants as they are influenced by the pheromones deposited
by other ants. Please note that, due to several uncertainties
in the experimental knowledge that would require us to make
assumptions in the model and fit many parameters, our aim
will not be to quantitatively reproduce experimental findings
but to formulate a clean, simplified model that captures the
main aspects observed qualitatively and phenomenologically
and which allows us to study the fundamental implications of
correlated bias fields.

The experiments reveal that the (mean) change in the direc-
tion of the ants’ trajectories due to their perception of spatial
variations in the pheromone concentration can well be de-
scribed by a (generalized) Weber’s law. This is a fundamental
law of sensory psychophysics describing perception that does
not depend on the total sensory input but only on its relative
changes; see, e.g., [30,31]. Here the directional change �ϕ

of the ant’s velocity v = (v cos ϕ, v sin ϕ)T in a given time
interval �t was found to be

〈�ϕ〉 = A�t
L − R

L + R + T0
, (1)

where 〈·〉 denotes an appropriate ensemble average (because
�ϕ itself is a stochastic quantity, as will be discussed later).
The proportionality constant A�t depends on the time interval.

FIG. 2. Pheromone detection. An ant running with velocity v =
(0, v)T in the y-direction (i.e., ϕ = π/2). The ant is assumed to
integrate the pheromone concentration field (gray scale in the back-
ground) over quarter-circular domains of radius R to the left (L, red)
and right (R, blue) of its path and on average change its heading
according to Eq. (1).

The quantities L and R are measuring the concentration c(r)
of pheromones that the ant detects, integrated over certain
domains to the left and right of its projected path, respectively,
as illustrated in Fig. 2 [r = (x, y)T is the two-dimensional
position vector]. At very low pheromone concentrations, the
detection threshold of the ants’ sensors will eventually be
reached and therefore Weber’s law was adjusted by a threshold
parameter T0.

In the limit �t → 0, Eq. (1) becomes an integrodifferential
equation as described in Appendix A. To facilitate simulating
many realizations of random bias fields and large ensembles
of random walkers, we simplify these integrodifferential equa-
tions into ordinary differential equations by Taylor-expanding
the concentration field and taking the limit R → 0 (see Ap-
pendix A). As hinted earlier, the changes of the direction of
the ants are not deterministic, but stochastic quantities. There-
fore, we are also introducing noise terms to the equation of
motion, finally yielding stochastic differential equations:

dx = cos ϕ dt + γ1 dWx,

dy = sin ϕ dt + γ1 dWy,

dϕ = α
∇c · n
c + T0

dt + γ2 dWϕ. (2)

Here n = (− sin ϕ, cos ϕ)T is the unit normal vector of the
ant’s velocity, and the proportionality constant α is a measure
of the sensitivity of the ant’s response to spatial variations
in the pheromone field. The quantities dWi are independent
white noise (Wiener) processes, and the parameters γ1 =√

2 D1 and γ2 = √
2 D2 quantify the strength of translational

and rotational diffusion, respectively [32]. In the case of the
ant dynamics, we will always assume γ1 = 0, but since our
results will also be interesting and valid for other active ran-
dom walks like bacterial chemotaxis, we will later also let
γ1 > 0. Figure 1 illustrates that the (noise free) dynamics of
these equations well captures the essentials of the dynamics
obtained using the kernel method (described in Appendix A),

043299-2



BRANCHED FLOWS IN ACTIVE RANDOM WALKS AND THE … PHYSICAL REVIEW RESEARCH 5, 043299 (2023)

here shown in a random pheromone field model which will be
introduced in the next section.

III. DYNAMICS IN RANDOM FIELDS
AND TYPICAL LENGTHSCALES

In many situations, the environment of an active random
walk is complex and the bias field will be best described as a
correlated random field. In ant dynamics this might, e.g., be
in a crowded environment, where many ant trajectories cross
paths. In the experiments of Ref. [21], where ants exit a hole
in the center of a disk in random directions, the estimated
pheromone field does not show signs of trail formation in the
first 10 min, but appears to be random. In branched flows even
minute (but correlated) random variations in the environment
lead to heavy-tailed, branchlike density fluctuations in the
flow. We can therefore hypothesize that these structures can
be the seeds of emerging patterns like the formation of ant
trails. We will therefore begin our analysis of ant dynamics by
studying motion in random fields.

