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Biological systems must be robust for stable functioning against perturbations, but robustness alone is
insufficient. The ability to switch between appropriate states (phenotypes) in response to different conditions
is essential for biological functions, as observed in allosteric enzymes and motor proteins. How are robustness
and plasticity simultaneously acquired through evolution? In an attempt to answer this question, we examine the
evolution of genotypes that realize plastic switching between two endpoint phenotypes upon external inputs as
well as stationary expressions of phenotypes. Here, we introduce a statistical physics model consisting of spins,
with active sites and regulatory sites, which are distinct from each other. In our model, we represent the phenotype
and genotype as spin configurations and spin-spin interactions, respectively. The fitness for selection is given
by the spin configuration, whose behavior is governed by the genotypes. Specifically, the fitness for selection
is given so that it takes a higher value as more active sites take two requested spin configurations depending
on the states of the regulatory sites. The remaining spins do not directly affect the fitness, but they interact
with other spins. We numerically evolve the matrices of spin-spin interactions (genotypes) by changing them
with mutations and selection of those with higher fitness. Our numerical simulations show that characteristic
genotypes with higher fitness evolve slightly above the phase transition temperature between replica-symmetric
and replica-symmetry-breaking phase in spin-glass theory. These genotypes shape the two spin configurations
separately depending on the regulation. Each phenotype is primarily represented by the first or second eigenmode
of the genotypes. Smooth switching between the two phenotypes is achieved by following a one-dimensional
quarter-circle that connects them. Upon changes in regulations, spin configurations are attracted to this path,
which allows for robust and plastic switching between the two phenotypes. The statistical physics analysis based
on the two eigenmodes shows that the free energy landscape has a valley along the one-dimensional quarter-circle
switching path. Robust attraction to the path is achieved through the evolution of the interactions within
nonactive and nonregulatory spin sites, which themselves do not contribute to fitness. Our findings indicate
that the compatibility between robustness and plasticity is acquired by the evolution of low dimensionality in
the phenotype space, which will be relevant to the understanding of the robust function of protein as well as

material design.

DOI: 10.1103/PhysRevResearch.5.043296

I. INTRODUCTION

Biological systems are inherently complex and comprise
numerous elements. Despite such complexity, they function
robustly under environmental and stochastic perturbations.
In general, the biological functions are determined by phe-
notypes, which are generated through expression dynamics
based on genetic information. Hence, function-related phe-
notypes need to be robustly shaped through the dynamics.
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However, a single robust phenotype or fitted state is in-
sufficient for a biological system to function under varying
conditions. Phenotypes must exhibit plasticity, shifting to ap-
propriate patterns in response to relevant signals or inputs
[1,2]. For instance, the active sites of enzymes can change
between two conformations known as tense and relaxed states,
induced by allosteric regulation [3—-6]. Motor proteins, such
as those belonging to the myosin, kinesin, and dynein fam-
ilies, exhibit large-scale conformational changes in response
to binding events [7,8]. Phosphorylation of substrates in the
mitogen-activated protein kinase cascades can switch be-
tween two states depending on modification by phosphatase
or diphosphatase [9]. Switches in gene expression pattern
in response to signals are also necessary for cell survival.
Thus, the ability to switch between appropriate phenotypes
in response to different conditions is essential for biological
functions. Accordingly, the presence of multiple phenotypes
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and transitions among them in response to inputs must be
shaped through evolution. Considering such changes in the
phenotype, plasticity to external conditions is also required
for switching to different phenotypes, in addition to the robust
expression of each phenotype. In general, the compatibil-
ity between robustness and plasticity remains a fundamental
question in biology [10,11].

To study such plastic responses in biological systems, it
is essential to understand the nature of switching pathways, in
addition to the multiple phenotypes corresponding to endpoint
structures. An understanding of the switching pathways can
aid in the development of engineering techniques, such as
drug design, that target the intermediate states of the switching
pathways [12,13]. Despite advances in structural biology in
recent decades, molecular-level characterization of switching
remains a challenge owing to limitations in macromolecular
x-ray crystallography, nuclear magnetic resonance, and small-
angle x-ray scattering [14]. Hence, theoretical or numerical
approaches are necessary to understand general characteristics
of large-scale conformational switching [15,16]. For instance,
the plastic network model, an extension of the elastic network
model [17-19], has been utilized to generate conformational
switching pathways that are consistent with experimental data
of the intermediate structures in Escherichia coli adenylate
kinase [7]. The resulting pathways resemble combinations of
low-energy normal modes obtained for the endpoint struc-
tures [7]. It has also been suggested that such preferred
directionality may contribute to catalysis in many enzymes,
achieving extraordinary rate acceleration and specificity [20].
Such switching paths were explored for Src kinase, by using
a coarse-grained, two-state Go model, characterized by a two-
dimensional free energy landscape [21].

In general, theoretical and numerical methods to explore
conformational changes assume the existence of probable
switching paths, which minimize energy, free energy, or action
[22]. The existence of a probable path implies that possible
transient changes are constrained along the path. Further,
low-dimensional approximations using principle component
analysis have often been adopted to simplify the numeri-
cally or experimentally obtained switching paths [16]. These
above-mentioned studies suggest the importance of under-
standing how low-dimensional switching paths have shaped
and evolved in the phenotypic spaces.

As for the stationary states, recent experimental and nu-
merical observations have shown that evolved phenotypes
are often constrained within a low-dimensional manifold de-
spite the high dimensionality of the phenotypic space. For
example, changes in (logarithmic) concentrations of mRNAs
or proteins have been found to be correlated [23-26] or
proportional [27,28] across all components under various en-
vironmental stresses. Numerical simulations of cell models
with catalytic reaction networks have also demonstrated that
evolved phenotypic changes caused by environmental and
mutational changes are constrained within a low-dimensional
manifold [29]. This reduction in dimensionality from high-
dimensional phenotypes has also been observed during the
structural changes of proteins via data analysis [30]. Addition-
ally, such dimensional reduction is suggested to be a result of
the robustness of phenotypes shaped by evolution. However,
such studies are limited to phenotypes around the endpoint

structures, i.e., the stationary conditions. In this paper, we ex-
amine the evolution of the switching path from the viewpoint
of dimensional reduction.

We address the following questions:

(1) Under what conditions and how are multiple endpoint
phenotypes shaped depending upon external inputs and stabi-
lized through evolution?

(2) Are low-dimensional constraints of switching paths
shaped through evolution?

(3) What are the characteristics of switching paths be-
tween endpoints?

