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Shubnikov-de Haas (SdH) oscillations are the fingerprint of the Landau and Zeeman splitting level structure on
the resistivity in presence of a moderate magnetic field before full quantization is manifest in the integer quantum
Hall effect. These oscillations have served as a paradigmatic experimental probe and tool for extracting key
semiconductor parameters such as carrier density, effective mass m∗, Zeeman splitting with g factor g∗, quantum
scattering time, and Rashba α and Dresselhaus β spin-orbit (SO) coupling parameters. Analytical descriptions
of the SdH oscillations are available for some special cases, but no analytical solution could be found for the vast
majority of parameter space with all three terms present, usually relevant for experiments. Despite over 50 years
of experiments and many theoretical models, which were put forth, this has seriously hampered the analysis and
interpretation of experimental data. Here, we bridge this gap by providing an analytical formulation for the SdH
oscillations of 2D electron gases (2DEGs) with simultaneous Rashba, Dresselhaus, and Zeeman interactions
over a very broad range of parameter space. We use a Poisson summation formula for the density of states of the
2DEG, which affords a complete yet simple description of the oscillatory behavior of its magnetoresistivity. Our
analytical and numerical calculations allow us to extract the beating frequencies, quantum lifetimes, and also to
understand the role of higher harmonics in the SdH oscillations. More importantly, we derive a simple condition
for beating-free SdH oscillations for all harmonics in 2DEGs α/β = [(1 − �̃)/(1 + �̃)]1/2, where �̃ ∝ g∗m∗

is a material parameter given by the ratio of the Zeeman and Landau level splitting. This condition is notably
different from that of the persistent spin helix at α/β = 1 for materials with large g∗m∗ such as InAs or InSb.
We also predict beatings in the higher harmonics of the SdH oscillations and elucidate the inequivalence of the
SdH response of Rashba-dominated (α > β) vs Dresselhaus-dominated (α < β) 2DEGs in semiconductors with
substantial g∗. We find excellent agreement with recent available experimental data of Dettwiler et al. [Phys.
Rev. X 7, 031010 (2017)], and Beukman et al. [Phys. Rev. B 96, 241401(R) (2017)]. The formalism builds the
foundation for a generation of quantum transport experiments in quantum materials with unprecedented physical
insight and material parameter extraction.

DOI: 10.1103/PhysRevResearch.5.043297

I. INTRODUCTION

The spin-orbit (SO) interaction couples the orbital and spin
degrees of freedom, not only forms the basis for a range of
spin related effects such as the spin Hall effect [1–3] and
the persistent spin helix [4–6], but also underlies the phys-
ical mechanisms of new phases of matter, e.g., topological
insulators, quantum spin Hall materials [7–9], and Majorana
[10–12], Dirac and Weyl fermions [13]. Accordingly, ad-
vancing techniques and methods to measure and extract SO
couplings from experimental data are crucial for the develop-
ment of these fields.
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FIG. 1. (a) Experimental setup for measuring Shubnikov-de
Haas oscillations in two-dimensional electron gas (2DEG), with
Dresselhaus and Rashba spin-orbit interactions. (b) Landau lev-
els and Shubnikov-de Haas oscillations as a function of the
magnetic field. The longitudinal resistivity is proportional to
the density of states, which peaks when εF intersects different
Landau levels.
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FIG. 2. Magnetoresistivity for (a) pure Rashba α = 7.0 meV nm and (b) pure Dresselhaus β = 7.0 meV nm with m∗ = 0.019mo and n2D =
3.3 × 1011 cm−2 from Ref. [41]. The curves in (a) and (b) are not the same due to the large g factor g∗ = −34. The insets display the normalized
FFT including the second harmonic. The presence of beating nodes in δρxx are clearly visible in (a) the fundamental and (b) the second
harmonic, see Fig. 9 below. The condition for the absence of beatings (single peak for each harmonic) is α = 7.0 meV nm and β = 5.0 meV nm,
shown in (c), but not α = β = 7.0 meV nm, the persistent spin helix case, shown in (d), clearly exhibiting a beating (here a splitting of second
harmonic peak).

Shubnikov-de Haas (SdH) oscillations [14,15] are among
the best techniques to probe simultaneously spin- and charge-
related quantities associated to electrons in semiconductors,
including effective masses, gyromagnetic ratios, quantum
scattering times, densities, and SO couplings [e.g., Rashba
and Dresselhaus ones, arising from structure and bulk inver-
sion asymmetries, respectively, Fig. 1(a)]. Most recently, they
have been crucial to the study and understanding of new mate-
rials, as for example, transition metal-based perovskite oxides
[16–25], 2D materials, transition metal dichalcogenides, van
der Waals heterostructures [26–33], and also materials hosting
new phases of matter e.g., topological insulators [34], un-
conventional superconductivity [35], and correlated insulator
behavior [36]. It has also been used to establish the presence of
nodal lines [37], Berry’s phase [38,39], and different topology
of Fermi surfaces [40].

Shubnikov-de Haas oscillations are magneto-oscillations
in the resistivity and originate from the sequential crossings of
the discrete Landau levels (LLs) through the Fermi energy εF ,
shown in Fig. 1(b). Without SO coupling and in the low-field
regime, the period of the SdH oscillations can be related to
the density of the electron gas [42,43]. On the other hand, in
the presence of a spin-split band produced by SO interaction,
the energy spectrum changes dramatically, thus leading to
additional frequencies in the magnetoresistivity, e.g., beat-
ings [44–46], Fig. 2(a). This was first theoretically described
semiclassically by Das et al. [47]. In the so-called Onsager’s
picture, different sub-bands possess different Sommerfeld
quantized orbits (playing the role of the LLs), which cross the
Fermi energy with different frequencies in B−1. The spin-split
bands give rise to two distinct oscillating frequencies in the
magnetotransport. The standard experiment relies on Fourier
analyzing the measured SdH oscillations. An experimental
method introduced in Refs. [48–50] has often been used to
estimate the strength of the Rashba coupling via the splitting
of the Fourier frequency peaks. However, these methods have
been criticized for not accounting for the Zeeman splitting
(through the g factor g∗) nor for the additional Dresselhaus
SO coupling [41].

There have been some attempts to analyze the SdH os-
cillations taking into account both α, β, and g∗. However,
these mostly involved qualitative comparison with the energy
spectrum of pure Rashba and pure Dresselhaus [51,52]. In

Ref. [53], fully numerical calculations of magneto-oscillations
were performed but for relatively high magnetic fields and
low electron densities, far away from the regime of recent
experimental studies [54]. Moreover, it was realized that in
the absence of the Zeeman interaction, important features
are absent. More specifically, without accounting for the spin
mixing generated by the magnetic field (via the Zeeman in-
teraction), predictions become imprecise [55], and even fail
to describe phenomena such as magnetic inter-subband scat-
tering [56] and magnetic breakdown [57]. In general, full
quantum mechanical numerics are generally done in order to
check agreement with experiments, which are neither very
practical nor elucidate much of the physics happening in
those systems [54,58]. Finally, all the previous studies have
neglected the influence of higher harmonics, recently seen
experimentally [59].

Here, we present a theory of SdH oscillations in the pres-
ence of simultaneous arbitrary SO couplings of both Rashba α

and Dresselhaus β types and Zeeman interaction with g factor
g∗. Our main result is the derivation of a simple analytical
expression for the corresponding SdH oscillations. Earlier
analytical descriptions of SdH magnetoresistivity oscillations
considered only special cases, namely, when one of the spin-
orbit terms and g∗ are nonzero, and when α = β with g∗ = 0.

Interestingly, our analytical formula predicts a condition
for beating-free SdH magneto-oscillations in all harmonics
[e.g., Fig. 2(c)] in Rashba-Dresselhaus-coupled 2DEGs with
substantial Zeeman splittings, namely,

α

β
=
√

1 − �̃

1 + �̃
, (1)

where �̃ is a material parameter given by the ratio between the
Zeeman splitting and the Landau level spacing, see Fig. 12
below. This condition is experimentally feasible in ordinary
InAs- and InSb-based 2DEGs and can be achieved via the
independent control of both α and β [59]. The validity of the
derived condition is determined by the product of the effective
spin-orbit energy and the Fermi energy (proportional to the
electron density) being less than the squared cyclotron energy,
see text below Eq. (57) and condition in Eq. (64). As we
discuss later on, Eq. (1) is not associated with a conserved
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quantity in our system; this contrasts with the persistent-spin-
helix condition α = β, which predicts spin conservation along
particular axes [4–6]. We stress that this case with α = β and
generic g∗ �= 0 leads to beating in the frequency spectrum of
our system, Fig. 2(d), as opposed to our condition in Eq. (1).
As we discuss below, our numerical and analytical approaches
show excellent agreement with available data from Refs. [54]
and [59].

Our approach combines a semiclassical formulation for the
resistivity of 2DEGs with a trace formula for the density of
states (DOS) in a quantizing magnetic field. The trace for-
mula expresses the DOS using the usual Poisson summation
formula [60]. This formulation brings out the oscillatory part
of the DOS, thus allowing us to clearly identity the higher
harmonics of the SdH oscillations. It enables us to conve-
niently separate the frequency scales into “fast” and “slow”
oscillations thus allowing for a clearer interpretation of the
underlying physical phenomena, e.g., the slow beating SdH
oscillations due to the SO coupling.

Our main results for the oscillatory part of magnetoresis-
tivity δρxx(1/B) and its frequency spectra I ( f ) are shown in
Fig. 2 (insets). For pure Rashba [α �= 0, β = 0, Fig. 2(a)]
and pure Dresselhaus [α = 0, β �= 0, Fig. 2(b)], but nonzero
Zeeman term (g∗ �= 0), the frequency spectra, as usual, show
two main peaks, which correspond to the first two Fourier
components of δρxx(1/B). These two cases, however, exhibit a
marked contrast: while the pure Rashba shows a peak splitting
at the fundamental frequency, the pure Dresselhaus exhibits
a peak splitting in the second harmonic. As we explain in
detail in Sec. V D, this contrasting behavior arises from the
interplay between the Zeeman and SO interactions, which
makes the SdH magnetoresponses with nonzero g factors g∗
inequivalent for Rashba-dominated (α > β) vs Dresselhaus-
dominated (α < β) 2DEGs. For g∗ = 0, the pure Rashba and
pure Dresselhaus cases give identical results.

Figure 2(c) illustrates our prediction in Eq. (1) thus
showing no peak splitting in the frequency spectra—at any
harmonic—when this condition is satisfied. To emphasize
this condition emulates a situation with no SO coupling
(i.e., no beating), we plot in Fig. 2(c) the α = β = 0 (with
g∗ �= 0) case [dashed curve in Fig. 2(c)], which shows com-
plete overlap with the case satisfying Eq. (1). In contrast
and for completeness, Fig. 2(d) shows the α = β �= 0 case
with g∗ �= 0, which exhibits peak splitting in the second
harmonic.

We have applied our analytical description to low-density
GaAs-based quantum wells for which there are experimental
data [59] showing several harmonics in the SdH magneto-
oscillations. Figure 3 shows the excellent agreement obtained,
thus illustrating that our semiclassical formulas can satisfac-
torily capture the higher harmonics of the SdH oscillations.
Moreover, we have applied our analytical approach to low-
density InSb-based 2DEGs [41,52] where, unlike GaAs-based
2DEGs, a strong SO coupling manifests itself as beatings
in the measured SdH oscillations, and find good agreement.
We have also implemented a detailed numerical calculation
for high-density InAs-based 2DEGs for which an analytical
description is not adequate. Here again we find very good
agreement with available data [54] and are able to extract SO
coupling parameters.

FIG. 3. The power spectrum I ( f ) for δρxx measurements on a
GaAs 2DEG in Ref. [59] obtained using Eq. (26). The calculated
results used Eq. (30) with one fitting parameter τq. The inset shows
the magnetoresistivity data and the corresponding calculated δρxx .

Next (Sec. II), we present a description of the Hamiltonian
of our system. In Sec. III we discuss how to obtain the “F
function”, the central quantity in our formulation, from the
Landau-quantized energy spectrum of our system and its con-
nection with the density of states (DOS). The formalism for
obtaining the Shubnikov-de Haas oscillations in terms of the
Poisson summation formula and the F function is described
in Sec. IV. Finally, in Sec. V we present and analyze different
particular cases of SdH oscillations and, more important, de-
rive the new condition in Eq. (1) for the complete absence of
beatings (all harmonics) in the SdH oscillations, for 2DEGs
with nonzero Rashba, Dresselhaus, and Zeeman couplings.
The appendices present relevant details of our theoretical for-
mulation.

II. 2DEG HAMILTONIAN

Our starting point is the Hamiltonian for a 2DEG confined
in a quantum well (xy plane) grown along the [001] crys-
tallographic direction, taken as z axis. In the presence of a
perpendicular external magnetic field B = (0, 0, B) and both
Rashba [61] and Dresselhaus [62] spin-orbit interactions, the
Hamiltonian reads

H = 1

2m∗
(
	2

x + 	2
y

)+ 1

2
g∗μBBσz

+ α

h̄
(	yσx − 	xσy) + β

h̄
(	xσx − 	yσy), (2)

where g∗ is the g factor, m∗ is effective mass, � = p − qA is
the canonical momentum, q is the electric charge, μB is the
Bohr magneton, h̄ the reduced Planck’s constant, and σx, σy,
σz denote the usual Pauli matrices. The parameters α and β

denote the linear-in-k Rashba and Dresselhaus SO couplings,
respectively. The β coupling includes a density dependent
correction arising from the cubic Dresselhaus term. As we
discuss later on (Sec. VI A), our numerical results will account
for the full cubic Dresselhaus term.
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TABLE I. Definitions of the Zeeman and SO-related quantities used in this paper.

Landau level/Zeeman ωc = eB
m∗ �c =

√
h̄

eB � = g∗μBB �̃ = �

h̄ωc
= g∗m∗

2m0

Rashba (α) εR = α2m∗
2h̄2 = h̄2k2

R
2m∗ αB = α√

2h̄ωc�c

εR
h̄ωc

= α2
B

Dresselhaus (β ) εD = β2m∗
2h̄2 = h̄2k2

D
2m∗ βB = β√

2h̄ωc�c

εD
h̄ωc

= β2
B

SO parameters γ = αB + βB δ = αB − βB � = 2εR/h̄ωc
1−�̃

+ 2εD/h̄ωc
1+�̃

� = 2εR/h̄ωc
1−�̃

− 2εD/h̄ωc
1+�̃

Let us introduce the annihilation and creation operators
associated to the Landau level |n〉,

a = �c√
2h̄

(	x − iζ	y), (3)

a† = �c√
2h̄

(	x + iζ	y), (4)

obeying [a, a†] = 1, a|n〉 = √
n|n − 1〉, a†|n〉 =√

n + 1|n + 1〉, ζ = −sign(qB), with the magnetic length

and the center of the Landau orbit denoted by �c =
√

h̄
|qB|

and y0 = ekx
|qB| , respectively. In this paper, we have q = −e,

where e > 0 is the absolute value of the elementary electronic
charge, and we choose B > 0, yielding ζ = 1. Using Eqs. (3)
and (4), our Hamiltonian [Eq. (2)] becomes

H = h̄ωc(a†a + 1/2) + �

2
σz − iα√

2�c

(a†σ− − aσ+)

+ β√
2�c

(a†σ+ + aσ−), (5)

where the cyclotron frequency is ωc = eB/m∗, � = g∗μBB,
which inherits its sign from g∗, and σ± = σx ± iσy, with σx

and σy denoting Pauli matrices. We now perform the canon-
ical transformation H̃ = UHU† with U = ei π

4 ( σz
2 +a†a), which

yields

Uσ±U† = σ±e∓i π
4 , (6)

UσzU† = σz, (7)

Ua†U† = ei π
4 a†, (8)

and finally

H̃
h̄ωc

= (a†a + 1/2) + �̃

2
σz + αB(a†σ− + aσ+)

+βB(a†σ+ + aσ−), (9)

where we have introduced the real valued, dimensionless
quantities αB = α√

2h̄ωc�c
, βB = β√

2h̄ωc�c
and �̃ = �

h̄ωc
= g∗m∗

2m0
,

also defined in Table I.
Analytical solutions for the above Hamiltonian [Eq. (9)]

can be found for the cases with either pure Rashba or pure
Dresselhaus [61,63]. The specific cases of α = ±β and �̃ = 0
turn out to be of great physical interest, where persistent spin
helix (PSH) [4,5,59] and persistent skyrmion lattice (PSL) [6]
were predicted. Interestingly, the case with α = ±β maps to
the Rabi model in quantum optics and was recently solved
exactly [64]. The exact solution relies on obtaining zeros
of a transcendental function. Moreover, previous studies of
the Rabi model have important implications for our system.