We will use a very simple random field model with
only a few parameters: imagine a concentration field that is
created by randomly placed Gaussian-shaped monodisperse
pheromone “droplets” (see Appendix B). It can be character-
ized by a correlation length �c and the density n of droplets
per area �2

c . Its mean and variance are then given by 〈c〉 =
n/�c and σ 2

c = n/(π�4
c ). An example for n = 1 is shown in

Fig. 1(c).
For analyzing the interplay of branched flow and stochastic

diffusion, we will need to know the scaling of the typical
lengthscale of branched flows governed by the equations of
motion (2).

One prominent characteristic of branched flows are the
occurrences of random caustics [1,2,33–36]. Caustics, first
studied in ray optics, are contour lines or surfaces in coordi-
nate space on which the number of solutions passing through
each point in space changes abruptly. They are also singular-
ities in the ray (or trajectory) density. Figure 3 illustrates the
connection of branched flows and caustics.

For the dynamics in correlated random potentials, it is well
established that the typical lengthscale of branched flow is
given by the average distance (dc) a ray or trajectory has
to propagate until it reaches the first caustic [2–4,11]. More
details can be found in Appendix C, where we transfer the
scaling arguments derived earlier to the ant dynamics. The
essence of these arguments is that in a paraxial approximation,
dc is reached if the diffusion due to the random bias field in
a direction perpendicular to the initial propagation direction
covers a correlation length of the random field, i.e. (assuming
initial motion in x direction),

〈(y − y0)2〉 ≈ �2
c, (3)

where 〈·〉 is the average over many random fields of equal
characteristics or, due to self-averaging, the average over ini-
tial conditions in sufficiently large systems. From this we find
(see Appendix C) that

dc ∝
(

�c

αrc

)2/3

, (4)

(a) (d)
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FIG. 3. Branched flow of initially parallel trajectories. (a) The
density (red) of a bundle of trajectories starting on the left of the
shown region homogeneously distributed on the y-axis with ini-
tially parallel horizontal velocity v(0) = (1, 0)T , propagating over
a random pheromone field (indicated in a white-to-blue colormap in
the background). (b) Zoom-in on the density in the white-rimmed
box in (a). It illustrates how a branch is initially formed by the
occurrence of a random cusp caustic from which two fold caustics
spawn. (c) Poincaré surface of section along the green line in (a). The
manifold representing the initially parallel ray bundle has evolved
into a contorted line. Caustics are points with a vertical tangent. The
red dots indicate the fold caustics from (b). The gray dot indicates
the second solution at the same spatial coordinates as the upper fold
caustic. (d) Cut through the density ρ(y) = ρ(x = const, y) along the
green line in (a), showing the density singularities associated with
the caustics and indicating how branched flow leads to heavy-tailed
density fluctuations.

with the correlation radius of the random force

rc =
(∫ ∞

−∞
CF (x, 0) dx

)1/2

, (5)

where CF (x, y) = 〈Fy(x, y) Fy(0, 0)〉/α2 is the correlation
function of the force Fy = (α∂yc)/(c + T0). In the following,
we evaluated rc numerically.

To confirm the scaling behavior of Eq. (4), we obtained the
first caustic statistics for a range of different parameters of
the random pheromone fields by numerically integrating the
stability matrix along trajectories as described in Appendix D.
The results are shown in Fig. 4.