(4) What are the characteristics of evolved genotypes that
allow robust switching paths?

To address these questions, we extend a spin-statistical
physics model introduced previously [31]. In this model, the
spin variables S and their interaction variables J represent
phenotype and genotype [32-34], respectively, and fitness is
provided by certain spin configurations. We consider two end-
point structures, corresponding to those under regulation and
without regulation. We introduce active and regulatory sites in
the spin system to represent the effect of external regulation
applied to the regulatory sites. The fitness of selective evolu-
tion depends on the appropriate expression of configurations.
Fitted interactions can provide two configurations of active
spins, corresponding to regulated and nonregulated cases.

Numerical evolution allows us to examine how the robust-
ness of each phenotype, as well as its plasticity to switch
between the two configurations, is shaped by regulation. Our
results show that, as a result of evolution, the dimensional
reduction to a two-dimensional phenotypic space appears un-
der a certain range of temperatures, while a one-dimensional
path is shaped for the switch between two phenotypes in
the regulated and nonregulated cases. The shaped switch-
ing path is robust to thermal noise and genetic mutation.
In terms of statistical physics, the robustness of the fitted
phenotype is achieved in the replica-symmetric phase. In con-
trast, the plasticity of the switch increases as the temperature
approaches the replica-symmetry-breaking (RSB) transition.
We then demonstrate that robust response is achieved near the
RSB transition.

II. MODEL

Here, we introduce an abstract model of interacting spins,
as a simplified representation of proteins whose active site
conformation is regulated via regulatory sites. Fig. 1(a) is
a simplified picture of the regulation and related conforma-
tional changes adopted in this paper. The protein shown in
gray in the figure has an active site (A) and a regulatory
site (R), which consist of amino-acid residues. In general
allosteric regulation, the active and regulatory sites are located
sufficiently apart and do not interact directly. As shown in
Fig. 1(a), binding of the ligand to the regulatory site leads to a
conformational change in the active site, via interaction with
sites other than the active and regulatory sites. In contrast,
without the binding of the activator to the regulatory site, such
conformational changes in the active site do not occur, and the
protein remains in its original conformation.

Here, we introduce an abstract statistical physics model
with interacting spins representing conformation, as shown
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FIG. 1. (a) Schematic representation of the conformational change induced by regulation. A, R, and S denote active sites, regulatory sites,
and substrates, respectively. The molecule denoted by L is the ligand that regulates the protein through regulatory sites. (b) The spin model for
conformational switching that has active and regulatory sites. (c) A landscape picture of the conformational changes induced by regulations
discussed in this paper. (d) Free energy landscape of the multipattern embedding in the associative memory model such as Hopfield networks.

in Fig. 1(b). The model consists of spin variable S =
{S1,---, Sy} € {—1, +1}", which represents the conforma-
tional change in each amino-acid residue, whereas the
coupling J between spins represents the interaction among
residues. These are denoted by nodes and edges, respectively,
in Fig. 1(b). Here, we set J as the N x N symmetric matrix.
Its elements are givenby J; =0 (i =1,--- ,N),and J;; €
for i # j, where Q; = {—1/+/N, 0, 1/+/N}. Active (A) and
regulatory (R) sites are represented by Ny and Ny spins, re-
spectively, among the N spins. The label sets of active and
regulatory spins are denoted by .4 and R, respectively. We set
Jij=0forie Aand je Rorie R and j € A to prohibit
direct interaction between the regulatory and active sites. The
spin variables other than those at the active and regulatory
sites are called free sites, as shown in Fig. 1(b).

For the dynamics of spin variables under given J, we
adopt the transition rule of spins from S to S’ under
the given Hamiltonian with the interaction matrix J and
temperature 7" as

Pr[S — S'|J] = min{exp[—BAx (S, S| D], 1}, €))

where B =T"'! is the inverse of temperature, and
Ag(S,S'|))=HS'|J) —H(S|J). The candidate spin
configuration S’ is generated by randomly changing the
state of a single site from S. Here, we set the Hamiltonian as

= TSiS;. 2)

i<j

H(S|)) =

Note that, in this statistical physics model, we adopt the spin
variables {—1, 1}, instead of continuous conformational vari-
ables in the residues. This is a highly simplified model (see
Ref. [35] for examples of spin models for protein dynamics).
Here, we aim to elucidate how certain stochastic dynamics for
generating functional phenotypes are shaped through evolu-
tion. Nevertheless, the present model captures the essence of
such dynamics and genotype-phenotype mapping, in which
spin variables S corresponding to the phenotypes are shaped
by high-dimensional dynamics under genetic rules given by
the interaction matrix J, whereas regulation is referred to as
change in a part of regulatory spins, as defined below.

The functional change in the active sites is postulated by
an appropriate change in the configuration of active spins
S = {Si|i € A}, depending on the configurations of the reg-
ulatory site Sg = {S;|i € R}. Here, instead of introducing the
binding of ligands to regulatory sites as external variables,
we assume that the configuration of the spins is set at S;;
upon the binding. That is, among 2™* possible configurations
of the regulatory spins, the regulatory spins only take the
configuration in 7, when the ligand binding occurs. Further,
we consider that S;% cannot appear without the ligand binding.
Accordingly, the equilibrium distribution upon regulation and
nonregulation is given by

1

PF(SI)) = — expl—BH(S|D)].
ﬂ

ZFAd) = > exp(—BH), 3)
SISk €Sk
1

Py (SID) = — expl—BHSID)],
ﬂ

Z;)= ) exp(—pH). @)
SISk €87

where S|Sg € S, and S|Sx ¢ S indicate the set of pos-
sible configurations for regulated and nonregulated states,
respectively.

The functional change in configurations of the active spins
in response to the regulation is given by the change in regu-
latory spins from S, to Sj;: Thus, the conformational change
induced by regulation is modeled as follows: If the configura-
tion of regulatory spins is set at St the configuration of the
active spins turns into S™;; else, the configuration of the active
sites stays at S .

The function of the present system to express the target
spin pattern S appropriately can be measured by magnetiza-
tion m o deﬁned as the overlap of the spins in the active sites
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with the corresponding target spin patterns as

1
mi=—Y S8+, (5)
A NA ; 1
1
m;=—3 SiS;. (6)
A NA ;

Finally, the overall fitness that measures the functionality of

the present system is given by the sum of the expectations of
+

my as

@) = 5Um D+ + (my D) -}, (N

where (-);+ and (-)_ are the expectation values according to
the equilibrium distributions for regulated and nonregulated
cases in Egs. (3) and (4),

The evolution of genotypes J is then based on the above
fitness ¥ (J). Genotypes with higher fitness are selected under
given selection pressure: At generation g, the evolutionary
change in J to increase the fitness is given by

Pr[J® — J&tD] = min{exp(8,Av), 1}, ®)

where Ay = Y[J¢+D] — ¢ [J@]. The parameter g; = T,
expresses the selection pressure, and the genotypes are se-
lected uniformly at high temperatures 7; — oo, whereas
at low T;, genotypes with higher fitness values are
preferred [36].