For instance, we have shown that the Rabi parity symmetry
[64,65] remains valid in our problem for arbitrary α and β

(see Appendix C). This enables us to separate the Hilbert
space in two subspaces with different parities, which can be
individually analyzed and compared. As for general couplings
α and β, similar systems have been studied before in the
framework of Landau levels, using either variational (Hartree-
Fock) methods [66], second-order perturbation [67,68] or
obtaining the spectrum in terms of solutions of transcendental
equations [69]. A perturbation scheme based on fourth-order
Schrieffer-Wolff transformation has also been used to find
approximate analytical solutions [70]. However, we are un-
aware of any exact analytical solution for general Rashba,
Dresselhaus, and Zeeman coupling.

III. F FUNCTION AND ITS CONNECTION WITH THE
ENERGY SPECTRUM AND DOS

For our 2DEG in the presence of perpendicular magnetic
field, the low magnetic field regime corresponds to having a
very large number of Landau levels below the Fermi energy
εF (taken as constant and equal to its zero-field value), i.e.,
many occupied states. The system is thus assumed to be
far away from the integer quantum Hall regime where few
Landau levels are occupied and the effects of electron-electron
interaction become important [43]. Let us denote the eigenen-
ergies of Hamiltonian Eq. (9) by εn,s, where n ∈ N0 represents
the LL number and s = ± represents a pseudospin associated
to the presence of two spin-split bands (due to the Zeeman
and SO interactions). With this notation, the density of states
(DOS) reads

D(ε, B) = D̃

A

∑
n,s

δ(ε − εn,s), (10)

where D̃ = A/2π�2
c is the LL degeneracy and A the 2DEG

area. This LL degeneracy is the same for all 2DEGs stud-
ied here in the presence or absence of Zeeman and SO
interactions.

As we show in the next section, the magnetotransport prop-
erties of the system can be determined by the Landau levels
sequentially crossing εF . The rate at which these crossings
happen will determine a periodic behavior of the magneto-
transport properties of the system as the magnetic field is
varied. In order to describe this periodicity, we introduce the
F function Fs(ε) [43] (see Appendix A for details), which is
defined via analytical continuation of the function defined by
the relation

εn,s(B) = ε ↔ n = Fs(ε, B). (11)
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Accordingly, the F function gives the Landau level index n of
the state that has energy ε and pseudospin s at magnetic field
B [60,71]. The F function can also return noninteger values
for n. In such cases, the F function provides a measure of
how close a Landau level n is to the energy ε, for a given
pseudospin s and magnetic field B.

Since one can relate transport phenomena with the density
of states, we rewrite the DOS of our system in a way that
highlights its oscillatory behavior dependence on both α and
β. First we introduce the Fs function into Eq. (10),

D(ε, B) ≈ m∗

2π h̄2

∑
n,s

δ(n − Fs(ε, B)), (12)

which neglects terms O[(αm∗�c)2/h̄] + O[(βm∗�c)2/h̄)].
This holds for typical values of α, β, m∗, and small mag-
netic fields B � 1T. Using the Poisson summation formula∑∞

n=0 δ(n − Fs) = 1 + 2
∑∞

l=1 cos(2π lFs) and defining the
relevant quantities

F± = 1
2 (F+ ± F−), (13)

we obtain

D(ε, B) − 2D0

2D0
≈ 2

∞∑
l=1

cos(2π lF+) cos(2π lF−), (14)

where D0 = m∗
2π h̄2 is the (constant) density of states per spin

for the 2DEG at zero magnetic field (see Appendix A for
details). As we are going to see later, F+ contains the fast
oscillations with respect to 1/B, which is proportional to the
electron density n2D. On the other hand, F− contains the slow
oscillations that are determined by the spin-orbit coupling
terms, α and β. Moreover, the fast oscillations arising from
the terms with l > 1 correspond to the higher harmonics, and
have be seen in experiments [59]. For vanishing Dresselhaus
interaction, Eq. (14) reduces to Eq. (9.28) in Ref. [63].

IV. SdH OSCILLATIONS IN THE MAGNETORESISITIVITY

As already mentioned, the oscillations in the magnetore-
sistivity as a function of the magnetic field are called SdH
oscillations [43]. They appear as a consequence of the se-
quential depopulation of the LLs when the magnetic field
is increased. For low magnetic fields where multiple LL are
occupied, i.e., far from the integer quantum Hall regime [43],
a semiclassical description of the magneto-oscillations based
on the Boltzmann equation (see, e.g., Ref. [43] for a textbook
introduction), can be used. A more rigorous description can
be found in Ref. [72]. Here we use the semiclassical approach
as it is simple and allows us to straightforwardly relate the
longitudinal magnetoresistivity ρxx(B) to the oscillatory part
of the DOS [Eq. (14)], in the low-field regime. This simpler
description, however, misses an overall “factor of two” (which
we account for in our formulas and figures) as we discuss at
the end of this section and in Appendix B.

In experiments, the measurement of the SdH oscillations
is accessed via the longitudinal differential resistivity. In gen-
eral, the resistivity tensor is defined as the inverse matrix of

the conductivity tensor,

ρ =
(

σxx σxy

σxy σxx

)−1

. (15)

The relevant magnetoresistivity component for us is

ρxx = σxx

σ 2
xx + σ 2

xy

, (16)

with the semiclassical conductivities,

σxx(xy)(B, T ) =
∫

dε

(
−df0(ε)

dε

)
σxx(xy)(B, ε, T = 0), (17)

where f0(ε) is the Fermi-Dirac distribution. Within the
semiclassical approach, we account for the magnetic field de-
pendence of the conductivity via the electron scattering time
τ (ε, B), which is proportional to the DOS D(ε, B) via Fermi’s
golden rule (see Appendix B). Accordingly, up to linear order
on the deviation of the DOS, we obtain

τ (ε, B) ≈ τ0(ε)

[
1 − D(ε, B) − 2D0(ε)

2D0(ε)

]
, (18)

with D0(ε) = D(ε, B = 0) = D0 being the DOS per spin de-
fined following Eq. (14) and τ0(ε) = τ (ε, B = 0). Using the
Drude semiclassical equations for the frequency-independent
current [43], the normalized longitudinal resistivity reads [73]

δρxx(B) = ρxx(B) − ρxx(B = 0)

ρxx(B = 0)
(19)

= 2
∫

dε

(
−df0(ε)

dε

)D(ε, B) − 2D0(ε)

2D0(ε)
. (20)

We emphasize that the simple and straightforward Drude-
Boltzmann derivation above misses an overall factor of two;
here we have inserted this factor of two by hand in Eq. (20).
At the end of this section we briefly comment on this point.
In Appendix B we explain in detail the origin of this factor of
two following a more rigorous approach [72,74].

In the presence of Landau level broadening due to scatter-
ing processes, the DOS in Eq. (10) is replaced by

D(ε, B) = D̃

A

∑
n,s

L� (ε − εn,s), (21)

where L� (x) describes the broadening function, e.g.,
Lorentzian or Gaussian, and � is a parameter defining the
broadening of the levels (see Appendix A for details). The dif-
ference between different types of broadening are dictated by
either the short or long-range inhomogeneities in the sample,
and are discussed in detailed in Ref. [72]. Therefore, the anal-
yses of the Dingle factor of experimental data allows to probe
the corresponding length-scale of inhomogeneities of the sam-
ple. We do not, however, account for any spin-dependent
scattering processes in our phenomenological formulation.
After applying the Poisson summation formula, we obtain a
result that resembles Eq. (14), apart from the appearance of
the the cosine Fourier transform of L� (x), denoted with L̃� (x),

D(ε, B) − 2D0(ε)

2D0(ε)
≈ 2

∞∑
l=1

L̃�

(
l

�

h̄ωc

)

× cos(2π lF−) cos(2π lF+). (22)
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The so-called Dingle factor L̃� (x) [43] sets the limit of validity
of the semiclassical approximation, i.e., that the oscillatory
part of the resistivity should be much smaller than the constant
term. It also gives the regime where it is valid to consider only
the lowest harmonic. Higher harmonics have been observed in
magnetoresistivity measurements [59] in GaAs-based 2DEGs,
where spin-orbit interaction is weak (compared to, e.g., InAs)
and its effect is not seen in low-field SdH oscillations (see
discussion following Fig. 3. The F− function can be related to
the envelope of the SdH oscillations. The general form of the
temperature-dependent normalized resistivity reads

δρxx(B, T ) = 4
∞∑

l=1

∫
dεL̃�

(
l

�

h̄ωc

)(
−df0(ε, T )

dε

)

× cos(2π lF−) cos(2π lF+). (23)

Even though we only consider the zero-temperature limit in
the present paper, for completeness, below we present the
temperature dependence of δρxx(B, T ) valid in the relevant pa-
rameter range considered in this paper and for all the systems
studied here. As show in Appendix H, we find

δρxx(B, T ) ≈ 4
∞∑

l=1

L̃�

(
l

�

h̄ωc

)
Al (T )

×cos(2π lF−) cos(2π lF+)|ε=εF
, (24)

where the temperature-dependent coefficient

Al (T ) = 2π2lkBT/h̄ωc

sinh (2π2lkBT/h̄ωc)
(25)

accounts for the temperature dependence of the SdH oscilla-
tions. Here we assume that ε is close to Fermi energy εF =
h̄2k2

F /2m∗ for zero magnetic field.
A widely used method to extract spin-orbit couplings and

electronic densities is to analyze the oscillations by calculat-
ing the quantity

I ( f ) =
∣∣∣∣∣
∫ B−1

1

B−1
2

d

(
1

B

)
ρxx(B) − ρxx(B1)

ρxx(B1)
ei2π f /B

∣∣∣∣∣
2

, (26)

which defines the power spectrum of the normalized mag-
netoresistivity with a trivial background value ρxx(B = B1)
removed. Note that B1 should be small enough such that the
semiclassical regime of a constant ρxx(B → 0) is reached.

In Fig. 3 the power spectrum is shown for data from
Fig. S11a in Ref. [59], where magnetoresistivity SdH oscil-
lations were measured in a GaAs 2DEG over a magnetic field
interval [0.20, 1.5] T. The power spectrum shows a SdH peak
at f ≈ 10.5 T (the fundamental frequency), and higher har-
monics are clearly visible at 21.0 T and 31.5 T, corresponding
to the first and second harmonic, respectively. The experimen-
tal data was fitted with Eq. (30) with one fit parameter, τq.
The resulting fit matches very well the harmonics of the SdH
signal. To account for the small background shift in the exper-
imental data as seen in the inset a more elaborate modeling
of the data would be required. The fitting was done using six
harmonics, and resulted in τq = 0.4 ps, using standard GaAs
parameters m = 0.067m0 and g∗ = −0.44. Note that we have
used Eq. (30), which does not include SO coupling, for our

fitting procedure here. This is justifiable because GaAs-based
2DEGs have relatively small SO couplings, not accessible
via SdH measurements. Weak antilocalization measurements
can access the SO parameter in these systems [54]. However,
GaAs-based 2DEGs have relatively high mobilities thus mak-
ing it possible to see many harmonics.

Here we briefly comment on our ad hoc semiclassical
approach to relate δρxx(B) to the oscillatory part of the DOS
[Eq. (20)], in light of a more rigorous approach that accounts
for vertex corrections [72,74]. We first note that our phe-
nomenological DOS in Eq. (22) reproduces exactly the DOS
in Eqs. (31) and (37) of Ref. [72], for Lorentzian and Gaus-
sian Dingle broadening functions L̃� (x), respectively. Our
Eq. (18) relating τ (ε, B) and τ0(ε) also agrees with Eq. (38) of
Ref. [72]. However, as already mentioned, we have inserted an
overall factor of two in Eq. (20) because the Drude-Boltzmann
approach misses this overall factor two in δρxx(B), as com-
pared to the more rigorous result in Ref. [72]. In Appendix B
we show that this factor of two is solely due to our using
the semiclassical approach to relate ρxx and the oscillatory
part of the DOS. At T = 0, for instance, a more rigorous
approach yields δρxx(B) = 2[D(εF , B) − 2D0(εF )]/2D0(εF ),
while semiclassically we find half of this. We have chosen
to use the semiclassical description in the present section,
despite this small shortcoming, because it provides a simple
and straightforward way for the reader to see the connection
between δρxx(B) and the DOS; Appendix B provides the rig-
orous result. As emphasized earlier, we have ad hocly taken
into account this factor of two in Eq. (20) and all subsequent
expressions for δρxx(B). All of our results and figures account
for this correct factor of two as well.

V. RESULTS AND DISCUSSIONS

In this section we present the energy spectrum, F function,
and magnetoresistivity SdH oscillations for different param-
eter regimes of our Hamiltonian, Eq. (9). Additionally, we
discuss in detail the interpretation of the SdH oscillations
within the trace formula description (e.g., contribution of
higher harmonics) and show how to extract relevant spin-orbit
couplings from it. The results are presented in order of sim-
plicity, i.e., from the simplest to the more complex case.

A. Landau levels with only Zeeman interaction

In the presence of Zeeman and no Rashba and Dressel-
haus SO couplings, i.e., α = β = 0, the eigenenergies of our
Hamiltonian [Eq. (9)] are given by

εn,s

h̄ωc
= n + 1

2
+ �̃

2
s, (27)

with n ∈ N0 and s = 1 (s = −1) representing the pure spin
state |↑〉 (|↓〉). In Fig. 4 we plot the four energy levels
corresponding to n = 4, 5 and s = ±1, along with εF /h̄ωc,
using the following InSb QW parameters from Refs. [41,52]:
m∗ = 0.019mo, g∗ = −34 and electron density n2D = 3.3 ×
10−3 nm−2. For these parameters, the ordering of the ener-
gies obeys εn+1,−1 > εn+1,1 > εn,−1 > εn,1. Figure 4 shows
how successive levels cross the Fermi energy as a func-
tion of the magnetic field. This, in turn, will reflect on the
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FIG. 4. Landau levels n = 4, 5 [Eq. (27)] as a function of 1/B
for a 2DEG with only Zeeman interaction and no SO couplings (α =
β = 0). The dotted line shows εF /h̄ωc. Here, we use m∗ = 0.019mo,
g∗ = −34, and n2D = 3.3 × 10−3 nm−2 for InSb-based wells [41,52].

oscillations of the resistivity once for εF ≈ εn,s, an increase
on the resistivity will happen due to the resonance condition
between the corresponding LL and the Fermi energy.

From the energy expressions above [Eq. (27)], we can
obtain the F functions through Eq. (11), namely,

Fs(ε) = ε

h̄ωc
− �̃

2
s − 1

2
, with

dFs(ε)

dε
= 1

h̄ωc
, (28)

yielding the fast and slow components [Eq. (13)]

F+(ε, B) = ε

h̄ωc
− 1

2
, F−(ε, B) = −�̃

2
. (29)

At ε = εF these can be expressed (to a very good approxima-
tion) as F+ = hn2D

2e
1
B − 1

2 and F− = − g
4

m∗
m0

, where we assume

that n2D = k2
F

2π
is the 2DEG electron density at B = 0.

The corresponding resistivity can now be determined
through Eq. (24) and reads

δρxx(B) = 4
∞∑

l=1

e−lπ
h̄/τq
h̄ωc

2π2lkBT/h̄ωc

sinh (2π2lkBT/h̄ωc)

× cos

[
2π l

(
f SdH

B
− 1

2

)]
cos

(
π lg∗ m∗

m0

)
, (30)

where f SdH = hn2D
2e and we have assumed a Lorentzian form

for the L� broadening. For small magnetic fields, both effec-
tive mass and g-factor nominal values do not depend on the
magnetic field [75]. As a result, the 1/B dependence of the
resistivity in a 2DEG with only Zeeman coupling, displays
oscillations with frequencies multiple of f SdH, and absence
of beating. This can be seen from Fig. 5, where we plot
δρxx(B) vs 1/B for the harmonics l = 1, 2, 3 and clearly see
oscillations with the respective frequencies f SdH, 2 f SdH, and
3 f SdH. The solid (dotted) curves correspond to g∗ = −34 and
m∗ = 0.019mo (g∗ = 0 and m∗ = 0.019mo) [41,52]. Note that
the higher harmonics have smaller resistivity amplitudes. This
occurs due to the Dingle factor ∝ e−l/B, which suppresses the
higher harmonic components.

We should stress that the effects of the Zeeman coupling
within the plot of δρxx(B) are not immediately obvious. For

FIG. 5. Magnetoresistivity deviation δρxx (B) as a function of 1/B
for a 2DEG with only Zeeman coupling and no SO couplings. The
lowest curve corresponds to δρxx (B) and the curves labeled by l are
the individual frequency components in Eq. (30). The solid (dashed)
line corresponds to g∗ = −34 (g∗ = 0), m∗ = 0.019mo, and n2D =
3.3 × 10−3 nm−2. These parameters are for InSb-based wells [41,52].

instance, it can be seen that for g∗ = 0 and g∗ �= 0, the corre-
sponding δρ l=1

xx (B) (blue curves depicting the first harmonic)
only differ from themselves by the amplitude of the oscil-
lation. For �̃ = −0.323, cos(2π�̃/2) is smaller than one,
thus yielding a reduction of the total amplitude for g∗ �= 0 as
compared to g∗ = 0. This is easily understood by recalling
that for g∗ = 0 our bands become doubly degenerate, thus
contributing twice for the resistivity. As different harmonics
l are going to be modulated via g∗ with different factors,
the total resistivity presents double-peak features, which is
discussed below.