IV. DIFFUSION AND BRANCHED FLOW

We are now equipped to study how the stochastic diffu-
sion terms in Eq. (2) will suppress branched flows, which is
illustrated in Fig. 5. To quantify the suppression, we use the
so-called scintillation index of the trajectory density

S(x) = 〈ρ2(x, y)〉 − 〈ρ(x, y)〉2

〈ρ(x, y)〉2 , (6)

where x is the main propagation direction of the flow, and the
average 〈·〉 is taken over realizations of random fields (and
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FIG. 4. Characteristic lengthscale. The numerically obtained
mean distances to the first caustic dc for random pheromone fields
for 441 combinations of different parameters n, α = [0.1, 0.3, 0.5],
and T0 = [0.0, 0.032, 0.064, 0.32, 0.64, 3.2, 6.4]/�2

c plotted vs n (the
trivial parameters are fixed to the values �c = 0.014 and w = 1).
Each data point is averaged over 10 realizations of the pheromone
field and 10 000 initial conditions for each field. The simulations
clearly confirm the scaling derived in Eq. (4) by data collapse. Left:
dc in units of �c. Right: The same data as in the left panel scaled by
the right-hand side of Eq. (4). To make is easier to follow individual
curves, they are colored according to the α values: black (0.1), gray
(0.3), and blue (0.5).

in practice, to save computation time, also over the direction
perpendicular to the propagation direction). For simplicity,
we will use initially parallel flows in the x direction in the
following (instead of point sources where the main propaga-
tion direction would be radial). The region of the strongest
branches in a branched flow is visible as a pronounced peak
in the scintillation index (cf. Refs. [4,11]). We will use the
value of the scintillation index at the propagation distance
where the branched flow is most pronounced in the absence
of stochastic diffusion, i.e., at the peak position xp,0 for γi = 0
(as indicated in the lower panel of Fig. 5). Please note that
to be able to compare the trajectory densities (and thus the
scintillation index) for different values of the stochastic dif-
fusion terms, we need to make sure that a well-defined state,
i.e., a nonequilibrium steady state (NESS), has been reached.
Particles (= ants) are entering from the left and exit to the
right (and on the left) of the integration region (for practical
reasons we are using periodic boundaries in the y direction).
With increasing stochastic terms, the total integration time
until all particles have left the integration region is increas-
ing. Figure 6 shows S(xp,0) normalized to the peak height
S0(xp,0) of the scintillation index in the absence of stochastic
terms.

We argue that branched flow will be suppressed when
the stochastic terms are interfering with the basic mecha-
nism of caustic creation. That means when, at the mean
time to the first caustic, the stochastic terms cause a
diffusive standard deviation in y of the same order of
magnitude as the diffusion due to the (static) pheromone
field, i.e., proportional to the correlation length �c of
the random field. For translational diffusion this scal-
ing argument for the characteristic fluctuation strength γ ∗

1
reads

〈(y − y0)2〉 = γ ∗
1

2 dc ∝ �2
c

2 3 00.2 0 0. 2 0 75. 2 1 50.

γ1

xp,0

FIG. 5. Impact of stochastic diffusion. Illustration of the sup-
pression of branched flow by increasing stochastic diffusion. Upper
panel: Flow from a point source with increasing stochastic rotational
diffusion (growing γ2). The other parameters are α = 0.2, T0 = 0.0,
�c = 0.005, and n = 1.0. The system size is set to unity, L = 1.
See also Video 1 in the supplemental material [37]. Lower panel:
Scintillation index for initially parallel branched flows for increasing
translational stochastic diffusion (γ1 = 0.0, . . . , 0.15). The scintilla-
tion index is averaged over y and 60 realizations of the fields. The
three insets on the right illustrate single realizations corresponding
to three of the scintillation index curves (as indicated by color). The
other parameters are α = 0.025, T0 = 0.0, �c = 0.01, and n = 1.0.

and thus by using Eq. (4) we can define

γ ∗
1 = (

α �2
c rc

)1/3
. (7)