Remark: The celebrated Hopfield neural network model
can be used for embedding several patterns in spin models
[37]. In this case, as schematically shown in Fig. 1(d), mul-
tiple patterns with different spin configurations were reached
depending on the initial condition given by Hamiltonian dy-
namics. In contrast, in this paper, different spin configurations
were reached depending on whether the system is regulated
or not by external inputs to regulatory spins (i.e., with inputs
or with different boundary conditions) from the same initial
conditions for the two, as in Fig. 1(c), a picture which has
been introduced in the study of the reshaping of the energy
landscape of a protein by allostery [38]. (In the context of
the neural network model, this corresponds to the associative
memory model upon external inputs [39].)

III. NUMERICAL SIMULATION

Without loss of generality, we set the indices of the reg-
ulatory sites and active sites as R = {N — Nz +1,..., N}

and A={1,...,N,}, respectively. Further, we set the
configuration S5 as S% = {{+1, -+, +1},{-1,---, —1}}.
For the desirable configurations of the active sites,
we set Sf={{+1,---,+1},{—1,---,—1}} and S, =

{{+1,—-1,---}, {—=1,+1,---}}. In the genotype evolution
process, we induce a 10-point mutation at each generation to
generate the candidate of the next-generation J' from J, main-
taining the symmetry J'' = J'. We focus on the equilibrium
properties of the ensemble of genotypes after sufficient gener-
ations. Under the evolutional rule in Eq. (8), the ensemble is
expected to be characterized by the distribution o< exp(8,V)
without depending on the details of the mutation. Here, we
mainly show the results for N = 100, Ny = 5, and Ng = 10,
and the free sites consist of N — Ny — Ng = 85 spin variables.

We update J at a sufficiently large value as B; = 100 and
discuss T dependencies.

A. Fitness, rugged landscape, and separation of two patterns

In Fig. 2, we show examples of evolutionary dynamics of
J through the evolutionary changes of (|mi|)%, where (-)®
denotes expectation according to distribution P;[S|J ®] with

a gth-generation genotype J'®. These quantities measure the
tendency to exhibit desirable patterns depending on the regu-
latory site, whereas fitness is given by their mean, as in Eq. (7).
Figure 2(a) shows an example of the generational changes

of (|m/f|)§f) at T = 0.91. They show a negative correlation,

i.e., when (|mX|)(f) increases, (Imgl)(f") decreases, and vice

versa. For genotypes that show such behavior, which are the
most evolved genotypes around 7 = 0.91, the simultaneous
expression of ST and S, depending on the regulatory sites,
is difficult. When the active sites take one of the configu-
rations in ST or Sy, irrespective of the regulatory sites, we
obtain |m/‘f| =1land|m,|=0.20r|m]|=02and |m,| =1,
respectively. Therefore, the fitness value of the genotype that
can express only one desirable pattern among Sj[ can achieve
a maximum value of 0.6. Meanwhile, at a lower tempera-
ture T = 0.67, both (|m;‘t|)(f) increase simultaneously after
evolution, as shown in Figs. 2(b)-2(d), and the fitness value
reaches ~0.9. There are three evolutionary courses; (Im/'fl)ff)

or (|m;|)(,g> increases first [Fig. 2(b) or 2(c)], or they increase
simultaneously [Fig. 2(d)]. Among the 100 samples, 21, 33,
and 46 samples follow each course, respectively.

For each T, we obtain 100 samples of the evolved J
updated for g = 10° generations and denote the temperature-
dependence ensemble of evolved genotypes as J(T).
Figure 3(a) shows the T dependence of the mean of the
fitness among J (7). With a decrease in T, the fitness value
W increases from 0.4, which is a trivial value given by the
uniform distribution of the phenotype S. Here, Tj is defined
as the transition temperature characterized by fitness, below
which the fitness value increases as T decreases. To be pre-
cise, it is defined by the point where the derivative of W
shows a large change that corresponds to the singularity at
the thermodynamic limit. We term the phase T > Tj as the
paramagnetic phase. Next, the energy landscape on J € J(T),
which governs the dynamics of phenotype expression, ex-
hibits significant differences between T < T, and T > T,: We
term the phases at o > T > T> and T < T, as the replica-
symmetric (RS) and RSB phases, respectively. The difference
between the two phases can be detected by the belief propaga-
tion (BP) algorithm [40-42]. In a fully connected spin-glass
system, the stability of the BP algorithm agrees with the
validity of the RS assumption in the replica analysis, which
is known as de Almeida—Thouless (AT) instability [43,44].
Hence, when the BP algorithm converges, the system on J
corresponds to the RS phase; otherwise, it corresponds to
the RSB phase. The RSB phase indicates the rugged land-
scape with exponential orders of metastable states, and the
phenotype expression dynamics is not robust to thermal fluc-
tuation [32,45]. At T > T, most of the evolved genotypes in
J(T) exhibit rapid convergence of the BP algorithm. Mean-
while, the BP algorithm cannot converge for highly evolved

043296-4



EVOLUTIONARY SHAPING OF LOW-DIMENSIONAL PATH ...

PHYSICAL REVIEW RESEARCH 5, 043296 (2023)

(@osg
0.6
0.4
0.2

(b) !
0.8
0.6
04
0.2 1 1 | 1 | L | 1 |

0 400 800 1200 1600 2000

Generation

72000 4000 6000 8000 10000

=)

1 :
(c)
. 08
<mA>

SR04

*0.6

<my>_

02 077200 800 1200 1600 2000
(@' _—yy .

08 N <mA>+

0.6 <m;‘>_:

04 |

0 400 800 1200 1600 2000
Generation

FIG. 2. Evolutional dynamics of (mf)i associated with the evolution of a genotype J. An example at 7 = 0.91 is shown in (a), and

examples at 7' = 0.67 are shown in (b)—(d).

genotypes in J(T) when T < T5. In Fig. 3(b), we present the
fraction of evolved genotypes for which the BP algorithm does
not appear to converge within 10° steps, which increases as T
is decreased below 7.