The definition of DOS in Eq. (21) gives broadened Landau
levels separated by h̄ωc, which are in turn spin split by the
Zeeman term �̃ [see Eq. (27) and Fig. 4]. This spin splitting
can only be seen in the resistivity [Eq. (30)] when the contri-
butions from the first and second harmonics, cos(2π f SdH/B −
π ) cos(2π�̃/2) and cos(4π f SdH/B − 2π ) cos(4π�̃/2), re-
spectively, have opposite signs. For the parameters of Fig. 4
�̃ = −0.323 the Zeeman term significantly affects the maxi-
mum of the resistivity. This can be seen in Fig. 5, where the
resistivities associated to harmonics l = 1 and l = 2 (blue and
cyan solid curves, respectively), interfere in a destructive way,
producing the double-peak feature in the total resistivity (pur-
ple solid lines), characteristic of the incipient spin splitting in
such data. We emphasize, however, that this feature can be
absent depending on the broadening of the energy levels (due
to the overlap of the spin-split levels). This is the reason why
the double-peak feature is not seen on the other maximum
peaks.

Although the g∗-factor term does not depend explicitly
on magnetic field, it can manifest itself in the magneto-
oscillations. More specifically, Zeeman-only effects can have
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a pronounced effect on the magneto-oscillations, control-
ling the amplitude and sign of how subsequent harmonics
are added, either constructively or destructively, before be-
ing damped by the quantum life time. Furthermore, it is
important to say that the Zeeman can give rise to interest-
ing features and affect drastically the understanding of the
magneto-oscillations. For instance, if one could engineer a
material [76] such that �̃ = g∗

2
m∗
mo

= 0.5 + m with m ∈ Z,
then the main weight of the resistivity would be due to the
second harmonic with SdH frequently 2 f SdH as cos(lπ�̃) = 0
for l = 1.

B. Landau levels with Zeeman and Rashba interactions

We now analyze the case where we have the presence
of both Zeeman and Rashba terms, i.e., �̃ �= 0, α �= 0 and
no Dresselhaus coupling β = 0 in Eq. (9). In the spin basis
{|↑〉, |↓〉}, the corresponding Hamiltonian assumes the fol-
lowing matrix form:

H̃
h̄ωc

=
(

a†a + 1
2 + �̃

2 2αBa

2αBa† a†a + 1
2 − �̃

2

)
. (31)

Interestingly, the operator N+ = a†a + σz/2 com-
mutes with the Hamiltonian above, i.e., [H̃,N+] = 0,
and hence H̃ and N+ share the same eigenstates.
Hence we have N+|n,↑〉 = (n + 1/2)|n,↑〉 and
N+|n + 1,↓〉 = (n + 1/2)|n + 1,↓〉, i.e., n ∈ N0, |n,↑〉
and |n + 1,↓〉 are degenerate with respect to the operator N+,
except for |0,↓〉 with corresponding energy ε0,↓

h̄ωc
= 1

2 (1 − �̃).
As a consequence, a linear combination of |n,↑〉 and
|n + 1,↓〉 is also an eigenstate of our Hamiltonian
(31). This motivates us to rewrite the total Hamiltonian
as a direct sum of 2 × 2 block Hamiltonians in the
basis {|n,↑〉, |n + 1,↓〉}(H̃|n,↑〉;|n+1,↓〉), in addition to the
nondegenerate decoupled Hamiltonian (H̃|0,↓〉), namely

H̃ = H̃|0,↓〉 ⊕
∞⊕

n=0

H̃|n,↑〉;|n+1,↓〉, (32)

with H̃|0,↓〉 = ε0,↓ and

H̃|n,↑〉;|n+1,↓〉 = h̄ωc

(
n + 1

2 + �̃
2 2αB

√
n + 1

2αB
√

n + 1 n + 1 + 1
2 − �̃

2

)
. (33)

The diagonalization of the Hamiltonian Eq. (33) yields
energies

εn,s

h̄ωc
=
(

n + 1

2
+ s

2

)

− s

2

1 − �̃

|1 − �̃|

√
(1 − �̃)2 + 16α2

B

(
n + 1

2
+ s

2

)
,

(34)

with s = ± and n ∈ N0, which already incorporates the en-
ergy of the decoupled state |0,↓〉, ε0,− ≡ ε0,↓ (ε0,+ ≡ ε0,↓)
if 1 − �̃ > 0 (1 − �̃ < 0). These LLs are plotted in Fig. 6
as a function of 1/B for parameters α = 10 meV nm, m∗ =
0.019mo and g∗ = −34 [41,52]. Due to the spin-orbit cou-
pling, the energy levels εl,s

h̄ωc
are no longer equidistant, and

FIG. 6. Landau levels n = 4, 5 [Eq. (34)] as a function of 1/B
for a 2DEG with nonzero Zeeman and Rashba interactions but no
Dresselhaus coupling (β = 0). The dotted line denotes εF /h̄ωc. The
parameters here are α = 10 meV nm, m∗ = 0.019mo, g∗ = −34, and
n2D = 3.3 × 10−3 nm−2 for InSb-based wells [41,52]. The dashed
lines show the corresponding levels for α = 0.

their separation changes as function of 1/B. On this scale, the
energy dispersion appears linear in 1/B. In fact, for �̃ < 0
(�̃ > 0) the spin splitting is enhanced (suppresses) relative to
the case with α = 0 (see Fig. 4). This can be seen through
the expansion of the term (1 − �̃)2 within the square root of
Eq. (34), yielding −2�̃, which enhances the Zeeman splitting
in the presence of Rashba SO coupling [52].

Accordingly, for this case we obtain

F+(ε, B) = ε

h̄ωc
− 1

2
+ 2α2

B, (35)

F−(ε, B) = − 1

2
+ 1

2

1 − �̃

|1 − �̃|

×
√

(1 − �̃)2 + 16α2
B

(
α2

B + ε

h̄ωc

)
. (36)

Differently from the results in the previous section, here both
F± functions depend on the magnetic field. As a consequence,
we will have more complex oscillations in ρxx(B) as compared
to the case without Rashba coupling (Fig. 5).

In Fig. 7, we plot the total differential magnetoresistivity
δρxx(B), and the independent contributions from harmon-
ics l = 1, 2 and l = 3. Here we use α = 10 meV nm, m∗ =
0.019mo, g∗ = −34, and n2D = 3.3 × 10−3 nm−2 [41,52].
Similarly to the case with α = 0 (dashed line in Fig. 7), here
we also see oscillations for the l = 1, 2, 3 harmonics with
respective frequencies f SdH, 2 f SdH, and 3 f SdH. However, for
l = 1 we observe beating, which can be expected as both
F−(ε, B) and F+(ε, B) frequencies now depend on 1/B. More
specifically, this beating appears here because in the magnetic
range considered we have 2π lF−(B) = π

2 , which leads to a
node in δρxx as δρxx ∝ cos[2π lF−(B)]. Note that this only
occurs for l = 1, since for higher harmonics this condition
is not satisfied. Due to the larger amplitude of the harmonic
l = 1, this beating is also seen in the total magnetoresistivity.
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FIG. 7. Magnetoresistivity deviation δρxx (B) as a function of 1/B
for a 2DEG with Zeeman and Rashba interactions and no Dres-
selhaus coupling (β = 0). The lowest curve corresponds to δρxx (B)
and the curves labeled by l are the individual frequency components
(i.e., harmonics) in Eq. (30). The solid lines are obtained with g∗ =
−34, α = 10 meV nm, m∗ = 0.019mo, and n2D = 3.3 × 10−3 nm−2

[41,52]; the dotted lines show the corresponding α = 0 case.

C. Landau levels with Zeeman and Dresselhaus interaction

In the case of Zeeman with pure Dresselhaus, i.e., �̃ �= 0,
α = 0 and β �= 0, the Hamiltonian Eq. (9) in the spin basis is
given by

H̃
h̄ωc

=
(

a†a + 1
2 − �̃

2 2βBa†

2βBa a†a + 1
2 + �̃

2

)
. (37)

Differently from the case of pure Rashba, here the op-
erator N− = a†a − σz/2 commutes with the Hamiltonian
above. For this case we have N−|n,↓〉 = (n + 1/2)|n,↓〉 and
N−|n + 1,↑〉 = (n + 1/2)|n + 1,↑〉, i.e., n ∈ N0, |n,↓〉 and
|n + 1,↑〉 are degenerate with respect to the operator N−,
except for the state |0,↑〉 with corresponding energy ε0,↑

h̄ωc
=

1
2 (1 + �̃). As a consequence, a linear combination of |n,↓〉
and |n + 1,↑〉 is also an eigenstate of our Hamiltonian. There-
fore, differently from the previous case here the Hamiltonian
reads

H̃ = H̃|0,↑〉 ⊕
∞⊕

n=0

H̃|n,↓〉;|n+1,↑〉, (38)

with H̃|0,↑〉 = ε0,↑ and

H̃|n,↓〉;|n+1,↑〉 = h̄ωc

(
n + 1

2 − �̃
2 2βB

√
n + 1

2βB
√

n + 1 n + 1 + 1
2 + �̃

2

)
. (39)

FIG. 8. Landau levels n = 4, 5 [Eq. (40)] as a function of 1/B for
a 2DEG with Zeeman and Dresselhaus interactions but no Rashba
coupling (α = 0). The dotted line denotes εF /h̄ωc. The parame-
ters here are β = 10 meV nm, m∗ = 0.019mo, g∗ = −34, and n2D =
3.3 × 10−3 nm−2 [41,52] dashed lines show the corresponding levels
for β = 0.

The diagonalization of the Hamiltonian Eq. (39) yields
energies

εn,s

h̄ωc
=
(

n + 1

2
− s

2

)
(40)

+ s

2

1 + �̃

|1 + �̃|

√
(1 + �̃)2 + 16β2

B

(
n + 1

2
− s

2

)
,

with s = ± and n ∈ N0, which already incorporates the en-
ergy of the decoupled state |0,↑〉, ε0,+ ≡ ε0,↑ (ε0,− ≡ ε0,↑) if
1 + �̃ > 0 (1 + �̃ < 0). Here, it is important to notice the
opposite sign of s with respect to Eq. (33). This happens
because the pure Dresselhaus Hamiltonian Eq. (39) has op-
posite basis ordering of the spin states as compared to the
pure Rashba Hamiltonian (33). Accordingly, the F± functions
change slightly and read

F+(ε, B) = ε

h̄ωc
− 1

2
+ 2β2

B, (41)

F−(ε, B) = 1

2
− 1

2

1 + �̃

|1 + �̃|

√
(1 + �̃)2 + 16β2

B

(
β2

B + ε

h̄ωc

)
.

(42)

Due to the (i) similarity of the Dresselhaus expression
Eqs. (40)–(42) to the ones arising from the pure Rashba case,
Eqs. (34)–(36); (ii) cosine dependence of the F± functions
within the resistivity Eq. (22); all the results and equations in
the last section also holds here by making αB → βB, �̃ →
−�̃ and s → −s. This can also be seen on the level of the
Hamiltonian in Eq. (9) where applying the unitary transfor-
mation W = ei π

2 σx ei π
4 σz results in

W
H̃

h̄ωc
W † = (a†a + 1/2) + (−�̃)

2
σz + βB(a†σ− + aσ+)

+αB(a†σ+ + aσ−), (43)

which is the expected result. This mapping from (α, �̃) to
(β,−�̃) has visible consequences on the energy levels. In
Fig. 8 we plot the corresponding LLs [Eq. (40)] as a function
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FIG. 9. Magnetoresistivity deviation δρxx (B) as a function of
1/B for a 2DEG with Zeeman and Dresselhaus interactions and no
Rashba coupling (α = 0). The lowest curve corresponds to δρxx (B)
and the curves labeled by l are the individual frequency compo-
nents in Eq. (30). The solid lines are calculated for g∗ = −34, β =
10 meV nm, m∗ = 0.019mo, and n2D = 3.3 × 10−3 nm−2 [41,52]; the
dotted line shows the corresponding β = 0 case.

of 1/B for parameters β = 10 meV nm, m∗ = 0.019mo, and
g∗ = −34 [41,52]. Due to the spin-orbit coupling, the en-
ergy levels εl,s

h̄ωc
are no longer equidistant, and their separation

changes as function of 1/B. However, differently from the
pure Rashba case, now the Dresselhaus competes with the
Zeeman coupling, even leading to LL-dependent crossings.
This can be seen through the expansion of (1 + �̃)2 within
the square root [Eq. (40)], which will give rise to 2�̃ < 0, thus
suppressing the spin splitting in the presence of Dresselhaus
SO coupling.

In Fig. 9 we plot the total differential magnetoresistivity
δρxx(B), and the individual contributions from the harmonics
l = 1, 2 and l = 3. We use β = 10 meV nm, m∗ = 0.019mo,
g∗ = −34, and n2D = 3.3 × 10−3 nm−2 [41,52]. First, sim-
ilarly to the previous cases, here we can also clearly see
oscillations with frequencies f SdH, 2 f SdH, 3 f SdH. Differently
from the previous case with α = 10 meV nm and β = 0, now
we see no beating for the l = 1 harmonic but find beating
for l = 2. This happens as 2π lF−(B) = π

2 —the condition to
observe beating—is only satisfied for l = 2. Even though the
beating appears within the second harmonic, it is not man-
ifested in the total differential magnetoresistivity δρxx(B) for
our choice of parameters. This is due to the smaller oscillation
amplitude of l = 2 with respect to l = 1.

D. Beatings in the SdH oscillations with nonzero Zeeman
and in the presence of either Rashba or Dresselhaus:

A unified description

In this section we will discuss more thoroughly the condi-
tions for the appearance of beatings. The two functions F+

and F−, Eq. (13), determine the fast and slow component,
respectively, of the SdH oscillations. To highlight this point
and its connection to the power spectrum in Eq. (26), we start
by rewriting Eqs. (35) and (36), and Eqs. (41) and (42) in a
unified way

F+(ε, B) = f SdH
R(D)

1

B
− 1

2
, (44)

F−(ε, B) = ∓1

2
±1

2

1 ∓ �̃

|1 ∓ �̃|

√
(1∓�̃)2 + 4

(
fR(D)

1

B

)2

,

(45)

where we have introduced the magneto-oscillation frequen-
cies

f SdH
R(D) = h

2e

(
n2D + k2

R(D)

π

)
, (46)

fR(D) = h

2e

√
2k2

R(D)

π

√
n2D + k2

R(D)

2π
, (47)

where the R (D) index refers to either pure Rashba (Dressel-
haus) case, with kR = mα

h̄2 (kD = mβ

h̄2 ). Here, the upper (lower)
sign refers to the Rashba (Dresselhaus) case. In the case
where n2D � k2

R(D)/2π , and fR(D)/B � 1, the beating fre-

quency takes the standard form fR(D) = h
2e

√
2k2

R(D)n2D/π , in

which case �̃ becomes irrelevant for the magnitude of the
beating frequency [49].

The frequency f SdH
R(D) [Eq. (46)] is the main SdH frequency

of the magnetoresistance oscillations, usually extracted from
experiments to infer the 2D electronic density n2D. On the
other hand, the frequency fR(D) [Eq. (47)] is the one al-
lowing for possible beatings in the magneto-oscillation. As
previously discussed in the last two sections, the presence
of beating happens when 2π lF−(B) = π

2 is satisfied, which
depends on the value of both fR(D) and �̃.

The presence or absence of beatings can also be visual-
ized through the power spectrum defined by Eq. (26). From
interference of waves, we know that the presence of beatings
correspond to sum of cosines waves with slightly different
frequencies. Accordingly, the power spectrum for this case
would show two peaks located at slightly different frequen-
cies. In Fig. 10 we plot

√
I ( f ) for m∗ = 0.019mo and n2D =

3.3 × 10−3 nm−2, using different spin-orbit parameters and
g-factor values. For all different sets of parameters, we al-
ways have the presence of two main peaks located at both
1/B ≈ 6.8 T−1 and 1/B ≈ 13.6 T−1. These correspond to the
main SdH frequencies for the first and second harmonics,
f SdH
R(D) and 2 f SdH

R(D), respectively. In the absence of both Rashba,
Dresselhaus, and g factor (dashed yellow curve), we observe
no beating in the δρxx (Fig. 5).