FIG. 6. Suppression of branched flow by diffusion. The scin-
tillation index S(xp,0) at the position xp,0 of the peak [of height
S0(xp,0)] in the noise-free branched flow as a function of the fluctu-
ation strength (γi) for (left panel) translational diffusion and (right
panel) rotational diffusion for 160 combinations of the other pa-
rameters: α = [0.01, 0.02, 0.04, 0.08, 0.16], n = [1, 2, 4, 8], T0 =
[0, 0.1, 1.0, 10.0]/�2

c , and �c = [0.005, 0.01] (shown are 126 param-
eter combinations for which xp,0 was within the range [0.05,0.8]). In
each simulation, the density is estimated using 300 000 trajectories,
and the scintillation index is averaged over 60 realizations of the
random pheromone field.
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FIG. 7. Scaling theory. The upper panels show the same data as
in Fig. 6 but with abscissas scaled by γ ∗

1 (upper left) and γ ∗
2 (upper

right), respectively. The lower panels show the same data plotted
together scaled according to Eq. (9) on a double logarithmic scale
(lower left) and on a semilogarithmic scale (lower right). The red
curves in the lower panels are the exponential function y = exp(x)
demonstrating that the initial suppression of the scintillation index
is exponential. The red shaded regions in the upper panels illus-
trate that the further progression of the curves can be understood
by the residual scintillation in the trajectory density due to the
finite number of trajectories used in the simulation. The shaded ar-
eas are defined by S(xp,0 )/S0(xp,0 ) = exp(−ηiγi/γ

∗
i ) + Ssim/S0(xp,0 ),

where Ssim ≈ 2.9 × 10−3 is the numerically observed average resid-
ual scintillation index (at large γi). [Note that the width of the
shaded area is thus caused by the spread of S0(xp,0) for the different
parameters.]

For rotational diffusion, finding γ ∗
2 is easy since in the

paraxial approximation the pheromone field and the stochastic
term enter the equations of motion on the same footing, i.e.,

without further calculation we can simply assume γ ∗
2 ∝ γp (cf.

Appendix C) and we thus define

γ ∗
2 = α rc. (8)

Using Eqs. (7) and (8) to rescale the abscissas of the data
from Fig. 6, we find excellent data collapse in the upper panels
of Fig. 7, confirming our scaling argument for the suppression
of branched flows.

The functional form of this suppression of branched flow,
however, is surprising. One might naively expect that the
Gaussian propagator of diffusion also leads to a Gaussian
suppression of the scintillation index (this is, e.g., what we
would observe for the scintillation index of a periodic stripe
pattern if we would convolve it with a Gaussian kernel). In
contrast, we observe that the suppression is exponential in γi,
and not in γ 2

i . This can be seen in the lower panels of Fig. 7.
We find that for two orders of magnitude in the scintillation
index, we can write

S(xp,0) = S0(xp,0) exp

(
−ηi

γi

γ ∗
i

)
, (9)

with constants η1 ≈ 3.70 and η2 ≈ 1.32.

V. TRAIL FORMATION

Finally, we are going to study the dynamics of our model
ants interacting with each other by depositing pheromones
along their trajectories. As motivated earlier, we will not
be aiming at a quantitative comparison with the experiment.
Instead, we want to restrict ourselves to observing the basic
phenomenology and to illuminate the phase-space structures
connected with trail formation.

As before, in our model, ants are entering from a point
source in the center of a circular environment and are taken
out of the system when they reach the boundary. Since
in the experiment of Ref. [21] the ants tend to remain at

1 1-10 91-100 1101-1200 2101-2200

N=1 N=2200N=10 N=100 N=1200

co
nc
en
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.u
.]