The existence of these transitions from the paramagnetic
phase to the RS phase and then to the RSB phase is common
with the evolving spin-glass model to express one specific
phenotype [31-34]. In the present model, however, another
transition appears at 77, with respect to the achievability of
two patterns. In Fig. 3(c), we show the temperature depen-
dence of the overlaps (|mX )+ and (|m,|)_, whose mean
corresponds to fitness. At Ty < T < Ty, (|mj{|)Jr contributes
more to fitness, and only the phenotype expression with reg-
ulation is preferentially shaped. However, at T < Tj, both
the increase of (|m, |)+ and (|m,|)_ are achieved depending
on the regulatory site. We term the phases Tp > T > T and
Ty > T > T, as RS1 and RS2, respectively. Here, we note

Fitness
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X
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a negative correlation between (m;f)(f) and (m;)(_g) in the

paramagnetic and RS1 phases, as shown in Fig. 2(a). At tem-
perature 77, the phenotypes for dominant genotypes distinctly
change, as is presented later. In the RS2 and RSB phases,
the increase of both (mj")f) and (m;)ig) is achieved after a
sufficient update, as shown in Figs. 2(b)-2(d).

To study the transition at T = T;, we examined the
probability distributions of spin configurations, leg(S|J ) and
p/g(S|J ), with and without regulations, by means of the
component-wise expected phenotype for each i =1,..., N,
which is defined as
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FIG. 3. T dependence of (a) fitness, (b) the fraction of genotypes on which the belief propagation (BP) algorithm does not converge,
(¢) {mf); and {m;)_, and (d) similarity between regulated and nonregulated states. Each data point is averaged over 100 samples of evolved
J. The vertical dotted line, two-dot chain line, and one-dot chain line denote 7y, 77, and 75, respectively.

043296-5



AYAKA SAKATA AND KUNIHIKO KANEKO

PHYSICAL REVIEW RESEARCH §, 043296 (2023)

~
o
~

w*

O/ ©

5555 ocooo

SOoS oooo
—OOANPRNONANO——CONR NN O\NCO—

-0.2-0.1 0 0.102 -0.2-0.1 0 0.1 0.2
Si &

—~
o
~

w*

SE5S oooo

COCo OO0,
—oahholhroo—— 0O RO R0~

-0.2-0

&i &

FIG. 4. Comparison between the eigenvectors (&, and &,) and u* for one sample of evolved J € J(T) at (a) T = 0.833 and (b) T = 0.667.

The solid lines show the relationship y = tanh(8+/Nx).

where the term sign(Zﬁvil S;) is introduced to break the
72 symmetry. In Fig. 3(d), we show T dependence of the
similarities between the two mean phenotypes measured by
Zf’: I Mi*ui’ /N. As shown in Fig. 3(d), the overlap shows
a peak at T =Tj, and it decreases as T decreases below
T;. According to the decrease in the overlap, the transition
between the phenotype with and without regulation involves
large conformational changes.

B. Two-dimensional structure in the phenotype space

We investigated how the two patterns shaped by evolution
are separated in the RS2 phase. To compare N-dimensional
mean phenotypes ™ under and pw~ without regulation, it is
convenient to determine a reference coordinate system. We
adopted the eigenvectors of the evolved genotypes as the axes
to represent mean phenotypes. Using the eigenvectors and
corresponding eigenvalues, the genotype J is expressed as

N
J=) &g, (10)
r=1

where &, and A; are the ith eigenvector and ith eigenvalue. We
set the indices of the eigenmodes tobe A} > Ay > --- 2> Ay.

In Fig. 4, we show the scatter plots between /L?: against
eigenvectors &; and &; for i=1,...,N at (a) T = 0.833
(RS1 phase) and (b) T =0.667 (RS2 phase) under one
realization of J € J(T). In the RS1 phase, the mean phe-
notypes u* and particularly u~ are highly correlated with
&1, as described by y = tanh(,B«/ﬁx) [see Fig. 4(a)]. Here,
the function tanh is consistent with the mean-field form
of the magnetization /,L;t = tanh(8 ) i juf). Meanwhile,
in the RS2 phase, the regulated u™ and nonregulated u~ states
exhibit correlations with &; and &;, respectively, as shown in
Fig. 4(b). In both phases, the correlations between ui and &,
(r = 3) are negligible.

In Figs. 5(a) and 5(b), we show the temperature depen-
dence of the correlation between the eigenvectors and p*
by introducing the correlation coefficient between {&,;} and
{atanh(,uii)} for r =1, 2, 3. Here, the function atanh is in-

troduced by considering the tanh-form dependencies of pu*
on §&; or &, as shown in Fig. 4. We denote the vector con-
sisting of atanh(u) (i =1, --- ,N) as atanh(u*) € RV. As
shown in Fig. 5(a), the correlation coefficient between the
first eigenvector &, and the mean phenotype with regulation
wt increases at T < Ty, namely, in the RS1 phase. As the
temperature is lowered further below 7 (toward the RS2
phase), the correlation between the regulated state and the sec-
ond eigenvector increases to become larger than that between
the first eigenvector and the regulated state. The asymmetry in
this assignment, namely, the absence of genotypes with the re-
lationship &; ~ u* or & ~ u~ in RS2 phase, originates from
the definition of fitness Eq. (7). The number of configurations
Skr(¢ S}) is larger than those of Sj. Hence, the expression
of u~ is preferred, and accordingly, the first eigenvector is
assigned to the expression of ™.

Meanwhile, as shown in Fig. 5(b), the correlation between
the first eigenvector and the nonregulated state u~ is always
higher than that of other eigenvectors at T < T. The correla-
tions between the eigenvectors higher than the second order
and the regulated or nonregulated states are small, as with &3
shown in Figs. 5(a) and 5(b).

In summary, typical phenotypes evolved in the RS1 phase
are concentrated on the direction of the first eigenvector, for
both with and without regulation. Meanwhile, in the RS2
phase, the typical phenotypes with and without regulation are
distinctively concentrated along the second and first eigenvec-
tors of genotype, respectively. Thus, the typical phenotypes
generated by two distributions pzz(S|J ) are almost orthogonal
to each other.