On the other hand, for the case of pure Rashba α =
10 meV nm with g∗ = −34 (solid red curve), the presence of
the beating in Fig. 7 is made clear by the splitting of the peak
of the power spectrum around f = f SdH

R in Fig. 10. Interest-
ingly, for α = 10 meV nm with g∗ = 0 (dashed red curve), the
splitting of the peak is not seen anymore, thus highlighting the
important role of the Zeeman on the visualization of beatings.
For the pure Dresselhaus case with β = 10 meV nm and
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FIG. 10. Frequency response
√

I ( f ) for α = 10.0 meV nm and
β = 0.0 (red curve), and α = 0.0 and β = 10.0 meV nm (blue
curve). Other parameters are m∗ = 0.019mo, g∗ = −34, and n2D =
3.3 × 10−3 nm−2 [41,52]. The solid black shows corresponds to no
spin-orbit coupling (α = β = 0) and black dashed corresponds to
α = β = g = 0.

g∗ = −34 (solid blue line), we do not see a peak splitting at
the f = f SdH

D but rather at f = 2 f SdH
D , which is consistent with

the presence of the beating seen on the second harmonic in
Fig. 9. Similarly to the pure Rashba case, for β = 10 meV nm
with g∗ = 0 (dashed blue line), the splitting of the peak is
not seen anymore, corroborating again the role of the Zeeman
term on the presence of beatings.

The apparent “asymmetry” in having peak splitting for
Rashba spin-orbit coupling but not for Dresselhaus (even
when they have same SO strength) can be understood from
the behavior of the lF− function vs 1/B, shown in Fig. 11.
As already discussed previously in Secs. V B and V C,
the condition for beating happens when cos(2lπF−) = 0 or
equivalently, lF− = ±1/4 (±1/4 plotted as gray lines). In the
case of Rashba (purple lines) one has (1 − �̃) > 1, and the
condition for a beating node, cos(2lπF−) = 0, is reached in

FIG. 11. Plot of lF−(B) vs 1/B for l = 1 and l = 2 using α =
10 meV nm with β = 0 (purple lines), α = β = 0 (cyan lines), and
β = 10 meV nm with α = 0 (green lines). The solid gray lines indi-
cate ±1/4 and the gray circles indicate where beating nodes occur.
For all curves, we use m∗ = 0.019mo, g∗ = −34, and n2D = 3.3 ×
10−3 nm−2, parameters for InSb-based 2DEGs [41,52].

the interval of 1/B for l = 1 (solid purple) (gray circles). In
the Dresselhaus case, (1 + �̃) < 1, such that lF− for l = 1
only crosses −1/4 for large values of 1/B, where the am-
plitude of the SdH has already been suppressed. Conversely,
lF− crosses 1/4 for l = 2 at smaller values of 1/B, thus
guaranteeing the presence of a beating within the magnetic
field range, as shown in Fig. 9.

E. Landau levels with simultaneous Zeeman, Rashba,
and Dresselhaus interactions: Analytical results

As mentioned earlier, to the best of our knowledge, there
are no general exact analytical results for the energies and
SdH oscillations corresponding to the case with simultaneous
and arbitrary Zeeman, Rashba, and Dresselhaus couplings.
Therefore, in this section we will outline how to derive an
effective approximate solution that can be used to shed light
on magnetotransport results for materials, e.g. GaAs or InAs,
in which all the three couplings are present. For convenience,
we define the sum and difference of the spin-orbit couplings

γ = αB + βB, (48)

δ = αB − βB, (49)

[see definitions of αB and βB following Eq. (9)] which allows
us to rewrite Eq. (9) as

H̃
h̄ωc

= a†a + 1

2
+ �̃

2
σz + γ + δ

2
(a†σ− + aσ+)

+γ − δ

2
(a†σ+ + aσ−). (50)

Note that both the pure Rashba and pure Dresselhaus cases
are recovered from the equation above for γ = δ and γ = −δ,
respectively. Next, we define the Hamiltonian for γ = δ and
γ = −δ,

H̃±
h̄ωc

= a†a + 1

2
+ �̃

2
σz ± δ(a†σ∓ + aσ±), (51)

which describes the pure Rashba (+) and pure Dresselhaus
(−) cases in the presence of the Zeeman coupling. As we
already discussed in the previous sections, by defining the
operator N± = a†a ± 1

2σz, we obtain [H̃±,N±] = 0, so the
eigenstates of H̃± are also eigenstates of N±. The eigen-
states of N+ (N−) are then constructed from the pair {|n,↑〉,
|n + 1,↓〉} ({|n,↓〉, |n + 1,↑〉}). The above statement is true
except for the decoupled eigenstates |0,↑〉 (|0,↓〉) with cor-
responding eigenenergy h̄ωc(1 − �̃)/2 [h̄ωc(1 + �̃)/2]. The
diagonalization of each two-state subspace results in

εn,s

h̄ωc
=
(

n + 1

2
+ δ

|δ|
s

2

)
− δ

|δ|
s

2

(
1 − δ

|δ|�̃
)

×
√√√√1 + 16δ2(

1 − δ
|δ|�̃
)2
(

n + 1

2
+ δ

|δ|
s

2

)
, (52)

with s = + (−) and n ∈ N0. Note that this form is valid for
both pure Rashba (δ = γ > 0) and Dresselhaus (δ = −γ <

0), Eqs. (34) and (40), respectively, thus also including the
corresponding decoupled state with the lowest eigenvalues
of N±. Note that to recover the pure Zeeman case with
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no Rashba and Dresselhaus, we should take δ → 0 with
δ/|δ| → 1.

When both Rashba and Dresselhaus are present, we can
use second-order perturbation theory with respect to δ, γ � 1
(see Appendix F), to obtain the approximate eigenvalues of
the Hamiltonian in Eq. (50), namely

εn,s

h̄ωc
= n + 1/2 + s

�̃

2
− 2s�(l + 1/2) − � (53)

where the quantities � and � are defined as

� = (γ 2 + δ2)�̃ + 2γ δ

(1 − �̃2)
= 2 εR

h̄ωc

(1 − �̃)
− 2 εD

h̄ωc

(1 + �̃)
, (54)

� = (γ 2 + δ2) + 2γ δ�̃

(1 − �̃2)
= 2 εR

h̄ωc

(1 − �̃)
+ 2 εD

h̄ωc

(1 + �̃)
, (55)

where we have introduced εR/h̄ωc = α2
B and εD/h̄ωc = β2

B.
Our goal now is to rewrite Eq. (53) in a form that recov-

ers the already obtained exact results for pure Rashba and
pure Dresselhaus cases. First, we write � = �

|�| |�| since �

changes sign depending on the relative strengths of α and
β, similarly to the sign of δ that enters into Eq. (52). By
adding and subtracting a term s

2
�
|�| in Eq. (53) and after some

straightforward algebra we obtain

εn,s

h̄ωc
=
(

n + 1

2
+ �

|�|
s

2

)
− �

|�|
s

2

(
1 − �

|�|�̃
)

×
{

1 + 4

1 − �
|�|�̃

[
|�|
(

n + 1

2

)
+ �

�

|�|
s

2

]}
.

(56)

In the case of pure Rashba we have � = � = δ2

1−�̃
> 0 while

for pure Dresselhaus � = −� = − δ2

1+�̃
< 0; these neatly re-

duce to the exact results when using second-order Taylor
expansion of Eq. (52). Note that Eq. (56) also reproduces the
exact result for when α = β and g∗ = 0 [77], represented here
by � → 0 with �/|�| → 1, �̃ = 0, and � = 2εD/R/h̄ωc.
The mathematical expression of Eqs. (34) and (40) motivate
us to rewrite Eq. (56) as

εn,s

h̄ωc
=
(

n + 1

2
+ �

|�|
s

2

)
− �

|�|
s

2

1 − �
|�|�̃

|1 − �
|�|�̃| ×

√(
1 − �

|�|�̃
)2

+ 8

(
1 − �

|�|�̃
)[

|�|
(

n + 1

2

)
+ �

�

|�|
s

2

]
, (57)

where we have used 1 + x
2 ≈ √

1 + x [78]. It is important to note that although |�| � 1, � enters the square root multiplied by
n, the Landau level index. This means that for high enough n, the product |�|n is not necessarily a small quantity. Accordingly,
although the equation above becomes exact for either pure Rashba or Dresselhaus case, for α, β �= 0, Eq. (57) is only valid when
|�|n � 1, besides αB, βB, δ, γ � 1 already assumed in Appendix F to obtain Eq. (53).

We reiterate that Eq. (57) satisfies the exact results for (i) the Zeeman-only case [Eq. (27)], (ii) the pure Rashba plus nonzero
g∗ [Eq. (34)], and (iii) the pure Dresselhaus plus nonzero g∗ [Eq. (40)]. The case α = β with g∗ = 0, for which there is also
an exact solution [77], is satisfied to leading order using

√
1 + x ≈ 1 + x/2 for with x = 8�(s/2)/(1 − �̃) � 1. That is, as

mentioned in the previous paragraph, the approximate solution given by Eq. (56) reproduces the exact solution for α = β with
g∗ = 0 [77].

As in the case of pure Zeeman, Rashba, or Dresselhaus, we can now calculate the F function from Eq. (57). The corresponding
results are presented in Appendix G, and by neglecting SO contributions higher or equal than second order in the spin-orbit
parameters � and � (or fourth order in γ and δ), we obtain

F+ = ε

h̄ωc
− 1

2
+ � − ��̃, (58)

F− = −1

2

�

|�| + 1

2

�

|�|
1 − �

|�|�̃∣∣∣1 − �
|�|�̃

∣∣∣
√(

1 − �

|�|�̃
)2

+ 8|�|
(

1 − �

|�|�̃
)[

ε

h̄ωc
+ 1

2
|�|
(

1 − �

|�|�̃
)]

. (59)

It is easy to see that these equations recover all the previous results: pure Zeeman [Eq. (29)], Zeeman with pure Rashba [Eqs. (35)
and (36)], and Zeeman with pure Dresselhaus [Eqs. (41) and (42)]. Additionally, in the case of � ≈ 0, F−≈ −�̃/2, which
reduces to the pure Zeeman case. Accordingly, here F− becomes independent of B (for B � 1 T), and therefore, we expect the
absence of beatings in the magnetoresistivity, previously seen for both pure Rashba and pure Dresselhaus cases.

F. Generalized SdH magnetoresistivity for arbitrary α, β, and g∗ : Prediction for the absence of beatings

Using the Eqs. (58) and (59) in Eq. (24), we can derive the magnetoresistivity δρxx(B) [Eq. (24)] for the case with arbitrary
Rashba and Dresselhaus couplings and simultaneous nonzero Zeeman field,

δρxx(B) = 4
∞∑

l=1

e−lπ
h̄/τq
h̄ωc

2π2lkBT/h̄ωc

sinh(2π2lkBT/h̄ωc)
cos

[
2π l

(
εF

h̄ωc
+ 2εR

h̄ωc
+ 2εD

h̄ωc

)]
cos

⎧⎨
⎩π l

√(
1− �

|�|�̃
)2

+ 16λ2
B

(
λ2

B + εF

h̄ωc

)⎫⎬
⎭,

(60)
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TABLE II. Parameters values and ranges for InSb-, InAs-, and
HgTe-based 2DEG. The table also shows the condition α/β has to
satisfy for absence of SO induced beatings.

m∗/m0 g∗ �̃

√
1−�̃

1+�̃
α, β (meV nm)

InSb-QW [41,52] 0.019 −34 −0.323 1.40 ∼1 − 10
InAs-QW [54] 0.040 −12 −0.24 1.27 ∼1 − 10
HgTe-QW [79,80] 0.039 −30 −0.585 3.82 α ∼ 37

with λ2
B = |�|

2 (1 − �
|�|�̃). From Eq. (60), we can derive the

condition for the absence of beatings for any l by finding the
condition for the second cosine being independent of 1/B.
This implies |�| = 0, which leads to

α

β
=
√

1 − �̃

1 + �̃
, (61)

thus yielding Eq. (1) presented in the Introduction. We em-
phasize the condition above can be experimentally achieved in
ordinary 2DEGs defined in, e.g., InAs-, InSb-based quantum
wells. Table II shows typical parameter values and range for
InAs-, InSb-, and and HgTe-based QWs, and the condition
that the ratio α/β has to satisfy for the absence of SO-induced
beatings. Using voltages applied to a top and back gates,
we can experimentally control α and β independently [59],
which can be used as a way to demonstrate the experimental
feasibility of our condition Eq. (1).

For �̃ � 1, the above condition is reduced to α ≈ β, cor-
responding to the situation where the total SO k-dependent
effective field becomes unidirectional [4–6]. Note that the
above condition does not correspond to any fundamental
symmetry, since there is no new conserved quantity in our
Hamiltonian with both nonzero Zeeman (g∗ �= 0) and Rashba-
Dresselhaus couplings. We reiterate that Eq. (61) is entirely
distinct from the persistent-spin-helix condition α = β. As
shown in Fig. 2(d), the case α = β and g∗ �= 0 does not show
peak splitting in the first harmonic but exhibits beating (or
peak splitting) in the second harmonic. Only when g∗ = 0 (no
Zeeman) and α = β there are peak splittings absent altogether
[57,77].

G. Beatings for both α and β nonzero

In the previous sections, we studied the effect of the
Zeeman interaction on the frequency splitting of the power
spectrum peaks, which represents the beatings in the SdH
oscillations. Here we study the interplay of both the Dres-
selhaus and Rashba interactions on the beatings of the SdH
oscillations.

Similarly to what we did leading up to Eq. (47), we can
obtain the effective beating frequency from the F− function
in Eq. (59), which results in

fR+D = h

2e

√√√√∣∣∣∣∣2k2
R+D

π

(
n2D + k2

R+D

2π

)∣∣∣∣∣, (62)

where the effective SO momentum is

kR+D = m∗

h̄2

√(
1 − �

|�|�̃
)(

α2

1 − �̃
− β2

1 + �̃

)
. (63)

We start with the pure Rashba case plus Zeeman, α =
7.0 meV nm and g∗ = −34, with Lorentzian broadening
h̄τ−1

q = 1.75 meV. The corresponding power spectrum yields
the red curve in Fig. 12(a), similar to the one plotted in Fig. 10.
This curve shows two main peaks representing the first two
harmonics, and the presence of a split main peak. When the
Dresselhaus coupling β increases, the splitting of the main
peak reduces until it vanishes for β = 5.0 meV nm, shown by
the purple plot. Here, the frequency splitting from Eq. (62)
is indicated by the gray circles. The absence of beating is

indeed expected, as predicted by the condition β = α

√
1+�̃

1−�̃
=

5.0 meV nm in Eq. (61). For larger β, we see that the splitting
of the main peak remains negligible. However, in the second
harmonic a clear splitting opens up. The condition for having
no peak splitting at any harmonics is indeed the condition
in Eq. (61), where the effects of the SO couplings basically
disappear [there are still small SO terms εR, εD in Eq. (60)].
The power spectrum using fully numerical calculations are
also shown (solid gray), and for this parameter regime the
analytical (solid plots) and numerical results agree well.

A similar analysis can be done for the case of pure Dres-
selhaus with Zeeman, β = 5.0 meV nm and g∗ = −34, see

FIG. 12. Analytical approximation (dashed) and full numerical (solid) normalized power spectrum
√

I ( f ) for fixed (a) α = 7.0 meV nm,
and β = 0 to 9 meV nm. (b) β = 5.0 meV nm, and α = 0 to 9.0 meV nm. The curves corresponding to α/β =

√
(1 − �̃)/(1 + �̃) (or kR+D =

0) are shown in purple and those for α = β are shown in pink. The gray circles indicate the frequency splitting in Eq. (62). Other parameters
are m∗ = 0.019mo, g∗ = −34, n2D = 3.3 × 10−3 nm−2, and h̄τ−1

q = 1.75 meV, for InSb-based 2DEGs [41,52]. The numerical and approximate
solutions are nearly identical almost everywhere, except the fundamental and second harmonic peaks of the strongest SOI case in (b).
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Fig. 12(b). Here the splitting is not observed in the main
peak, but rather in the second harmonic. As α is increased
from 0.0 to 9.0 meV nm, the splitting in the second harmonic
decreases, and vanishes at α = 7.0 meV nm (purple plot),
which again corresponds to the condition in Eq. (61). Despite
the good accuracy of the approximate analytical solution for
α � 8.0 meV nm, it starts to deviate from the exact one (full
numerics) for higher values of β. This happens because for
these values, the combined effect Rashba and Dresselhaus is
more pronounced, producing an anticrossing between differ-
ent energy levels (see blue curves Fig. 14, discussed further
below). While the approximate energies obtained here are al-
ways monotonic with respect to 1/B, around the anticrossing
the numerical ones are not. Accordingly, our F -function cal-
culation will not be able to fully describe the SdH oscillations
and frequencies around the anticrossing regions, specifically
the approximate solution misses a central peak that starts
developing, which will be discussed in the next section. In
terms of the F function, the occurrence of level anticrossings
corresponds to |F−| ≈ 1/2. Since the power spectrum is ob-
tained by integrating δρxx over a range of 1/B, there is no
simple condition determining the validity of the approximate
solution. However, looking at the λB term in Eq. (59) the
condition

8πn2D

(
k2

R

1 − �̃
− k2

D

1 + �̃

)
l4
c � 1, (64)

yields a useful estimate for the 1/B values where the Dingle
factor has not suppressed δρxx. Equation (64) generalizes a
similar condition derived in Ref. [70]. It is also interesting
to note that the analytical result is more accurate for higher
harmonics, as the Dingle factor helps diminishing the ampli-
tude of the anticrossing at higher fields (see Fig. 14).