FIG. 8. Trail pattern formation. In the upper row, the cumulated pheromone field (in an initially pheromone-free circular arena) after a
number of N ants have traversed the arena form the center to the boundary with random initial direction. In the lower row the trajectories of the
first ant entering the arena (leftmost panel) and 10, respectively 100, trajectories of consecutive ants at later times. (A more detailed description
of the model and the parameters used are given in the text.)
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FIG. 9. Phase-space analysis of the evolving trail pattern (the time evolution is shown in Video 2 in the supplemental material [37]). In the
upper row, panel (a) shows the accumulated pheromone field deposited by 1200 ant trajectories. Panel (b) shows the latest 100 ant trajectories.
Panel (c) reveals the density (on a logarithmic scale) of potential trajectories the next ant could follow in the current pheromone field. Panel
(d) in the lower row shows the density (on a logarithmic scale) of potential trajectories in the absence of stochastic diffusion terms. Panel
(e) shows Poincaré surfaces of section (PSSs) along the circles of corresponding color indicated in the right panel. In each PSS the angular
velocity vϕ = ϕ̇ is plotted against the polar coordinate angle ϕ at which the trajectory is intersecting the corresponding circle.

the boundary of the circular arena once they have reached
it, this appears to be an adequate approximation that al-
lows for a clear model setup and well-defined states. The
model ants are simulated one by one, each entering the
arena in a random initial direction, following Eq. (2) in
the pheromone field deposited by their predecessors, and
depositing pheromones themselves along their path. After
deposition, pheromones will diffuse and evaporate on slower
timescales. Again, following Ref. [21], we will assume that
these timescales are long enough so that we can neglect these
effects. In the following, we model the deposition to be in
droplets of fluctuating quantity along the path (fluctuating
uniformly in an interval [0, 2 c]) at times t j = j�td , which
get smeared out by a Gaussian exp{−[r − r(tj)]2/σ 2

0 }/(πσ 2
0 ),

with arbitrary mean c, σ0 = 0.005L (where L is the di-
ameter of the arena), and �td such that the concentration
fluctuates by approximately 10% along the path, as illus-
trated in the upper leftmost panel of Fig. 8. The remaining
parameters are chosen to be α = 0.2, T0 = 0.005, γ1 = 0,
and γ2 = 0.2.

Figure 8 exemplifies the evolution of the pheromone field
and the trail pattern in our model setup. The phenomenol-
ogy is similar to that observed in the experiment. Trails start
to form but might shift or depopulate over time while new
trails are forming. Figure 9 and Video 2 in the supplemental
material [37] illustrate the connection of the observed trail
patterns to branched flows by showing the densities of po-
tential trajectories: after N ants have deposited pheromones
along their trajectories, the possible trajectories of ant No.
N + 1 in the current pheromone field have been calculated
and their density plotted (for each density shown we simulated

200 000 trajectories). To make the phase-space structures
that are developing clearer, in addition we have plotted the
potential trajectory density in the absence of stochastic diffu-
sion, i.e., for γ1 = γ2 = 0. We clearly see that after the initial
approximately 100 trajectories, the phase-space structures re-
semble those of a branched flow in a random environment,
and the most pronounced branches with their caustics cor-
respond to the trails that have developed and are continuing
to form.

VI. CONCLUSION

We have demonstrated that active random walks in cor-
related bias fields, even in the presence of dissipation and
stochastic forces, can show a regime of branched flow. We
have derived a scaling theory to estimate the strength of the
stochastic forces that still allow for branched flows to form.
Since it is a very robust mechanism creating density fluc-
tuations with heavy-tailed distributions and extreme events,
branched flow can be crucial in the selection of random
dynamical patterns forming in transport of active matter on
lengthscales between ballistic and diffusive spread. We have
exemplified this in a simple model of the trail formation of
pheromone depositing ants.
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FIG. 10. Integral kernel. The kernel function of Eq. (A3) is
shown in color code (blue to red) for an ant running in the y-direction,
i.e., ϕ = π/2. The solid black curve shows the value of the kernel
along the dashed-dotted diagonal cut. The maximum is reached at a
distance R from the origin (i.e., the position of the ant).