The contributions of the first and second eigenmodes to
the mean phenotypes u* are given by the magnitudes of their
corresponding eigenvalues. In Fig. 5(c), we show the T de-
pendence of the expected value of the first, second, and third
eigenvalues of the evolved genotypes. The horizontal lines de-
note their expected values for the symmetric matrices whose
components independently and identically obey the uniform
distribution over €2;. For T < Tp, the first eigenvalue shows a
distinct increase from the expected value, whereas for T >~ Tj,
the second eigenvalue increases. Meanwhile, the third- and
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w~. The T dependence of the first, second, and third eigenvalues of the evolved genotypes is shown in (c), where the three horizontal lines
represent the expected eigenvalues for randomly generated J. The vertical dashed line, one-dot-chain line, and two-dot-chain line denote 7,
15, and Ty, respectively. Each point is averaged over 100 samples of the evolved J.

higher-order eigenvalues show slight changes. Therefore, the
two desirable phenotypes are achieved by the contribution of
the first- and second-order eigenmodes.

Following these observations, we map the mean pheno-
types with and without regulation onto the two-dimensional
space spanned by the first and second eigenvectors, &; and &,
of the evolved genotypes. In the RS1 and RS2 phases, charac-
teristic mappings are observed, as shown in Fig. 6(a), where
the mean phenotypes with and without regulation are denoted
by * and e, respectively. In the RS1 phase, the first eigen-
vector is dominant to express both mean phenotypes with
and without regulation for most of the evolved genotypes.
We term this case as the overlapped phenotypes [Fig. 6(a)
left]. Meanwhile, in the RS2 phase, phenotypes are shaped
by the first and second eigenvectors of the evolved genotypes.
These genotypes can satisfy the required fitness conditions
both without and with regulation, respectively. Thus, we term

the case as separated phenotypes, as shown in Fig. 6(a) right.
Hereafter, we term the genotype J that gives overlapped and
separable phenotypes as types J1 and J2, respectively.

Figure 6(b) shows the temperature dependence of the frac-
tion of the type J1 and J2 genotypes among the ensemble
of evolved genotypes [J(T). At sufficiently large T, their
fractions are equal to 0.25, which is indicated by horizontal
lines. The value of 0.25 is the expected value of the fraction
of types J1 and J2 for the randomly generated J’s, as there
are two other cases of mapping: the case that » and e located
along &, and that » and e are along &, and &, respectively. As
T decreases toward the RS1 phase, the fraction of genotypes
of type J1 increases to 0.8. By lowering the temperature
further in the RS2 phase, the dominant genotype is replaced
by type J2. For lower T < Tj, the dominancy of type J2
decreases as T decreases, and the fraction of types J1 and J2
approaches 0.25.

1 x - 0
(b) bl |Z", Ty
08 | :T IRRE 0.2
[type J1] [type J2] o = ‘! ol g
(@) (Overlapped) (Separated) g 06 | 1048
o £ 04l | | HE 1062
$2 * $2 P § . | E | ;
S o | ©® 02 | IR 08
e L
0 o 1
0 0.5 1 1.5 2
T

FIG. 6. (a) Characteristic mapping of the mean phenotypes with regulation (x) and without regulation (e), where the diagonal dashed line
with a 45° slope is a guide for the eyes. (b) Fraction of genotypes of types J2 (cyan, left axis) and J1 (yellow, right axis). The horizontal lines
represent 0.25, which is the trivial value for randomly distributed genotypes. The vertical dashed line, one-dot chain, and two-dot chain line

represent Ty, T, and T, respectively.
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FIG. 7. Trial temperature 7; dependence of the fitness for
JeJ(T)atT =0.91 (denoted by J1) and T = 0.63 (denoted by
J2). The shaded region indicates the difference between (m,)_ and
(m;,r)+~

C. Why do the type J2 genotypes appear at T < T'1?

Here, we discuss why type J1 and J2 genotypes are
dominant at T} < T < Ty and T, < T < T, respectively. To
answer this question, we observe the fitness of the evolved
genotypes J(T') under a trial temperature 7;;. The evolution-
ary process in our model selected genotypes among possible
J’s; hence, J € J(T) can be a candidate for genotypes in
J(T;) (T # Ty), in principle. By evaluating the fitness of
J € J(T) at a different temperature 7;;, we discuss the reason
why J € J(T) cannot be selected at the trial temperatures.

Figure 7 shows the T; dependence of the fitness W on
J e J() for T =091 (type J1; RS1) and T = 0.63 (type
J2; RS2). At sufficiently large T, fitness values of J1 and J2
do not differ much. Types J1 and J2 are subject to one- and
two-dimensional constraints, respectively. More precisely, the
first eigenvector of the type J1 genotypes needs to be in the
direction that can express both phenotypes with and without
regulation, and N — 1 eigenvectors can be freely determined
[Fig. 6(a)]. Meanwhile, the first and second eigenvectors of
the type J2 genotypes need to be in the direction of the two
endpoint phenotypes to express distinct phenotypes depend-
ing on the regulation; the remaining N — 2 eigenvectors can
be freely determined [Fig. 6(a)]. Hence, the possible config-
urations for type J1 are larger than those of type J2. From
a thermodynamic perspective, the dominance of type J1 in
the RS1 phase is caused by this entropic effect. In the RS2
phase, the fitness of type J2 is sufficiently large to overcome
the entropic effect and hence can be dominant in this phase.
This observation indicates that the changes in the ensemble
of J(T) can be regarded as a phase transition with respect to
genotypes between types J1 and J2.

2nd
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0 02 04 06080 02 0.4 06080 02 04 0.60.8 Ist

FIG. 8. The evolution of mean phenotypes. Corresponding to the
evolution shown in Fig. 2(b), this figure shows the evolution of the
mean phenotype in the two-dimensional space spanned by the first
and second eigenvectors of the genotype for the evolution genera-
tions [1-140], [141-500], [501-640], - - - , [981-1100]. The results
with and without regulations are plotted as o and [, respectively.

D. Evolutional dynamics of genotypes
on the two-dimensional plane

For understanding the evolutionary construction of the
separated phenotypes, we simplify the evolutionary dynam-
ics using the two-dimensional space spanned by the first
and second eigenvectors, although the two-dimensional ap-
proximation was not necessarily accurate in the early stages
of evolution, even in the RS2 phase. In Fig. 8, we show
evolutionary change of the mean phenotypes in RS2 phase
corresponding to the series shown in Fig. 2(b), where (m,)
increased before (m}). The panels of Fig. 8 show the time
evolution of the mean phenotypes u*[J®] (O) and u~[J©]
(0J) mapped onto the two-dimensional space spanned by the
first and second eigenvectors of the genotype at each gen-
eration denoted in the panels. The localization of the mean
phenotype without regulation appears on the first eigenvector
141-500 generations before that of the regulation case. From
generations 641 to 800, the contribution of the second eigen-
vector to the mean phenotype increases with regulation. After
the reorganization of the distributions at generations 801-980,
the characteristic phenotype mapping for the type J2 genotype
appears.