VI. LANDAU LEVELS WITH ZEEMAN, RASHBA, AND
DRESSELHAUS INTERACTIONS: NUMERICAL RESULTS

In the previous section, we have derived an approximate
analytical result for the magnetoresistance oscillations in the
presence of both Rashba, Dresselhaus, and Zeeman interac-
tions. The assumptions and approximations underlying the
derivation involved the relatively small SO coupling and the
low number of occupied Landau levels. These are satisfied in
the low electron density InSb-based 2DEGs of Refs. [52,81].
For higher electron density systems (but still with just a
singly-occupied subband at B = 0), such as the InAs/GaSb
wells in Ref. [54], a numerical approach is needed. Below we
outline the numerical procedure. The numerical approach also
allows us to account for the full form of cubic Dresselhaus
term, see Sec. VI A.

For the case of either pure Rashba or Dresselhaus with
Zeeman, the absence of anticrossing in the LL spectrum allow
us to obtain exact analytical results for the problem. As we
explain below, this does not hold in the presence of both
Rashba and Dresselhaus with the Hamiltonian (in the spin
basis) Eq. (9),

H̃
h̄ωc

=
(

a†a + 1
2 + �̃

2 2αBa + 2βBa†

2αBa† + 2βBa a†a + 1
2 − �̃

2

)
. (65)

Therefore, here we calculate the magnetotransport numeri-
cally via the diagonalization of the Hamiltonian above. The
F -function method used for the analytical cases can be ex-
tended to allow for numerical methods for calculating the
energy spectrum, see Appendix E.

As opposed to both the pure Rashba and pure Dresselhaus
cases, N± do not commute with the Hamiltonian above, and
therefore, the diagonal basis cannot be described by any linear
combination of the previous degenerate eigenstates of N±.
However, there is still a unitary operator, P = exp{iπ (N± −
1
2 )} that commutes with this Hamiltonian, called the parity
operator [64,65], which is discussed in detail in Appendix C.
The corresponding unitary transformation gives PaP† = −a,
Pa†P† = −a†, and Pσ±P† = −σ±, which clearly makes the
Hamiltonian Eq. (9) invariant due to presence of only a†a,
a†σ±, and aσ± terms. The eigenvalues of P , ±1, help analyze
the energy spectrum behavior.

To understand the influence on the spectrum of both
Rashba and Dresselhaus contributions, we first recall that in
the absence of the latter, the Rashba term is responsible for
coupling |n,↑〉 to |n + 1,↓〉, for n ∈ N0, thus yielding decou-
pled 2 × 2 block diagonal Rashba Hamiltonians (shown by
the red boxes in the Hamiltonian below). When we account
for the Dresselhaus contribution, we obtain a coupling be-
tween states |n,↓〉 and |n + 1,↑〉 for n ∈ N0, which belongs
to different Rashba blocks. More specifically, the Dresselhaus
term produces a coupling between blocks {|n,↑〉, |n + 1,↓〉}
and {|n + �n,↑〉, |n + 1 + �n,↓〉} with �n = 2, which is
indicated by the blue box in the Hamiltonian below (see
Appendix C). As a consequence, we have two decoupled or-
thogonal basis set given by {|0+〉} = {|n,↑〉, |n + 1,↓〉, . . .}
and {|0−〉} = {|n,↓〉, |n + 1,↑〉, . . .} with n ∈ N0. Interest-
ingly, these decoupled basis have different eigenvalues with
respect to the parity operator, i.e., P|0±〉 = ±1|0±〉 and there-
fore, represent different parity subspace.

In terms of the spectrum, in the presence of only Rashba
SO coupling, we observe multiple crossing between the
Rashba eigenstates {|n,−〉, |n,+〉} for different n ∈ N0, with
energy given by Eq. (34), obtained through the diagonaliza-
tion of the Rashba blocks (red boxes within the Hamiltonian
matrix in Fig. 13). This is shown by the red solid lines in
Fig. 14(a) for α = 7.5 meV nm. In the presence of Dressel-
haus SO coupling, the states |n,−〉 and |n + �n,+〉 with
�n ∈ Nodd belong to the same parity subspace and adding a
Dresselhaus contribution will yield anticrossing, which open
up gaps in the spectrum (purple curves). Conversely, the de-
coupling between the different parity sets, i.e., |n,−〉 and |n +
�n,+〉 with �n ∈ Neven, implies multiple crossing between
their corresponding energy states. These features are shown
by the purple curve in Figs. 14(a) and 14(c), where we have
used β = 3.0 meV nm. Other parameters are m∗ = 0.04m0,
g∗ = −12, and n2D = 17.6 × 10−3 nm−2. These parameters
are for InAs/GaSb-based (double) quantum wells [54] in the
electron regime. This regime, as emphasized in Ref. [54],
corresponds to the configuration in which the GaSb well is
depleted and the system is effectively a single InAs-based
asymmetric quantum well with electrons only. Furthermore,
we also observe that the effect of the Dresselhaus term is to
simply shift the crossing point to a different magnetic field
and energy value (the crossing-point energy remains constant
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FIG. 13. Graphical illustration of the parity subspaces in the matrix representation of the Hamiltonian Eq. (65). Here we see the Rashba
interaction couples |n − 1, ↑〉 to |n, ↓〉 (red boxes), while the Dresselhaus interaction couples |n, ↓〉 to |n + 1, ↑〉 (blue boxes).

FIG. 14. The energy spectrum for two sets of (α, β ) =
(7.5, 0.0) meV nm (red) and (α, β ) = (7.5, 3.0) meV nm (purple),
along with εF /h̄ωc gray dashed, (a) around n = 125 and (c) n = 255.
(b) F−(B) for the same pair of parameters. Note sawtooth form
for pure Rashba (red), and for (α, β ) = (7.5, 3.0) meV nm (purple)
a rounding, and translation, of the cusps due to level anticrossing
(squares). Other parameters are m∗ = 0.04m0, g∗ = −12, and n2D =
17.6 × 10−3 nm−2, for InAs-based quantum wells [54].

to lowest order in β but does in general shift for higher values
of β).

The contrasting behavior of crossings vs anticrossings has
direct consequences on the F function, which will be analyzed
in the next paragraphs. First we consider the crossing between
states |n,−〉 and |n + �n,+〉, with even �n (corresponding to
states belonging to different parity subspaces). The F function
are

εn,−(B) = ε

h̄ωc
↔ n = F−

(
ε

h̄ωc
, B; α, β

)
, (66)

and

εn+�n,+(B) = ε

h̄ωc
↔ n + �n = F+

(
ε

h̄ωc
, B; α, β

)
, (67)

where we have explicitly added their dependence on α and β.
This results in an F -function difference [see Eq. (13)] at the
crossing ε = εc and B = Bc,

F−

(
εc

h̄ωc
, Bc; α, β

)
= �n

2
∈ Z. (68)

Note that since the SdH oscillation is dependent on F± in
the form of cos(2πF±), we can redefine F− to lie within
a unit interval, e.g., F− ∈ [−1/2, 1/2]. Accordingly, integer
values of F− are equivalent to F− = 0 and therefore, the
vanishing of F− provides the field values where the crossing
happens. The curves for F− are plotted in Fig. 14(b) for
the same parameters as in Fig. 14(a). It presents a sawtooth
pattern because values of |F−| > 1/2 are shifted back to the
[−1/2, 1/2] interval. The role of the Dresselhaus coupling for
these crossings is evident in Fig. 14(b), where the zeros of F−
remain zeros for any value of β, but are simply shifted to new
values of magnetic field, open circle moves to open rectangle
Fig. 14(b).

Next, we look at the crossing between states belonging
to the same parity subspace, i.e., |n,−〉 and |n + �n,+〉 for
odd �n. We recall that this crossing only exists for the pure
Rashba case, shown in both Figs. 14(a) and 14(c). Here the
relations in Eqs. (66) and (67) still hold, the only difference
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FIG. 15. (a) Magneto-oscillations for four different sets of parameters, including pure Rashba (red curve) and three different combinations
of (α, β ). The anti-crossings in the corresponding spectrum complicates the beating behavior, which eventually vanishes at around (α, β ) =
(4.5, 3.0) meV nm. (b) Power spectrum for fixed β = 3.0 meV nm with α = 7.5 down to 0.5 meV nm. Other parameters are m∗ = 0.04m0,
g∗ = −12, and n2D = 17.6 × 10−3 nm−2.

being the value of �n, which results in

F−

(
εc

h̄ωc
, Bc; α, β = 0

)
= �n

2
∈ Z + 1

2
. (69)

Adding a nonzero Dresselhaus contribution will couple these
states and lead to an anticrossing, shown in Figs. 14(a) and
14(c). The anticrossing result in non-half-integer values of
F± in Eqs. (66) and (67) and will lead to a rounding of the
sawtooth pattern as seen in Fig. 14(b) (blue curves).

The conditions in Eqs. (68) and (69) lead to values of
cos(2πF−) = 1 [filled circle and rectangle in Fig. 14(b)]
and cos(2πF−) = −1 [open circle in Fig. 14(b)], respec-
tively, in the case of either pure Rashba or pure Dresselhaus.
However, when both Rashba and Dresselhaus are present
only the former condition cos(2πF−) = 1 holds (crossing of
states with opposite parity) but the latter condition changes
such that cos(2πF−) > −1 due to anticrossings of states
with same parity eigenvalue [open rectangle in Fig. 14(b)].
This, in turn, affects the shape of the magneto-oscillations
leading to an asymmetry in the maximum and minimum
values of cos(2πF−). In Fig. 15(a) this asymmetry is vis-
ible in the magneto-oscillations. Here we assume Gaussian
broadening [see Eq. (73)] with Bq = 0.50 T, which forms an
envelope (black dashed curve). The red curve is the pure
Rashba (α, β ) = (7.5, 0.0) meV nm with all maximas inter-
secting the envelope [black circles]. The curve for (α, β ) =
(7.5, 3.0) meV nm shows that only some maxima intersect the
envelope, the other maximas correspond to cos(2πF−) > −1
do not (black circle). This is a direct consequence of the an-
ticrossing in the spectrum in Fig. 14. The curves for (α, β ) =
(5.5, 3.0) meV nm and (4.5, 3.0) meV nm show how the an-
ticrossing becomes larger, eventually leading to an absence
of beatings. This can also be seen in the frequency spectrum
shown in Fig. 15(b), for the f ≈ f SdH peak. The highest
curve (magenta) corresponds to (α, β ) = (7.5, 3.0) meV nm
where the spectrum shows well separated peaks. However, as
the strength of the Rashba coupling is decreased all the way
down to α = 0.5 meV nm for β = 3.0 meV nm, a central peak

develops and for α between 4.5 and 1.5 meV nm, the two split
peaks are barely visible.

A. Extracting α and β from SdH data

The magneto-oscillations can be thought of as a fingerprint
of the sample parameters, including Fermi energy εF , effec-
tive mass m∗, g∗, and α and β. To better capture the influence
of the spin-orbit couplings for higher electron density, the full
form of the Dresselhaus interaction will be used. For nonzero
magnetic fields, this corresponds to having Dresselhaus SO
term in Eq. (9) replaced with[

1√
2h̄ωc�c

(
β1 − γ

a†a

2�2
c

)
a†σ+ + γ

2�2
c

a3σ−

]
+ H.c., (70)

where β1 = γ 〈k2
z 〉, γ is material-dependent parameter de-

scribing the SO interaction due to bulk inversion asymmetry,
and 〈k2

z 〉 is the expectation value of the z component of the
square of momentum operator (divided by h̄), see Appendix D
for details of full Dresselhaus coupling. Note that β in Eq. (2)
is assumed to include the first harmonic of the cubic Dres-
selhaus [6,62], which makes it linearly dependent on the
electron density. For instance, if the potential confining the
2DEG is assumed to be an infinite well of width dQW then
〈k2

z 〉 = π2/d2
QW. To model magnetoresistance data we start

from Eq. (22), which features (i) a sum over higher harmonics,
(ii) rapid oscillations coming from F+, and (iii) damping due
to Landau level broadening L̃� . The analysis introduced in
the previous section was based on the study of the properties
of cos(2πF−), which forms an envelope on top of the rapid
oscillations. Note that in the case of having both Rashba and
Dresselhaus coupling the rapid oscillations are still dominated
by the normal SdH oscillations, i.e.,

F+(B) = −1

2
+ εF

h̄ωc

(
1 + O

(
εR

εF
,
εD

εF

))

≈ −1

2
+ f SdH

B
, (71)
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FIG. 16. (a) The black dots are reference points for curve C1, solid red line. The solid gray curve is the linear Dresselhaus result and dashed
black curve the full Dresselhaus result. Parameter values obtained from fitting are shown in the inset. Other parameters [54] are m∗ = 0.04m0,
g∗ = −12, and n2D = 0.0176 nm−2. (b) Same as (a) for curve C5. (c) Same as (a) for curve C10.

so the SO coupling does not affect the rapid oscillations. The
resulting lowest harmonic form of the magnetoresistance is

δRxx(B) = −4R0L̃� (B) cos (2π lF−(B)) cos

(
2π

fSdH

B

)
,

(72)

which can be fitted to the available data. The resistance values
are not normalized, instead we introduce a prefactor R0 to
facilitate the fitting of the experimental data that can contain a
slowly varying background signal [54,82].

Figures 16(a)–16(c) show the experimental data from
Ref. [54] for InAs/GaSb quantum wells in the electron regime
(red, magenta, and pink curves) along with our theoretical fits
(solid gray and dashed black lines) [Eq. (72)]. We focus on the
experimental curves 1, 5, and 10, of Fig. S4 of Ref. [54] that
we label as C1, C5, and C10 in Figs. 16(a)–16(c). The data
was fitted to δρxx(B) in Eq. (72), where F− was calculated
numerically. For the fitting we consider both the Dresselhaus
coupling in Eq. (9) solid gray lines, and also with the full
Dresselhaus term in Eq. (70) dashed black lines. The black
dots are reference points extracted from the data, which are
used in the fitting of L̃� (B) cos(2πF−). The best fittings were
produced by assuming Gaussian broadening, namely

L̃� (B) = exp

(
−2π2 �2

(h̄ωc)2

)
= exp

(
−B2

q

B2

)
, (73)

where Bq = √
2π m∗�

h̄e and � is a constant Landau level broad-
ening.

For curve C1 in Fig. 16(a), the fitting with linear Dres-
selhaus yields values α = 7.2 meV nm and β = 3.0 meV nm,
shown by the solid gray curve. On the other hand, for fit-
ting to the full model we obtain α = 7.6 meV nm, and γ =
85 meV nm3, shown by the dashed black curve. We see that
both fits produce equally good curves fitting the experimental
data points, with comparable values for the extracted Rashba
SO coupling. This indicates that when the Rashba coupling
dominates the cubic Dresselhaus term [a3 term in Eq. (70)],
fitting the data with the addition of the cubic term does
not strongly affect the result. The results for curve C5 in
Fig. 16(b) behave similarly, i.e., we find fitted values of the
Rashba coefficient, α = 6.7 meV nm for the linear Dressel-
haus with β = 2.8 meV nm, and α = 6.3 meV nm for the full
cubic Dresselhaus, with γ = 82 meV nm3.

However, the story is different for the curve C10, shown in
Fig. 16(c). Here the value of Rashba and Dresselhaus coupling
are closer, and then the details of the linear vs cubic Dressel-
haus become relevant. Indeed, the linear Dresselhaus model
fitting yields α = 5.5 meV nm and β = 2.5 meV nm while the
cubic fit gives α = 4.9 meV nm. More importantly, the error
in the linear fit is quite high, and the fit (solid gray line) fails
to describe the data points. However, the cubic model gives
a good fit with γ = 80 meV nm3, represented by the dashed
black line. This clearly shows the importance of the cubic
contributions in samples with high density, where the Rashba
and Dresselhaus contributions are of comparable magnitudes.

The fit results in Figs. 16(a)–16(c) were done for 〈k2
z 〉 =

π2/d2
QW where dQW = 12.5 nm [54]. To fully model the

sample a self-consistent Poisson-Schrödinger calculation is
required [6,59,83], which is beyond the scope of this paper.
We can, however, use different values of 〈k2

z 〉, which indirectly
emulate self-consistent potential details, i.e., increasing the
value of 〈k2

z 〉 suggests a stronger confinement in the InAs
quantum well, and decreased value of 〈k2

z 〉 would correspond
to wavefunctions being less localized in the InAs quantum
well.