APPENDIX A: EQUATIONS OF MOTION

We have slightly generalized the model of Ref. [21] [which
we have summarized in the paragraph containing Eq. (1)] by
introducing a smooth kernel function K (r′) instead of sharp
domains. It is defined such that

L − R =
∫∫

R2
K[D−ϕ (r′ − r)] c(r′) dx′ dy′, (A1)

L + R =
∫∫

R2
|K[D−ϕ (r′ − r)]|c(r′) dx′ dy′, (A2)

when the ant is positioned in r and running in direction

ϕ. Dθ = (
cos θ − sin θ

sin θ cos θ
) denotes the rotation matrix. The

integral of |K| is normalized to 1. Even though a smooth
kernel is more realistic than sharp domains, we do not know
its actual shape and thus have to assume some form. In the
following, for simplicity we chose a kernel based on a two
times differentiated Gaussian, i.e.,

K (x, y) = 2xye−(x2+y2 )/R2

(x)/R4, (A3)

where 
(x) is the Heaviside step function. The extent of
the area over which the ant can detect the pheromone is
parametrized by R. The kernel is illustrated in Fig. 10.

We can now write the equations of motion as integrodiffer-
ential equations (taking the limit �t → 0) as

ẋ = cos ϕ, ẏ = sin ϕ,

ϕ̇ = A0
L − R

L + R + T0
. (A4)

Here we assumed (again following [21]) that the ants’ speed
does not vary strongly and that we can choose the magnitude
of the velocity to be constant, v ≡ 1 [38].

To transform the integrodifferential equations of motion
into ordinary differential equations, we Taylor-expand the
pheromone density to first order,

c(x + �x, y + �y) = c(x, y) + ∂xc(x, y)�x + ∂yc(x, y)�y,

and insert this into Eqs. (A1) and (A2). In a coordinate system
where x is aligned to the velocity of the ant, we find

L − R =
√

π

2
R ∂yc(x, y),

L + R = c(x, y) +
√

π

2
R ∂xc(x, y).

We see that the sensitivity of the ants rotation A0 = A0(R)
in reaction to variation in the pheromone field needs to be
inversely proportional to the size R of the detection domain
in order to keep the responses comparable. Writing A0(R) =
A0(R0)R0/R, with an arbitrarily chosen but sufficiently small
R0, we define

α = lim
R→0

√
π

2
R A0(R) =

√
π

2
A0(R0)R0, (A5)

and after transforming back into the original (rotated) coordi-
nate system, we find the equations of motion (2).

APPENDIX B: RANDOM PHEROMONE FIELD MODEL

We generate a random (non-negative) concentration field
c(r) with prescribed correlation length �c by convolving N
randomly placed δ-functions (in an area L × L) with a Gaus-
sian of width �g = �c/

√
2:

c(r) = w g(r) ∗
N∑

i=1

δ(ri ),

with g(r) = 2e−2(x2+y2 )/�2
c /(π�2

c ) and a global weight prefactor
w. The mean density of c(r) is 〈c〉 = co = w N/L2 = w n/�2

c ,
where n is the number of δ-functions per area �2

c , i.e., n =
N�2

c/L2. For the correlation function, we find

C(r) = 〈c(r′ + r)c(r′)〉 − c2
0

= w2 n

π�4
c

e−r2/�2
c .

Throughout this article, we will set w = 1.

APPENDIX C: SCALING
OF THE CHARACTERISTIC LENGTH

To assess the characteristic lengthscale of branched flows
of ant trajectories, we will follow Refs. [2,20,39] in using a
simple scaling argument to find the parameter dependence of
the mean distance to the first caustic (dc). We recapitulate the
scaling argument for initially parallel trajectory-bundles, i.e.,
the ant trajectory equivalent of an initial plane wave propagat-
ing through a correlated random, weakly refractive medium.
This case is easier to understand and numerically simpler to
test than the case of a point source, but (except for a different
constant prefactor) yields the same results.