When (|m; |) increases before the increase of (|m; |)_, the
localization of w* on the second eigenvector appears during
the early stage of evolution. Additionally, the localization
of u~ follows the reorganization of w*. When both (|mf Y+
increase simultaneously, u* localize almost simultaneously
(see Appendix A).

IV. SWITCHING TRAJECTORY

Under the J’s of type J2, the shift between the regulated and
nonregulated states involves a large conformational change.
We employ the MCMC method according to Eq. (1) for simu-
lating the transition dynamics from regulated to nonregulated
cases, or vice versa, and computed the MC steps required for
the shift between the two cases.
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FIG. 9. (a) MC steps required for the switching from regulated to nonregulated state () and nonregulated to regulated state ([J). The
dashed vertical, two-dotted chain, and one-dotted chain lines denote Ty, T;, and 75, respectively. The inset magnifies the difference between
the RS1 and RS2 phase. The transition time to shift the active sites from the nonregulated state to the regulated state was evaluated as follows.
After sufficient time updates of S under the nonregulated condition Sg ¢ S%, the regulatory sites were changed to Sz € S%, and then S
(except the regulatory region) was updated according to Eq. (1). We computed the target magnetization | ), 4 S;/Na| at each MC step to
obtain the step where | )_,_ , S;/Na| first reached the value (|m} )., which was defined as the transition time. (b) Switching trajectories of local
magnetizations projected to the first and second eigenvectors defined on an evolved genotype at T = 0.67 (RS2). The component projected

onto the third-order eigenvector is denoted by dashed lines.

Figure 9(a) shows the transition time calculated by the
MCMC method from the regulated to nonregulated states (O)
and from the nonregulated to regulated states ([J). Here, the
upper limit of the MC step is set at 10°. In the RS1 phase, there
is a minor change in phenotypes with and without regulation,
and the transition time is within 20 steps. Compared with the
RSI1 phase, the transition time required in the RS2 phase is
higher. This increase in relaxation time is associated with the
large conformational change in the phenotype under the J2
genotypes. However, the large conformational change does
not qualitatively change the relaxation time. As in the RSI
phase, the relaxation time in the RS2 phase is of the order of
10°. In the RSB phase, the MC steps required for switching
diverge as T decreases. This phenomenon in the RSB phase
is consistent with the property of the RSB phase where the
metastable states hamper relaxation.

The trajectories shifting between two states lie in the
2N_dimensional space. However, particularly in the RS2
phase, the two-dimensional space spanned by the first and
second eigenvectors of the evolved genotype is sufficient to
describe the switching trajectories. This low-dimensional con-
straint was already observed as the equilibrium property in the
RS2 phase, as shown in Figs. 5(a) and 5(b). Figure 9(b) shows
the trajectories of the components projected onto the first
(o), second (1), and third (dashed line) eigenvectors defined
on an evolved J of type J2 at T = 0.67 (RS2). During the
regulated-to-nonregulated switching, the change in the first
component is much larger, and in case of nonregulated-to-
regulated switching, the change in the second component is
much larger. Meanwhile, the third-order (and higher) compo-
nents are nearly constant during regulated-to-nonregulated or
nonregulated-to-regulated switching.

We generated 1000 switching trajectories on a certain
J € J(T) and mapped them onto the two-dimensional space

spanned by the first and second eigenvectors of the evolved
genotypes. Figure 10 shows the heat map on the two-
dimensional space for the switching trajectories defined on
an evolved genotype of type J2 at T = 0.68 (RS2) from non-
regulated to regulated states. The mean phenotypes with and
without regulation, u™ and w~, after sufficient time steps of
updating are denoted by x and e, respectively. Additionally,
the direction of fluctuation of these points is indicated by two
lines below the points. The switching trajectory when regu-
lation is removed is shown in Appendix B. For both cases of
switching, most of the trajectories follow a quarter-circle path.
This quarter-circle path is restricted to a one-dimensional
path within the two-dimensional space. With this restriction,
the transition time between the two states remains small,
even though the two phenotypes are far apart, as shown
in Fig. 9(a).

The quarter-circle path on the two-dimensional plane re-
stricts the trajectories of the convergence from arbitrary initial
conditions to the phenotypes with and without regulation. The
heat map for the relaxation dynamics on a type J2 genotype
evolved at T = 0.67 from arbitrary initial conditions is shown
in Fig. 11 for the regulated case. Most of the trajectories are
attracted once to the quarter-circle line where the switching
paths are concentrated and then approach the regulated state.
(The relaxation dynamics of the nonregulated phenotype are
shown in Appendix B.) The quarter-circle path is attractive
because any state moves forward to the regulated or nonregu-
lated state through this path.

V. TWO-DIMENSIONAL APPROXIMATION OF FREE
ENERGY LANDSCAPE

To understand the characteristic switching path in the two-
dimensional space, we examined the free energy landscape.
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FIG. 10. Heat maps of the two-dimensional space for switching trajectories from regulated to nonregulated state, defined on an evolved
genotype at T = 0.67 (RS2). Here, the two-dimensional space is meshed by 0.01, and log,, frequencies of the trajectories during the given
steps are plotted. » and e denote the regulated state and nonregulated state projected onto the two-dimensional space, respectively. The lines
below these points represent the first and second eigenmodes of fluctuation around these points. Here, the length of the lines is magnified to be
discernible. However, the ratio of the lines is proportional to the root of the ratio of the eigenvalues.

The free energies for the regulated and nonregulated cases,
denoted by f and f_, are defined as

1
fe=—-ygh > exp(—BH), (11)
SIS eSE
1
fo =—N—ﬁln > exp(—BH). (12)
SIS ¢S5

Following the result of the numerical simulations, we con-
sidered the two-rank approximation of the evolved J as J ~

M E,IE,IT + Ao 2,2 E,ZT. Under the two-rank approximation, the

Hamiltonian is given by
N 2
(Z s!‘s,-) —1 (13)
i=1

The last term is put in to discard the contribution from the
diagonal components. For the two-rank approximation form,
one can represent the free energy as a function of m; and m;
defined by

1

mit = ﬁa”ui, (14)
1

my = ﬁiﬂui, (15)

where mfr and m; correspond to the projection of the lo-
cal magnetization with regulation onto the first and second
eigenvectors, respectively, whereas m; (i =1, 2) are those
without regulation. By following the standard calculation in
the literature [46,47], as is shown in Appendix C, the free
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FIG. 11. Heat maps of the two-dimensional space for relaxation trajectories from an initial condition to the regulated state defined on the
evolved genotype of type J2 at T = 0.67 (RS2), the same value as adapted in Fig. 10. «, e, and the orthogonal lines below these points are the
same as in Fig. 10.