In Fig. 17 the values of α, β1, and β are shown as a function
of 〈k2

z 〉 from 0.75π2/d2
QW to 1.25π2/d2

QW. The data from the

FIG. 17. The spin-orbit parameters that result from the fitting as
a function of 〈k2

z 〉. Other parameters are m∗ = 0.019, g∗ = −12, and
n2D = 0.0176 nm−2. The three different symbols represent different
curves: curve 1, circle; curve 5, triangle; and curve 10, square.
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three curves are indicated by different forms: C1, circle; C5,
triangle; and C10, square. For each value of 〈k2

z 〉, specific
values of α, β1, and β are obtained from the fit. The fit results
for α and β for each curve remain relatively insensitive to 〈k2

z 〉
variations. Note that as 〈k2

z 〉 varies β1 changes quite rapidly via
the fitted value of γ . This is to be expected since lower values
〈k2

z 〉, correspond to the electron leaking out the InAs quantum
well γ into the GaSb, which has a higher bulk value of γ .
For higher values of 〈k2

z 〉 the system becomes more strongly
confined in the InAs quantum well and the value of γ should
tend to the value corresponding to bulk InAs.

The fact that the values of α and β change only slightly
as function of 〈k2

z 〉, as can be seen in Fig. 17, has important
consequences on the fitting procedure. For this reason a fitting
with γ and 〈k2

z 〉 both being independent fitting parameters can
not be performed, since if β1 = γ 〈k2

z 〉 is the dominant con-
tribution to the Dresselhaus couplings then there are multiple
(infinite) solutions to the equation γ 〈k2

z 〉 = const. and fitting
the data with γ and 〈k2

z 〉 independent will not converge [54].

VII. SUMMARY

We investigated the SdH magneto-oscillations in the
resistivity ρxx of 2DEGs in the presence of spin-orbit (Rashba-
Dresselhaus) and Zeeman couplings. We used a semiclassical
approach for the resistivity combined with a Poisson summa-
tion formula for the Landau-quantized DOS. Our approach
allows for an intuitive separation of the slow and fast quantum
oscillations in terms of “F functions”, central quantities in
our description, essentially being the inverse functions of the
spin-resolved Landau level structure of the system. We study a
variety of exact cases such as the pure Zeeman, pure Dressel-
haus, and pure Rashba cases—all of which provide analytical
expressions for the magnetoresistivity.

More importantly, from our unified and general formula-
tion we also derive an analytical solution for the case with
arbitrary Rashba and Dresselhaus couplings and simultane-
ous nonzero Zeeman coupling (g∗ �= 0). Interestingly, this
allows us to derive a unique condition for the vanishing of
the SO-induced beatings in the SdH signals: α/β = [(1 −
�̃)/(1 + �̃)]1/2, where �̃ = g∗m∗/2m0 [i.e., ratio (Zeeman
energy)/h̄ωc]. This condition does not correspond to any
conserved quantity in our Hamiltonian, unlike the persistent-
spin-helix condition α = β which is associated with the
conservation of spin along some particular axes. We empha-
size that our condition precludes beatings in all harmonics of
the quantum oscillations.

We have applied our analytical formulation to describe
low-density data for SdH oscillations showing many harmon-
ics in GaAs-based 2DEGs (see SM in Ref. [59]) and found an
excellent agreement, Fig. 2. We have also applied our theory
to low-density InSb-based 2DEGs [41,52]. In addition, we
have also developed a detailed numerical calculation for high-
density InAs-based 2DEGs, in which an analytical description
is not satisfactory. We find excellent agreement with avail-
able data for high-density InAs-based 2DEGs [54,59]. We
have also pointed out an inequivalence between the Rashba-
dominated + Zeeman vs Dresselhaus-dominated + Zeeman
cases, with only the former showing beatings. This follows
from a distinct interplay between the SO and Zeeman terms

in these two regimes. We hope our detailed study and unified
general formulation will stimulate further experimental inves-
tigations aiming at verifying our theoretical predictions.

The data supporting the figures of this paper are available
at the Zenodo repository [84].
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APPENDIX A: DENSITY OF STATES AND F FUNCTIONS

Here we follow closely the discussion (and notation) in
Sec. 3.2.2 of the book Semiclassical Physics by Brack and
Bhaduri [60].

For simplicity, we first consider the case with a discrete
spectrum εn = f (n), n = 0, 1, 2, ... in which each level has a
degeneracy dn = D̃(n), with D̃(n) being an arbitrary function
of n. Later on we will account for a (pseudo)spin index. As
an example, we note that for the usual 2DEG Landau levels
(LLs) (in the absence of both Zeeman or SO interaction),
εn = h̄ωc(n + 1/2) and dn = AeB/h = D̃(n) (A: area of the
2DEG, e > 0); in this case, dn = D̃(n) denotes the LL degen-
eracy and is independent of n. This same Landau degeneracy
holds in the presence of Zeeman and SO interactions. For later
convenience, we define D(n) = D̃(n)/A to be the level degen-
eracy per unit area [e.g., for LLs D(n) = nLL(B) = eB/h].

As in Ref. [60], let f (n) be an arbitrary monotonic function
with respect to n, with a differentiable inverse f −1(εn) =
F (εn). In this case, because f −1( f (x)) = x = f ( f −1(x)) it
follows that n = F (εn). The relevant “F function” F (ε) in our
paper is constructed via analytical continuation of the discrete
variable εn within F (εn), i.e., F (εn) → F (ε) with εn → ε,
ε ∈ R. Next we define the DOS of our system and relate it
the to the F function, which ultimately allows us to calculate
the oscillatory part of the DOS relevant for our semiclassical
transport calculation.

1. Density of states without LL broadening

Quite generally we can define the DOS of our system as

g(ε) = 1

A

∞∑
n=0

D̃(n)δ(ε − εn). (A1)

Note that the above DOS is defined per area and energy.
In Ref. [60] the DOS is defined just per energy. Motivated
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by the property δ[y(x)] = 1
|y′(x0 )|δ(x − x0) where x0 denotes a

root of y(x), i.e., y(x0) = 0 and y′(x) = dy(x)/dx, we define
h(ε) = n − F (ε), which obeys h(εn) = 0 as n = F (εn) by
construction. Since F (ε) is differentiable, we can then write

δ[h(ε)] = δ(n − F (ε)) = 1

|F ′(εn)|δ(ε − εn)

= 1

|F ′(ε)|δ(ε − εn). (A2)

Hence we obtain

δ(ε − εn) = |F ′(ε)|δ(n − F (ε)). (A3)

Substituting (A3) into (A1), we find

g(ε) = D(ε)|F ′(ε)|
∞∑

n=0

δ(n − F (ε)), (A4)

where D(ε) ≡ D(F (ε)). Noting that through Poisson summa-
tion formula

∞∑
n=0

δ(ε − n) =
∞∑

n=−∞
δ(ε − n) =

∞∑
l=−∞

e2π ilε, (ε > 0)

(A5)

we can straightforwardly cast (A4) in the form

g(ε) = D(ε)|F ′(ε)|
∞∑

l=−∞
e2π ilF (ε). (A6)

Now we introduce the (pseudo)spin index s = ±1 by adding
a subscript s to all quantities [except D(ε) for it is not
(pseudo)spin dependent]. This s index accounts for the spin-
dependent Zeeman and SO interactions in our 2DEG. With
this new index, the DOS in Eq. (A5), viewed as per spin now,
becomes

gs(ε) = D(ε)|F ′
s (ε)|

∞∑
l=−∞

e2π ilFs (ε), (A7)

or

gs(ε) = D(ε)|F ′
s (ε)|

{
1 + 2

∞∑
l=1

cos[2π lFs(ε)]

}
. (ε > 0)

(A8)

By summing over s, we obtain the total DOS,

g(ε) = D(ε)
∑

s

|F ′
s (ε)|

{
1 + 2

∞∑
l=1

cos[2π lFs(ε)]

}
. (A9)

For the systems investigated in our paper, F ′
s (ε) � 1/h̄ωc.

This is actually exact for the Zeeman-only case, see Eq. (28),
in the main text, but only approximate in the presence
of SO interaction [see Eq. (A38)]. In this case and using
D(ε)|F ′

s (ε)| = m∗
2π h̄2 , we find

g(ε) � m∗

π h̄2

{
1 +

∞∑
l=1

(cos[2π lF+(ε)] + cos[2π lF−(ε)])

}
.

(A10)

Using the identity

cos a + cos b = 2 cos[(a + b)/2] cos[(a − b)/2], (A11)

we can rewrite Eq. (A10) as

g(ε) � m∗

π h̄2

{
1 +

∞∑
l=1

2 cos[2π lF+(ε)] cos[2π lF−(ε)]

}
,

(A12)

where

F±(ε) = 1
2 [F+(ε) ± F−(ε)]. (A13)

To regain the DOS notation in the main text, we now make
g(ε) → D(ε, B) and use D0 = m∗

2π h̄2 . Hence, Eq. (A12) be-
comes

D(ε, B) � 2D0

{
1 + 2

∞∑
l=1

cos[2π lF+(ε)] cos[2π lF−(ε)]

}
,

(A14)

or

D(ε, B) − 2D0

2D0
� 2

∞∑
l=1

cos[2π lF+(ε)] cos[2π lF−(ε)],

(A15)

which is Eq. (14) in the main text.

2. Density of states including Landau level broadening

We can account for LL broadening in the DOS calculation
by considering Lorentzian or Gaussian functions as particular
representations of the ideal δ functions describing the discrete
levels. We consider a simple phenomenological description,
which assumes that all LLs have the same spin-independent
broadening �.

a. Lorentzian DOS case

Here we take the delta function representing the DOS of a
single LL as

δ(ε − εn) = lim
�→0

1

π

�/2

(ε − εn)2+(�/2)2
= lim

�→0
L� (ε − εn),

(A16)

where

L� (ε) = 1

π

�/2

ε2+(�/2)2
, (A17)

with ∫ ∞

−∞
L� (ε)dε = 1. (A18)

Note that∫ ∞

−∞
L� (ε)e−2π ilεdε = e−�π |l| = L̃� (k), (A19)

where L̃� (k) is the Fourier transform (FT) of L� (ε) and l ∈
N. Using the shifting property of FTs, it follows that the
FT of L� (ε − x) is e−2π ikxL̃� (k). Generalizing Eq. (A1) for
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Lorentzian-broadened levels we have (we will add a subindex
s later on)

g(ε) = lim
�→0

∞∑
n=0

D(n)L� (ε − εn), (A20)

which we can rewrite as

g(ε) = lim
�→0

∞∑
n=0

∫ ∞

−∞
D(n)L� (ε − x)δ(x − εn)dx. (A21)

Considering that D(n) is independent of n and using Eq. (A5)
with the replacement ε → F (ε), we obtain

g(ε) = lim
�→0

∫ ∞

−∞
D(F (x))|F ′(x)|

∞∑
l=−∞

e2π ilF (x)L� (ε − x)dx.

(A22)

Since L� (ε − x) = L� (x − ε) is peaked at x = ε, it is conve-
nient to expand F (x) around this point. Then g(ε) becomes

g(ε) = lim
�→0

∫ ∞

−∞
D[F (ε) + |F ′(ε)|(x − ε)][|F ′(ε)|

+ |F ′′(ε)|(x − ε)]
∞∑

l=−∞
e2π il[F (ε)+|F ′(ε)|(x−ε)]

× L� (ε − x)dx. (A23)

Neglecting the contribution |F ′′(ε)|(x − ε) [as a matter of fact,
this contribution vanishes identically in the limit L� (x − ε) →
δ(x − ε), because

∫∞
−∞ f (x)δ(x − x0)dx = f (x0)], we have

g(ε) = D(ε) lim
�→0

|F ′(ε)|
∞∑

l=−∞
e2π ilF (ε)

×
∫ ∞

−∞
e2π il|F ′(ε)|(x−ε)L� (x − ε)d (x − ε). (A24)

Using Eq. (A19), we can write

g(ε) = D(ε) lim
�→0

|F ′(ε)|
∞∑

l=−∞
e2π ilF (ε)L̃� (l|F ′(ε)|). (A25)

or

g(ε) = D(ε) lim
�→0

|F ′(ε)|
∞∑

l=−∞
e2π ilF (ε)e−�π |lF ′(ε)|, (A26)

where have used

L̃� (l|F ′(ε)|) = e−�π |lF ′(ε)|. (A27)

As before [Eq. (A7)], we can rewrite Eq. (A26) by adding a
subindex s to obtain the LL-broadened DOS per spin

gs(ε) = D(ε)|F ′
s (ε)|

{
1 + 2

∞∑
l=1

cos[2π lFs(ε)]e−�π l|F ′
s (ε)|
}

.

(A28)

In the above we have dropped the lim�→0, since a real system
has a finite �. Interestingly, the broadened DOS in Eq. (A28)
can be obtained directly from the case without broadening
[Eq. (A8)] by simply multiplying the oscillating components
(harmonics) in the latter by the exponential (“Dingle”) factor
e−�π l|F ′

s (ε)|.

Here again, for the system of interest we have F ′
s (ε) �

1/h̄ωc and the exponential factor in Eq. (A28) becomes

e−�π l|F ′
s (ε)| = e−π l�/h̄ωc , (A29)

where � ≡ h̄/τq, τq is the quantum lifetime of the LL. Sum-
ming over the (pseudo)spin index s, Eq. (A28) becomes

g(ε)= m∗

π h̄2

{
1+2

∞∑
l=1

cos[2π lF+(ε)] cos[2π lF−(ε)]e− π l�
h̄ωc

}
.

(A30)

In the notation of the main text we have

D(ε, B) − 2D0

2D0
�2

∞∑
l=1

cos[2π lF+(ε)] cos[2π lF−(ε)]e− π l�
h̄ωc ,

(A31)

which is the Eq. (22) of the main text, but written for the
Lorentzian broadening case.

b. Gaussian DOS case

The Gaussian-broadened case can be treated similarly by
considering the delta function representation

δ(ε − εn) = lim
�→0

1√
2π�

e− (ε−εn )2

2�2 . (A32)

From this we can evaluate the integral in Eq. (A19), which
results in the Gaussian version of Eq. (A27),

L̃� (l|F ′(ε)|) = e−2π2(l|F ′(ε)|)2�2
. (A33)

This reduces to Eq. (73) for l = 1 (fundamental frequency)
and |F ′(ε)| = 1/h̄ωc.

c. Calculating the F function and its derivative F ′(ε)

Here we illustrate the calculation of Fs(ε) and its derivative
with respect to ε, F ′(ε), in the presence of SO interaction.
For simplicity, we consider the pure Rashba case (no Dressel-
haus). To determine the F functions we need to invert εn,s = ε,
where

εn,s

h̄ωc
=
(

n + 1

2
+ s

2

)

− s

2

1 − �̃

|1 − �̃|

√
(1 − �̃)2 + 16α2

B

(
n + 1

2
+ s

2

)
(A34)

is the pure Rashba energy, Eq. (33) in the main text. Squaring
ε − ñh̄ωc, with ñ = n + (1 + s)/2, we find

[ε − ñh̄ωc]2 = 1

4
(h̄ωc − �)2 + 4εRh̄ωcñ,

ε2 − 2εh̄ωcñ + ñ2h̄2ω2
c = 1

4
(h̄ωc − �)2 + 4εRh̄ωcñ,

ñ2h̄2ω2
c − (2εh̄ωc + 4εRh̄ωc)ñ − 1

4
(h̄ωc − �)2 + ε2 = 0,

ñ2 −
(

2ε

h̄ωc
+ 4εR

h̄ωc

)
ñ −

(
1

2
− �

2h̄ωc

)2

+
(

ε

h̄ωc

)2

= 0.

(A35)
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We can easily solve (A35) for ñs(ε) ⇒ ns(ε) = −(1 + s)/2 +
ñs(ε) = f −1

s = Fs(ε),

Fs(ε) = − 1 + s

2
+ ε

h̄ωc
+ 2εR

h̄ωc

+ s

√(
ε

h̄ωc
+ 2εR

h̄ωc

)2

+
(

1

2
− �

2h̄ωc

)2

−
(

ε

h̄ωc

)2

.

(A36)

We obtain F ′
±(ε) by differentiating (A36),

F ′
s (ε) = 1

h̄ωc
+ s

1

2

2
(

ε
h̄ωc

+ 2εR
h̄ωc

)
1

h̄ωc
− 2ε

h̄2ω2
c√(

ε
h̄ωc

+ 2εR
h̄ωc

)2
+
(

1
2 − �

2h̄ωc

)2
−
(

ε
h̄ωc

)2
,

or (A37)

F ′
s (ε) = 1

h̄ωc
+ s

2εR
h̄ωc√

4εεR

h̄2ω2
c
+
(

2εR
h̄ωc

)2
+
(

1
2 − �

2h̄ωc

)2
. (A38)

As mentioned earlier, the leading term in F ′
s (ε) is 1/h̄ωc.