In the following, we will assume that the sensitivity in the
change of direction is sufficiently weak such that dc � �c

and the mean free path (�mfp), i.e., the distance at which
trajectories start to turn around, is much larger, �mfp � dc.
We can then neglect the change in velocity in the propagation
direction (which we choose to be the x-direction), i.e., do a
paraxial approximation.
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The main idea of the simple scaling argument is as fol-
lows: when a trajectory reaches a caustic [see the red dots
in Fig. 3(c)], the manifold connecting it with its neighbors
in the bundle has a vertical tangent in phase space (therefore
its projection onto coordinate space, here the y-axis, shows a
singularity in the trajectory density). From the s-like shape of
the manifold it follows, however, that at the same y-position a
second trajectory has to cross the first with different velocity
[gray dot in Fig. 3(c)], i.e., the trajectories cross under an
angle that is finite (not infinitesimally small). Since the con-
centration field is correlated, however, for this to happen the
trajectories need to have sufficiently different histories, i.e.,
they have to have initial conditions that were on the order of a
correlation length (�c) apart. This initial distance has to have
been spanned by diffusion in the random pheromone field.
This is the origin of Eq. (3).

We thus have to study how the trajectories diffuse in the
random pheromone field. If we follow a single trajectory,
its perpendicular velocity (vy) will grow diffusively on
timescales greater than �c/vx ≈ �c/1. We can approximate its
dynamics by

ẏ = vy, (C1)

v̇y = α∂yc

c + T0
≈ γp �(t ), (C2)

with 〈�(t ′)�(t )〉 = δ(t ′ − t ). The prefactor γp = √
2Dp

determines the diffusive growth: vy = 2Dpt caused by the
random (but static) pheromone field. It can by found by
directly integrating Eq. (C2) to be γp = α rc, with the
correlation radius rc of the fluctuating force Eq. (5).

The variance in y can be found to be (see, e.g., [39])

〈(y − y0)2〉 = 2

3
Dpt3. (C3)

From inserting this into Eq. (3), the power law of Eq. (4) easily
follows (since x ≈ t).

Note, that when the different scales are less well sepa-
rated (�mfp � dc � �c), the paraxial approximation will be less
accurate and deviations from the scaling law will occur. How-
ever, the phenomenon of branched flow can still be observed.

APPENDIX D: STABILITY MATRIX
AND CAUSTIC CONDITION

To efficiently calculate the caustic statistics of branched
flows in the ant-dynamics, we follow the methods developed
in Ref. [40] and numerically evaluate the stability matrix
along the trajectories until we reach a caustic condition. The
stability matrix M(t, t0) describes how a trajectory x(t ) =
x0(t ) + δx(t ), which starts infinitesimally close to a reference
trajectory x0(t ) at time t = t0, evolves over time [here x(t ) =
(x(t ), y(t ), ϕ(t ))T ], i.e.,

δx(t ) = M δx(t0).

The elements of M are Mi j (t, t0) = ∂xi(t )/∂x j (t0). Their dy-
namics is given by

Ṁ = K M, (D1)
with the Jacobian matrix of the equations of motion Ki j (t ) =
∂ ẋi(t )/∂x j (t ), i.e.,

K =

⎛
⎜⎝

0 0 − sin ϕ

0 0 cos ϕ

K31 K32 K33

⎞
⎟⎠, (D2)

with

K31 = A(−cxx sin ϕ+cxy cos ϕ)

T0 + c
− Acx(−cx sin ϕ+cy cos ϕ)

(T0 + c)2
,

K32 = A(cyy cos ϕ − cxy sin ϕ)

T0 + c
− Acy(−cx sin ϕ + cy cos ϕ)

(T0 + c)2
,

K33 = A(−cy sin ϕ − cx cos ϕ)

T0 + c
,

where ci = ∂c/∂xi and ci j = ∂2c/∂xi∂x j .
The reference trajectory reaches a caustic, i.e., a singularity

in the trajectory density, when the area of the projection onto
coordinate space of the parallelogram spanned in phase space
by ẋ(t ) and δx(t ) vanishes. For initially parallel trajectories
[ẋ(t0) = (1, 0, 0)T and δx(t0) = (0, 1, 0)T ] we can write the
caustic condition as

ẋ M22 − ẏ M12 = M22 cos ϕ − M12 sin ϕ = 0. (D3)
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