energies are given by

2 2 +2
=Y "’;’k Zln[zcosh(ﬂhﬂ] +In(pt + p*) + = > I (16)
k=1 l<] i,j,ER
2 A _2
f=Y - Zln[z cosh(Bh,)] + In[l — (p; + p2)1 Y. (17)
k=1
where iF = AymEN/NE! + Aom3/NE? and
+ T exXp(EBh) ~ T exp(£Bh)
pi_l_?[z—Zcosh(ﬁh;L)’ pi_l:[Z—ZCOSh(,Bhi_)' (18)
The saddle point equations for mki are given by
mt = £X tanh (R ) + — gkp i (19)
" \/_ ; ; P+ T+ P_
_ 1 _ tanh(Bh;) — (p — p_)
m; = — Y & tanh(Bh7)+ —= » &F ) (20)
fOUN % XR: I= + p_>

043296-11



AYAKA SAKATA AND KUNIHIKO KANEKO

PHYSICAL REVIEW RESEARCH 5, 043296 (2023)

(a) ! 202
0.25
0.8
-0.3
0.6 0.35
o 0.4
0.4 0.45
-0.5
0.2
0.55
0 -0.6

FIG. 12. Two-dimensional approximation of the free energy landscape of one genotype with separable phenotype space for (a) regulated
state and (b) nonregulated state at ps = 0.05 and pg = 0.1. » and e show the projection of the regulated and nonregulated states, respectively.

Figures 12(a) and 12(b) show the landscape of f* and
[, respectively, plotted on the two-dimensional space of one
evolved J2 genotype in the RS2 phase at 7 = 0.67. The min-
ima of the free energies are consistent with the numerically
observed phenotypes with and without regulation, which are
indicated by + and e; hence, the two-dimensional approxima-
tion of the free energy is valid. As shown in Fig. 12, along the
quarter-circle shape that connects the regulated and nonreg-
ulated states, the free energy remains small. The trajectories
shown in Fig. 10 are restricted to this quarter-circle, wherein
free energy is small.

Rough approximation of free energy

Further, we investigated what property of the evolved
genotype gives the quarter-circle shape of the free energy
landscape. We introduced the following assumptions:

A1 : The difference between the first and second eigenval-

ues is negligible.

A2 : The components of the eigenvectors E,l and 2,2 are

independently and identically distributed, according to
the Gaussian distribution A(0, 1/N).

A3 : The active and regulatory sites are negligible.

Following the assumption Al, we replaced the first and
second eigenvalues A and A, with their mean . Under these
assumptions, we obtained the following form of free energy,
as explained in the Appendix C:

| >1

Japp = 5 (m% + m%)

—% sz In cosh (ﬂx,/m% + m%z), 21

where Dz = jTZTT exp(—%). The form of Eq. (21) indicates
that the free energy under the approximations A1-A3 depends
on m; and my through ms = v'm? + m3. Hence, the approx-
imated free energy has the same value as per mg, even when
the individual values of m; and m, are different. The saddle

point of mg is given by

ms = f Dz ztanh(Bamsz). (22)
Figure 13 shows the free energy landscape under the as-
sumptions A1-A3 defined on a J2 genotype evolved at T =
0.67 (RS2). As expected from the form of Eq. (21), the
approximated free energy shows a quarter-circle landscape.
The quarter-circle curve represents the minimum free energy
Jfapp» Whereas the equilibrium states with and without regula-
tion are denoted by stars and circles, respectively, which are
located near the extremum line of f,,,. Therefore, the one-
dimensional and quarter-circle switching path is considered to
be provided by the free sites, as the active and regulatory sites
are ignored in deriving f,,, (assumption A3). A particular
difference between fi and f,yp is that the valleys around the
mean of the phenotype with and without regulation (Fig. 12)
cannot be described by fip,. For the description of these
valleys, it is necessary to consider the active and regulatory
sites. Thus, free energy consists of quarter-circle switching
paths provided by free sites and valleys around the mean

FIG. 13. Free energy landscape on the two-dimensional plane
under the assumptions A1-A3 at 7 = 0.67 (RS2). The solid line
represents the minimum free energy, and the star and circle represent
the mean of phenotypes with and without regulation, respectively.
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phenotypes which in turn are provided by active and reg-
ulatory sites. Further, the assumption A2 suggests that
randomness in the embedded pattern in the free sites is signif-
icant for the description of the quarter-circle path. Therefore,
as the number of free sites decreases, or equivalently, as the
number of active and regulatory sites increases, the descrip-
tion by f;pp would be invalid.

The importance of the interaction within the free sites
is consistent with the Hopfield model [37]. The interfer-
ence between two phenotypes that hampers stable expression
is mitigated by the free sites, whose phenotypes with and
without regulation are almost orthogonal, and the robust ex-
pression of two phenotypes is achieved.

VI. SUMMARY AND CONCLUSIONS

In this paper, we investigated the evolution of a spin
model to generate two specific configurations of active sites
depending on the regulation. A fitness function was de-
signed to increase when the appropriate spin configurations
(phenotypes) with and without regulation appeared with high
probability. Our analysis revealed three transition points Ty,
Ti, and T>. The fitness increased from the trivial value for 7" <
Ty. For T, < T < Ty, the evolved system belonged to the RS
phase. The RS phase was further divided into two regions at
T=T,RS1 (T <T <Tp) and RS2 (T, < T < T) phases,
with dominant genotypes differing in type J1 and J2 regions
for RS1 and RS2 phases, respectively. For T} < T < T, the
phenotypes, i.e., spin configurations, other than active sites
barely depended on the regulation. In contrast, for 7, < T <
T, the two phenotypes with and without regulation, showed
a large difference, contrasting the small difference in the RS1
phase.

In the RS2 phase, the two phenotypes were provided by
using the first and second eigenmodes to express nonregulated
and regulated phenotypes, respectively, where the switching
path between the two phenotypes can be described by the
first and second eigenmodes of the two endpoint phenotypes.
A one-dimensional quarter-half shape switching path con-
nected the two endpoint phenotypes in the two-dimensional
space spanned by the first and second eigenvectors of the J2
genotype. This switching path was robust to perturbations, in
the sense that any trajectories deviating from the path were
attracted to the path. Evolutionary construction of this one-
dimensional path met the requirements of plasticity against
regulatory changes and robustness in phenotypes. Further, the
low-dimensionality of the switching path allowed for quick
switching between two stable phenotypes depending on the
regulation.