By expanding the above expression, we can easily find
O(εR/εF ) = O[(αm∗�c)2/h̄] corrections. The above calcula-
tion also holds for the Dresselhaus case. The general case with
simultaneous and arbitrary Rashba and Dresselhaus couplings
lead to the corrections O[(αm∗�c)2/h̄] + O[(βm∗�c)2/h̄)]
mentioned following Eq. (12).

APPENDIX B: RIGOROUS RESULT FOR δρxx

Here we present the essential steps of our ad hoc approach
to obtain the relation between δρxx and the oscillatory part of
the DOS in Eq. (22) of the main text.

Below we consider the simplest scenario of a 2DEG with
neither spin-orbit nor Zeeman interactions, and focus on the
T = 0 case. In this limit, and considering a magnetic field B
perpendicular to the 2DEG, we have the well-known Drude-
Boltzmann results

σ D
xx(εF , B) = ne2τ0(εF )

m∗[1 + ω2
cτ0(εF )2

] , (B1)

and

σ D
xy(εF , B) = ωcτ0(εF )σ D

xx(εF , B), (B2)

with n/2 = n↑ = n↓ denoting the electronic density per spin,
and τ0(εF ) the first transport scattering time [85,86]

h̄

τ0(εF )
= nimpg0(εF )

∫ 2π

0
dφ〈|Vimp(q)|2〉(1 − cos φ), (B3)

where g0(εF ) = m∗/2π h̄2 is the DOS per spin, nimp is the con-
centration of (spin independent) impurities, Vimp(q) denotes
the relevant Fourier component of (nonmagnetic) impurity
potential (whose absolute value square is averaged over the
impurity ensemble), and q represents the change of the elec-
tron wave vector near the Fermi energy.

It is important to emphasize that the derivation above as-
sumed the transport scattering time τ0 as being independent
of the magnetic field B. However, 1/τ0(εF ) is shown to be
proportional to the DOS at the Fermi energy [g0(εF )] via

Eq. (B3). This motivates us to introduce a new scattering time
in the presence of B �= 0, namely,

h̄

τ (εF , B)
= nimpg0(εF , B)

∫ 2π

0
dφ〈|Vimp(q)|2〉(1 − cos φ),

(B4)

where g0(εF , B) denotes the DOS per spin for a 2DEG in the
absence of spin-orbit and Zeeman interactions, i.e.,

g0(εF , B) = m∗

2π h̄2

{
1 +

∞∑
l=1

(−1)l cos

(
2π l

εF

h̄ωc

)
e− π l�

h̄ωc

}
,

(B5)

where we have used Eq. (A30) with Lorentzian broadening.
This modifies Eqs. (B1) and (B2) to

σxx(εF , B) = ne2τ (εF , B)

m∗[1 + ω2
cτ (εF , B)2]

, (B6)

and

σxy(εF , B) = ωcτ (εF , B)σxx(εF , B), (B7)

and thus offer a heuristic way to account for orbital effects
(i.e., Landau levels) via the B-field dependence of the trans-
port scattering time that appears through the DOS. Dividing
(B4) by (B3), we find

1

τ (εF , B)
= 1

τ0(εF )

g0(εF , B)

g0(εF )
. (B8)

It is interesting to note that Eq. (B8), despite being obtained
here ad hocly, is the same as Eq. (38) in Ref. [72], since
g0(εF , B) and g0(εF ) are respectively ν(ε) and ν0 in Ref. [72].
In terms of the oscillatory part of the DOS δg0(εF , B) =
g0(εF , B) − g0(εF ), Eq. (B8) reads

1

τ (εF , B)
= 1

τ0(εF )

[
1 + δg0(εF , B)

g0(εF )

]
, (B9)

which, to lowest order in �g0(εF , B)/g0(εF ), yields

τ (εF , B) ≈ τ0(εF )

[
1 − δg0(εF , B)

g0(εF )

]
. (B10)

which maps to Eq. (18) in the main text after g(ε, B) →
D(ε, B). We can now use the above expression for τ (εF , B)
to relate δρxx to the oscillatory part of the DOS. First, we
calculate ρxx(εF , B) = σxx(εF , B)/(σ 2

xx(εF , B) + σ 2
xy(εF , B)),

and obtain

ρxx(εF , B) = m∗

ne2τ (εF , B)
. (B11)

Equation (B11) shows that there is magnetoresistance
now from the B-field dependence of τ (εF , B). Substituting
Eq. (B9) into (B11), we find

ρxx(εF , B) = m∗

ne2τ0(εF )

[
1 + δg0(εF , B)

g0(εF )

]
,

ρxx(εF , B) = ρD

[
1 + δg0(εF , B)

g0(εF )

]
, (B12)
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where ρD = σ−1
D = m∗/ne2τ0(εF ) = ρxx(B = 0). From the

above we can immediately write

δρxx(εF , B) = ρxx(εF , B) − ρD

ρD
= δg0(εF , B)

g0(εF )
. (B13)

Both Eqs. (B12) and (B13) miss a factor of two compared to
the more rigorous result from Ref. [72].

In the above reference, the authors derive the conductivity
tensor components σxx and σxy in the presence of vertex cor-
rection. In the absence of Zeeman and spin-orbit interaction,
their expressions for the conductivities [Eqs. (39) and (42) in
Ref. [72]] read

σxx(B) = e2v2
F

∫
dε

(
−∂ f T

ε

∂ε

)
ν(ε)τB(ε)

1 + ω2
cτ

2
B (ε)

, (B14)

σxy(B) = −enec

B
+ e2v2

F

ωc

∫
dε

(
−∂ f T

ε

∂ε

)
ν(ε)

1 + ω2
cτ

2
B (ε)

,

(B15)

with vF = h̄kF /m, ne the electron density, and ωc = eB/mc
denoting the definitions used in Ref. [72]. In what follows, we
use the correspondences ν(ε) → g0(ε, B), τB(ε) → τ (ε, B),
m → m∗ and drop c, to conform with our notation and units
in this Appendix. Using Eq. (B10) {note that Eq. (B9) is
identical to Eq. (38) in Ref. [72]}and only retaining leading
terms in δg0/g0, we obtain at T = 0 K (i.e., ε = εF .),

σxx(B) = σD

1 + ω2
cτ

2(εF )

[
1 + 2ω2

cτ
2

1 + ω2
cτ

2

δg0(εF )

g0

]
, (B16)

and

σxy(B) = − σDωcτ(
1 + ω2

cτ
2
)
[

1 − 1 + 3ω2
cτ

2

(ωcτ )2
(
1 + ω2

cτ
2
) δg0(εF )

g0

]
,

(B17)

with τ corresponding to our τ0(εF ) in Eq. (B1). Equa-
tions (B16) and (B17) were also derived in Ref. [87,88]. Note
the deviation between (B16) and (B17) and our respective
ad hoc semiclassical Eqs. (B6) and (B7). Using the rigorous
expressions above, we can obtain the longitudinal magnetore-
sistivity to lowest order

δρxx(εF , B) � ρxx(εF , B) − ρD

ρD
= 2 × δg0(εF , B)

g0
, (B18)

which is Eq. (43) of Refs. [72]. Note the factor of two in
(B18) as compared to the Drude-Boltzmann result (B13). As
mentioned in the main text, all of our formulas for δρxx(B) (at
zero and finite temperatures) contain the correct fact of two
above.

We emphasize that the magnetoresistivity (B18) was ob-
tained in Ref. [72] for a 2DEG in the absence of Zeeman
and spin-orbit interactions. To the best of our knowledge,
there is no rigorous derivation analogous to (B18) in the
presence of Zeeman and spin-orbit couplings. Therefore, in
our paper we assume Eq. (B18) to hold even in the pres-
ence of Zeeman and spin-orbit interactions. More specifically,
this amounts to making the replacement δg0(ε, B)/g0 →
[D(ε, B) − 2D0]/2D0 in (B18). This is because our F func-
tion approach involves the total DOS when the spin-orbit and

Zeeman interactions are present, as shown in Eq. (14) of the
main text. Note that the above replacement, when applied to
Eq. (B10), also yields Eq. (18) for τ (εF , B) in the main text.

As a final remark, we note that for systems with strong
spin-orbit couplings and/or spin-dependent scatterers, LL
broadenings can be different for spin up and spin down. Fur-
ther investigation is needed to account for Dingle factors with
spin-dependent quantum lifetimes (τ↑

q , τ↓
q ) in our F function

formulation.

APPENDIX C: ORTHOGONAL SUBSPACES P

When both Rashba and Dresselhaus are present, neither
N+ nor N− are conserved, i.e., [N±, H̃] �= 0. This will result
in mixing of states, e.g. the pure Rashba states will get couple
to each other when a finite β is introduced, and vice versa.
However, there is a conserved quantity that can be constructed
from N± by defining [64,65]

P± = exp (iπ (N± + 1/2)). (C1)

Using the definition of N+ = a†a + 1
2σz we can show that

P+ = exp

(
iπ

(
a†a + 1

2
σz

))

= exp

(
iπ

(
a†a − 1

2
σz + σz

))
= P− exp(iπσz ) = −P−, (C2)

where we used exp(iπσz ) = −1. Since P± have eigenvalue
±1, we only need to consider P = P+ = −P−. First, we look
at how the operator P affects the operators a, and σ+,

Pσ+P† = ei π
2 σzσ+e−i π

2 σz = eiπσ+ = −σ+, (C3)

PaP† = eiπa†aae−iπa†a = eiπ a = −a. (C4)

The Hamiltonians in both Eqs. (9) and Eq. (70) contain diago-
nal terms (a†a and σz) that commute with P , and nondiagonal
terms that involve odd power a, a† multiplying σ+, σ−, so
then its straightforward to show that [H,P] = 0. Note that
P is unitary so the condition [H,P] = 0, can be rewritten as
PHP† = H. Focusing on the spin-orbit part of Eq. (9) one
obtains

P (αBa†σ− + βBa†σ+)P† + H.c.

= (αBPa†P†Pσ−P† + βBPa†P†Pσ+P†) + H.c.

= (αB(−a†)(−σ−) + βB(−a†)(−σ+)) + H.c.

= (αBa†σ− + βBa†σ+) + H.c., (C5)

which shows that PHP† = H, since the diagonal terms in H
trivially commute with P .

The practical results of having a diagonal operator P that
commutes with H is that the Hamiltonian can be diagonalized
using two separate sets of basis states,

P = +1 : {|0,↑〉, |1,↓〉, |2,↑〉, |3,↓〉, |4,↑〉, . . . },
P = −1 : {|0,↓〉, |1,↑〉, |2,↓〉, |3,↑〉, |4,↓〉, . . . }.

Diagonalizing H in either of the P = +1, or −1, subspaces
will result in a set of states that all anticross. We can connect
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these sets of states to N+ eigenstates

P = +1 : {
|0,+〉,|1,−〉︷ ︸︸ ︷

|0,↑〉, |1,↓〉,
|2,+〉,|3,−〉︷ ︸︸ ︷

|2,↑〉, |3,↓〉, |4,↑〉, . . . }
P = −1 : {|0,↓〉, |1,↑〉, |2,↓〉︸ ︷︷ ︸

|1,+〉,|2,−〉
, |3,↑〉, |4,↓〉︸ ︷︷ ︸

|3,+〉,|4,−〉
, . . . },

and similarly for the N− eigenstates

P = +1 : {|0,↑〉,
|1,−〉,|2,+〉︷ ︸︸ ︷

|1,↓〉, |2,↑〉,
|3,−〉,|4,+〉︷ ︸︸ ︷

|3,↓〉, |4,↑〉, . . . }
P = −1 : {|0,↓〉, |1,↑〉︸ ︷︷ ︸

|0,−〉,|1,+〉
, |2,↓〉, |3,↑〉︸ ︷︷ ︸

|2,−〉,|3,+〉
, |4,↓〉, . . . }

Note that P also commutes with the cubic Dresselhaus terms
as is discussed in Appendix D.

APPENDIX D: CUBIC DRESSELHAUS

The Hamiltonian in Eq. (9) describes a 2DEG with both
Rashba and linear Dresselhaus. For the numerical part we
also include the full cubic Dresselhaus contribution. Starting
from Eq. (6.1) in Ref. [63], and projecting down to the lowest
transverse level results in

HD3 =
(− γ

〈
k2

z

〉)
h̄

([
1

2
	+σ+ − 1

8h̄2
〈
k2

z

〉 {	2
+ − 	2

−,	−}
]

+H.c.

)
, (D1)

where 	± = 	x ± i	y, and 〈	2
z 〉 = h̄2〈k2

z 〉. Note that now
the Dresselhaus spin-orbit coupling is parametrized by two
parameters γ and 〈k2

z 〉, while for the linear approximation,
only the single parameter β = (−γ )〈k2

z 〉 is required. Using the
definition in Eqs. (3) and (4) the full Dresselhaus Hamiltonian
becomes

HD3 =
(− γ

〈
k2

z

〉)
h̄

{[(
1 − 1

2
〈
k2

z

〉
�2

c

a†a

)
a†σ+

+ 1

2
〈
k2

z

〉
�2

c

a3σ+

]
+ H.c.

}
. (D2)

In the absence of spin-orbit interaction a†a can be replaced
by its eigenvalue n, which in turn is related to the ratio of the
Fermi energy and h̄ωc (valid for εF � h̄ωc),

1

�2
c

a†a → 1

�2
c

n ≈ 1

�2
c

εF

h̄ωc
= k2

F

2
= πn2D. (D3)

In the presence of spin orbit we can still formally rewrite
Eq. (D2) as

HD3 = (−γ )
(〈

k2
z

〉− π
2 n2D

)
h̄

{[〈
k2

z

〉− 1
2�2

c
a†a〈

k2
z

〉− π
2 n2D

a†σ+

+ 1

2�2
c

1〈
k2

z

〉− π
2 n2D

a3σ+

]
+ H.c.

}
. (D4)

The prefactor −γ (〈k2
z 〉 − π

2 n2D) is defined as

β = β1 − β3

= [(−γ )
〈
k2

z

〉]− [(−γ )
π

2
n2D

]
, (D5)

which reduces to the traditional definition of β for low-density
samples as considered in Sec. V.

The parity operator P introduced in Appendix C also com-
mutes with the Hamiltonian in Eq. (D2), since the spin-orbit
terms involve odd powers of a, a† multiplied by either σ+ or
σ−, and the sign introduced the unitary transformation gets
canceled.

APPENDIX E: THE NUMERICAL PROCEDURE FOR
FINDING THE F FUNCTION

For fixed parameter values, the eigenenergies of the
Hamiltonian Eq. (9) take discrete values. They are obtained
numerically by diagonalizing the Hamiltonian matrix using
a large enough set of basis states. Finding the F function as
described in Eq. (11) is equivalent to a root finding problem
for the function

gs(n) = εn,s(B) − εF = 0. (E1)

This requires the quantum number n to be a continuous vari-
able, which leads to a minor modification of the Hamiltonian
diagonlization procedure. The standard diagonalization proce-
dure is to construct a 2NL matrix from NL harmonic oscillator
eigenstates, in addition to the spin degree of freedom. The
Pauli matrices form 2 × 2 blocks that are coupled by the
ladder operators a and a†, leading to block tridiagonal matrix
with 2 × 2 block matrices

hl,l = (l − 1)

[
1 0
0 1

]
+
[

1−�̃
2 0
0 1+�̃

2

]
, (E2)

hl,l+1 = √
l + 1

[
0 2αβ

2βB 0

]
, (E3)

where l runs from 1 to NL (number of Landau levels used in
the calculations). To obtain a continuous version of Eqs. (E2)
and (E3) a variable x is added to the index l , resulting in

hl,l (x) = (l + x − 1)

[
1 0
0 1

]
+
[

1−�̃
2 0
0 1+�̃

2

]
, (E4)

hl,l+1(x) = √
l + x + 1

[
0 2αβ

2βB 0

]
. (E5)

The full block-tridiagonal matrix based on the submatrices
in Eqs. (E4) and (E5) will then yield a spectrum εn+x,s, for
x ∈ [−1, 1]. To further simply the calculations the basis states
can be split into P = ±1 subspaces. Each P subspace con-
tains ordered states {ε0+x, ε1+x, . . . }. For each subspace, one
chooses the two adjacent eigenenergies determined by the
condition εn+x < εF

h̄ωc
< εn+x+1. Subsequently the value of x

is found by solving gs(n + x) = 0.
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APPENDIX F: PERTURBATION THEORY AND
“BOGOLIUBOV-DE GENNES HAMILTONIAN”

Here we solve the Hamiltonian Eq. (50) through a perturba-
tive approach. As the Hamiltonian due to the spin-orbit terms
are generally much smaller than the Hamiltonian correspond-
ing to free electron gas, we rewrite Eq. (50) as

H̃
h̄ωc

=

H0/h̄ωc︷ ︸︸ ︷
a†a + 1

2
+ �̃

2
σz +

V/h̄ωc︷ ︸︸ ︷
γ (a† + a)σx + iδ(a − a†)σy

= H0/h̄ωc + V/h̄ωc,

with corresponding unperturbed Hamiltonian and perturba-
tion, H0 and V , respectively. Using now the Schrieffer–Wolff
transformation [89,90], defined by eS , with the constraint
V + [S,H0] = 0, we obtain an effective Hamiltonian given
by Heff = H0 + 1

2 [S,V] + O(V3). For our system we find
S = Sγ + Sδ , with

Sγ = − γ

1 − �̃2
{a(σx + i�̃σy) − a†(σx − i�̃σy)}, (F1)

Sδ = − iδ

1 − �̃2
{a(σy − i�̃σx ) + a†(σy + i�̃σx )}, (F2)

yielding

H̃eff

h̄ωc
= 1

2
(1 + �̃σz ) − � − �σz + (1 − 2�σz )a†a

+ �(aa + a†a†)σz, (F3)

with

� = (γ 2 + δ2) + 2δγ �̃

1 − �̃2
, (F4)

� = (γ 2 + δ2)�̃ + 2δγ

1 − �̃2
, (F5)

� = δ2 − γ 2

1 − �̃2
�̃. (F6)

The Hamiltonian Eq. (F3) can be rewritten in the
Bogoliubov-de Gennes form as

H̃eff

h̄ωc
= 1

2
(1 + �̃σz ) − � − �σz − 1

2
(1 − 2�σz )

+ 1

2
(a† a)

[
1 − 2�σz 2�σz

2�σz 1 − 2�σz

](
a
a†

)
, (F7)

which can be diagonalized by a 2 × 2 Bogoliubov-de Gennes
transformation, and reads

H̃eff

h̄ωc
= 1

2
(1 + �̃σz ) − � − �σz − 1

2
(1 − 2�σz ) + 1

2

(
ã† ã

)[√(1 − 2�σz )2 − 4�2 0
0

√
(1 − 2�σz )2 − 4�2

](
ã
ã†

)
, (F8)

with the diagonal operators ã and ã†. For most semiconductors, we have �,�,� � 1. By neglecting the fourth-order or higher
spin-orbit terms, i.e., δiγ j with i + j � 4, we obtain

H̃eff

h̄ωc
= �̃

2
σz + |1 − 2�σz|

(
ã†ã + 1

2

)
− � (F9)

with energies

εl,s

h̄ωc
= s

2
�̃ − � + |1 − 2�s|

(
l + 1

2

)
. (F10)

For 1 − 2� > 0 we obtain

εl,s

h̄ωc
=
(

l + 1

2
+ �̃

s

2

)
− 2s�

(
l + 1

2

)
− �, (F11)

which is Eq. (53) in the main text.

APPENDIX G: APPROXIMATIONS LEADING TO EQS. (58) AND (59)

Starting from Eq. (57) one can obtain the the F function by inverting the energy levels to obtain l , for each value of s. The
resulting equations are

F+ = ε

h̄ωc
− 1

2
+ |�|

(
1 − �

|�|�̃
)

+ 1

4

�

|�|
1 − �

|�|�̃∣∣∣1 − �
|�|�̃

∣∣∣
×
√√√√(1 − �

|�|�̃
)2

+ 8

(
1 − �

|�|�̃
)[

ε

h̄ωc
|�| + |�|2

2

(
1 − �

|�|�̃
)

+ 1

2

(
�

�

|�| − �

)]

− 1

4

�

|�|
1 − �

|�|�̃∣∣∣1 − �
|�|�̃

∣∣∣
√√√√(1 − �

|�|�̃
)2

+ 8

(
1 − �

|�|�̃
)[

ε

h̄ωc
|�| + |�|2

2

(
1 − �

|�|�̃
)

− 1

2

(
�

�

|�| − �

)]
, (G1)
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F− = − 1

2

�

|�| + 1

4

�

|�|
1 − �

|�|�̃∣∣∣1 − �
|�|�̃

∣∣∣
√√√√(1 − �

|�|�̃
)2

+ 8

(
1 − �

|�|�̃
)[

ε

h̄ωc
|�| + |�|2

2

(
1 − �

|�|�̃
)

+ 1

2

(
�

�

|�| − �

)]

+ 1

4

�

|�|
1 − �

|�|�̃∣∣∣1 − �
|�|�̃

∣∣∣
√√√√(1 − �

|�|�̃
)2

+ 8

(
1 − �

|�|�̃
)[

ε

h̄ωc
|�| + |�|2

2

(
1 − �

|�|�̃
)

− 1

2

(
�

�

|�| − �

)]
. (G2)

We will further simplify these equations by approximating Eqs. (G1) and (G2) up to second order in the spin-orbit parameters
� and � (or fourth order in γ and δ). Accordingly, we rewrite these equations as

F+ = ε

h̄ωc
− 1

2
+ |�|

(
1 − �

|�|�̃
)

+ 1

4

�

|�|
1 − �

|�|�̃∣∣∣1 − �
|�|�̃

∣∣∣
(√

A + B − √
A − B

)
, (G3)

F− = −1

2

�

|�| + 1

4

�

|�|
1 − �

|�|�̃∣∣∣1 − �
|�|�̃

∣∣∣
(√

A + B + √
A − B

)
, (G4)

where A = A0 + A1 + A2 and B = B1, with

A0 =
(

1 − �

|�|�̃
)2

, (G5)

A1 = 8
ε

h̄ωc
|�|
(

1 − �

|�|�̃
)

, (G6)

A2 = 4|�|2
(

1 − �

|�|�̃
)2

, (G7)

B1 = 4

(
1 − �

|�|�̃
)(

�
�

|�| − �

)
. (G8)

Here, the nominal values of the subindices of Ai and Bj indicate their order on the spin-orbit terms � and �. Accordingly, we
expand the square roots of Eqs. (G3) and (G4) and keep only terms up to second order in either � or �, yielding

√
A + B + √

A − B ≈ 2
√

A0 + A1

(
1 + 1

2

A2

A0 + A1

)
= 2

√
A0 + A1 + A2, (G9)

√
A + B − √

A − B ≈ B1√
A0

. (G10)

As a consequence, we can finally write

F+ = ε

h̄ωc
− 1

2
+ � − ��̃, (G11)

F− = −1

2

�

|�| + 1

2

�

|�|
1 − �

|�|�̃∣∣∣1 − �
|�|�̃

∣∣∣ ×
√(

1 − �

|�|�̃
)2

+ 8|�|
(

1 − �

|�|�̃
)[

ε

h̄ωc
+ 1

2
|�|
(

1 − �

|�|�̃
)]

, (G12)

which are Eqs. (58) and (59), respectively.

APPENDIX H: TEMPERATURE DEPENDENCE OF THE NORMALIZED DIFFERENTIAL RESISTIVITY

In this section we derive the general temperature dependence of the normalized differential magnetoresistivity in Eq. (24) for
the systems studied in this paper,

δρxx(B) = 2
∞∑

l=1

∫
dεL̃�

(
l

�

h̄ωc

)(
−df0(ε)

dε

)
cos(2π lF−) cos(2π lF+). (H1)
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At T = 0 K, we have −df0(ε)/dε → δ(ε − εF ), which simplifies Eq. (H1) to

δρxx(B) = 2
∞∑

l=1

L̃�

(
l

�

h̄ωc

)
cos(2π lF−) cos(2π lF+)|ε=εF

, (H2)

being obviously temperature independent. When the temperature is finite but small, i.e., kBT � μ ∼ εF , we have a temperature-
dependent δρxx(B). We now analyze the relevant case for low-density semiconductors, but with εF � εR, εD, and high number
of populated Landau levels, i.e., εF /h̄ωc � 1. With these conditions, all the different cases analyzed in this paper present
F± functions constant or linearly dependent on the energy, so we write here, F± ∝ ε + cte, see for example, Eqs. (29), (44),
(45), (58), and (59). Using 2π lF+ = 2�l

+ε + φl
+, 2π lF− = 2�l

−ε + φl
−, with φl

± properly defined by comparison with these
equations, and assuming an energy-independent Dingle factor (only true for Lorentzian broadening.), we need to calculate
integrals of the following form,∫ ∞

0
dε

(
−∂ f 0

∂ε

)
cos(2�l

+ε + φl
+) cos(2�l

−ε + φl
−)

=
∫ ∞

− μ

2kBT

dx
cos(4�l

+kBT x + 2�l
+μ + φl

+) cos(4�l
−kBT x + 2�l

−μ + φl
−)

2 sinh2 x
, (H3)

where we have introduced the dimensionless quantity x = ε−μ

2kBT . For μ � kBT , we obtain

∫ ∞

0
dε

(
− ∂ f 0

∂ε

)
cos(2�l

+ε + φl
+) cos(2�l

−ε + φl
−) = πkBT

{
(�l

+ − �l
−) cos[2μ(�l

+ − �l
−) + φl

+ − φl
−]

sinh[2πkBT (�l+ − �l−)]
(H4)

+ (�l
+ + �l

−) cos[2μ(�l
+ + �l

−) + φl
+ + φl

−]

sinh[2πkBT (�l+ + �l−)]

}
, (H5)

using ∫ ∞

−∞
dx

cos(2λ1 + a1) cos(2λ2 + a2)

cosh x2
= π (λ1 − λ2) cos(a1 − a2)

sinh π (λ1 − λ2)
+ π (λ1 + λ2) cos(a1 + a2)

sinh π (λ1 + λ2)
.

For the cases treated in this paper, �l
+ � �l

− holds, and we obtain∫ ∞

0
dε

(
− ∂ f 0

∂ε

)
cos(2�l

+ε + φl
+) cos(2�l

−ε + φl
−) ≈ Al (T ) cos(2μ�l

+ + φl
+) cos(2μ�l

− + φl
−),

with

Al (T ) = 2πkBT �l
+

sinh(2πkBT �l+)
, (H6)

for the temperature-dependent coefficient for the SdH oscillation. For all the cases investigated in this paper, we have �+ =
π l/h̄ωc, yielding Eq. (25) in the main text,

Al (T ) = 2π2lkBT/h̄ωc

sinh(2π2lkBT/h̄ωc)
. (H7)

[1] M. I. D’yakonov and V. I. Perel, Possibility of orienting electron
spins with current, Sov. J. Expt. Theor. Phys. Lett. 13, 467
(1971).

[2] M. I. Dyakonov and V. Perel, Current-induced spin orientation
of electrons in semiconductors, Phys. Lett. A 35, 459 (1971).

[3] J. E. Hirsch, Spin hall effect, Phys. Rev. Lett. 83, 1834 (1999).
[4] J. Schliemann, J. C. Egues, and D. Loss, Nonballistic spin-field-

effect transistor, Phys. Rev. Lett. 90, 146801 (2003).
[5] B. A. Bernevig, J. Orenstein, and S.-C. Zhang, Exact SU(2)

symmetry and persistent spin helix in a spin-orbit coupled sys-
tem, Phys. Rev. Lett. 97, 236601 (2006).

[6] J. Fu, P. H. Penteado, M. O. Hachiya, D. Loss, and J. C.
Egues, Persistent skyrmion lattice of noninteracting electrons
with spin-orbit coupling, Phys. Rev. Lett. 117, 226401 (2016).

[7] C. L. Kane and E. J. Mele, Quantum spin Hall effect in
graphene, Phys. Rev. Lett. 95, 226801 (2005).

[8] B. A. Bernevig and S.-C. Zhang, Quantum spin Hall effect,
Phys. Rev. Lett. 96, 106802 (2006).

[9] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum spin
Hall effect and topological phase transition in HgTe quantum
wells, Science 314, 1757 (2006).

[10] A. Y. Kitaev, Unpaired Majorana fermions in quantum wires,
Phys. Usp. 44, 131 (2001).

[11] L. Fu and C. L. Kane, Josephson current and noise at
a superconductor/quantum-spin-Hall-insulator/superconductor
junction, Phys. Rev. B 79, 161408(R) (2009).

[12] D. R. Candido, M. E. Flatté, and J. C. Egues, Blur-
ring the boundaries between topological and nontopolog-

043297-26

http://jetpletters.ru/ps/1587/article_24366.shtml
https://doi.org/10.1016/0375-9601(71)90196-4
https://doi.org/10.1103/PhysRevLett.83.1834
https://doi.org/10.1103/PhysRevLett.90.146801
https://doi.org/10.1103/PhysRevLett.97.236601
https://doi.org/10.1103/PhysRevLett.117.226401
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1126/science.1133734
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevB.79.161408


BEATING-FREE QUANTUM OSCILLATIONS IN … PHYSICAL REVIEW RESEARCH 5, 043297 (2023)

ical phenomena in dots, Phys. Rev. Lett. 121, 256804
(2018).

[13] P. B. Pal, Dirac, Majorana, and Weyl fermions, Am. J. Phys. 79,
485 (2011).

[14] L. Shubnikov and W. J. de Haas, Commun. Phys. Lab. Univ.
Leiden 207a, 207c, 207d, 210a (1930).

[15] L. Schubnikow and W. J. De Haas, Neue Erscheinungen bei
der Widerstandsanderung von Wismuthkristallen im Magnet-
feld bei der Temperatur von flussigem Wasserstoff (I), Proc.
Netherlands Roy. Acad. Sci. 33, 363 (1930).

[16] P. D. C. King, R. H. He, T. Eknapakul, P. Buaphet, S.-K. Mo,
Y. Kaneko, S. Harashima, Y. Hikita, M. S. Bahramy, C. Bell, Z.
Hussain, Y. Tokura, Z.-X. Shen, H. Y. Hwang, F. Baumberger,
and W. Meevasana, Subband structure of a two-dimensional
electron gas formed at the polar surface of the strong spin-orbit
perovskite KTaO3, Phys. Rev. Lett. 108, 117602 (2012).

[17] Y. Xie, C. Bell, M. Kim, H. Inoue, Y. Hikita, and H. Y. Hwang,
Quantum longitudinal and Hall transport at the LaAlO3/SrTiO3

interface at low electron densities, Solid State Commun. 197,
25 (2014).

[18] T. C. Rödel, F. Fortuna, S. Sengupta, E. Frantzeskakis, P. L.
Fèvre, F. Bertran, B. Mercey, S. Matzen, G. Agnus, T.
Maroutian, P. Lecoeur, and A. F. Santander-Syro, Universal
fabrication of 2D electron systems in functional oxides, Adv.
Mater. 28, 1976 (2016).

[19] K. Rubi, S. Zeng, F. Bangma, M. Goiran, A. Ariando,
W. Escoffier, and U. Zeitler, Electronic subbands in the
a-LaAlO3/KTaO3 interface revealed by quantum oscilla-
tions in high magnetic fields, Phys. Rev. Res. 3, 033234
(2021).

[20] A. F. Santander-Syro, C. Bareille, F. Fortuna, O. Copie, M.
Gabay, F. Bertran, A. Taleb-Ibrahimi, P. Le Fèvre, G. Herranz,
N. Reyren, M. Bibes, A. Barthélémy, P. Lecoeur, J. Guevara,
and M. J. Rozenberg, Orbital symmetry reconstruction and
strong mass renormalization in the two-dimensional electron
gas at the surface of KTaO3, Phys. Rev. B 86, 121107(R)
(2012).

[21] A. Fête, S. Gariglio, C. Berthod, D. Li, D. Stornaiuolo,
M. Gabay, and J.-M. Triscone, Large modulation of the
Shubnikov-de Haas oscillations by the Rashba interaction at the
LaAlO3/SrTiO3 interface, New J. Phys. 16, 112002 (2014).

[22] M. Yang, K. Han, O. Torresin, M. Pierre, S. Zeng, Z. Huang,
T. V. Venkatesan, M. Goiran, J. M. D. Coey, Ariando, and
W. Escoffier, High field magneto-transport in two-dimensional
electron gas LaAlO3/SrTiO3, Appl. Phys. Lett. 109, 122106
(2016).

[23] F. Trier, G. E. D. K. Prawiroatmodjo, Z. Zhong, D. V.
Christensen, M. von Soosten, A. Bhowmik, J. M. G. Lastra,
Y. Chen, T. S. Jespersen, and N. Pryds, Quantization of Hall
resistance at the metallic interface between an oxide insulator
and SrTiO3, Phys. Rev. Lett. 117, 096804 (2016).

[24] G. Cheng, A. Annadi, S. Lu, H. Lee, J.-W. Lee, M. Huang, C.-B.
Eom, P. Irvin, and J. Levy, Shubnikov–de Haas–like quantum
oscillations in artificial one-dimensional LaAlO3/SrTiO3 elec-
tron channels, Phys. Rev. Lett. 120, 076801 (2018).

[25] K. Rubi, J. Gosteau, R. Serra, K. Han, S. Zeng, Z. Huang,
B. Warot-Fonrose, R. Arras, E. Snoeck, Ariando, M. Goiran,
and W. Escoffier, Aperiodic quantum oscillations in the two-
dimensional electron gas at the LaAlO3/SrTiO3 interface, npj
Quantum Mater. 5, 9 (2020).
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