To understand the evolutionary origin of the one-
dimensional switching path, we applied a two-dimensional
approximation to the free energy landscape for the evolved
genotype in the RS2 phase. By only considering randomness
in the free sites of two endpoint phenotypes, it was found that
the free energy takes a minimum along a quarter-circle shape
in two dimensions. The two endpoint phenotypes were located
near the quarter-circle path, and the switching trajectories
followed the valley of the free energies connecting the two
endpoints. In this case, the minima relate to the sites that were
active and regulated. The cooperative evolution of the active,

regulatory, and free sites provided stable expression of the
endpoint phenotypes and robust switching paths.

Our findings suggest that low dimensionality plays a
crucial role in achieving both stable expressions of two phe-
notypes and large conformational changes over a stable path.
This leads to the acquisition of both robustness and plas-
ticity. Constraints on adaptive changes in phenotypes upon
environmental and evolutionary changes have recently re-
ceived much attention [29,31,48,49]. The constraint attracts a
low-dimensional subspace within the high-dimensional space,
supporting the robustness. Here, we demonstrated that the
state change relevant to function is facilitated by the one-
dimensionally constrained path on the two-dimensional plane,
which allows large-amplitude plastic motion that is advanta-
geous for functional changes. Notably, this constrained path
is already prepared as a relaxation path during the course of
evolution (Fig. 8).

Authors of previous studies have demonstrated that geno-
types providing a single function by expressing a specific
phenotype can evolve in the RS phase [31]. In this pa-
per, we found a transition that occurs in the RS phase
for two-functional phenotypes. The genotypes that achieve
switching between two functional phenotypes depending on
the regulation were dominant in the RS2 phase, i.e., in the
temperature region closer to the RSB within the RS phase.
For the evolution to achieve more functions, further transitions
within the RS phase can be expected. With such successive
transitions, the genotype will approach the RSB transition
point, where further plasticity will be achieved. This may
be consistent with the observation of critical behavior in
protein dynamics [30], wherein plasticity and robustness are
compatible.

Here, we did not impose any driving force to create the
one-dimensional switching path. Rather, the evolution under
fitness defined by the two endpoint phenotypes resulted in
genotypes that provide not only stable expression of the phe-
notypes but also robust and plastic switching. This observation
presents the possibility of evolutionary construction of pro-
teins [50] with allosteric effects based on the binding ability
of the active site, under conditions characterized by the RS
phase, in addition to synthetic approaches [51]. Notably, in
this paper, we demonstrated that a fitness function without
imposing rapid and robust switching can provide switching
characteristics as observed in real proteins, when the tem-
perature is within an appropriate range and sufficient free
sites exist. Further analysis of interacting spin systems that
achieve robust multiple functions is essential for the evolution
of proteins and material design [52,53].

Investigation of the microscopic properties of evolved
genotypes is an important dimension of future research.
However, the focus of this paper was on the extraction of
macroscopic low-dimensional structures. Frustration is a po-
tential measure to characterize the genotype, which captures
consistency in interaction. An increase in frustration can
indicate a rugged landscape. Generally, as the number of
embedded patterns increases, the level of frustration in the
interactions increases [37,54]. We observed an increase in
frustration in our model in comparison with the one-desirable
phenotype case (Appendix D). In actual proteins, steric frus-
tration can be utilized by multisubstrate enzymes to facilitate
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FIG. 14. Examples of evolutionary dynamics in two-dimensional space in the RS2 phase.

the rate-limiting product-release step [55]. Understanding the
relationship between frustration and the number of embed-
ded patterns may provide insights into the properties of real
biomolecules.

The evolutionary spin model considered in this paper is
rather simple and abstract. There is room for considering
more realistic settings and discussing the generality of the
results. For instance, several biological molecules have multi-
ple regulatory or active sites, and their phenotype expression
is more complicated. The G protein-coupled receptors show
dual ligand binding events where the binding of one ligand
enhances that of the other [56,57]. Thiamine diphosphate in
the two active sites of pyruvate dehydrogenase complex can
communicate with each other over a distance of 20 A using
a proton to switch the conformation [58]. The contribution of
such cooperation to the evolution of robustness and plasticity
needs to be revealed. In contrast with the global coupling
model, the study of models with spatially localized interac-
tions is also important [59-61]. From the insights based on
the Markov network model, which encompasses our model
as well, our conclusion regarding the significance of the free
sites will be valid and independent of the details of the model
setting [41]. However, there might be quantitative variations,
which need further investigations.

In conclusion, we showed that the stable expression and
switching of phenotypes takes advantage of evolutionary con-
structed low-dimensional phenotypic constraints, with which
robustness and plasticity are compatible. Our findings here
may be interesting in possible relationship with recent studies
on evolutionary dimensional reduction [29,31,48,49].
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APPENDIX A: EVOLUTIONAL DYNAMICS OF THE
GENOTYPES ON THE TWO-DIMENSIONAL PLANE

Figure 14 shows evolutionary dynamics of (mjf)jE for
the cases (a) (mj)+ increases before (m,)_, and (b) (mff)ﬂE
increases simultaneously, as indicated by the left panels. The
right six panels show the evolution of local magnetization in

043296-14



EVOLUTIONARY SHAPING OF LOW-DIMENSIONAL PATH ... PHYSICAL REVIEW RESEARCH 5, 043296 (2023)

0.9 T T . . . . . v 2.5 0.9 2.5
0.8 b, [MC step 1-10] 1 0.8 [MC step 11-70] -
0.7 (RS 3 0.7 F 3
0.6 Fr== k= 0.6
0.5% 0.5
Wl P 3.5 W) 3.5
04r 04
03F. 03F,
0.2} a 02} .
0.11 0.1t
b 4.5 0— S 45
0 01 02 03 04 05 06 0.7 08 09 0 0.1 0 2 0 3 0. 4 0.5 06 0.7 0.8 09
& &
0.9 . . . . T 2.5 0.9 ; ; . . . 2.5
0.8 [MC step 71-120] 0.8 [MC step 121-150] 1
0.7 3 0.7 RIS 3
0.6 &¢ 0.6
0.5 0.5
o 3.5 o5 -3.5
0.4} 0.4}
0.3 0.3
0.2 - 0.2 -
0.1 0.1
0 - e 45 o i 45
0 0 1 0. 2 0 3 0 4 0 5 0.6 0 7 08 09 0 01 02 03 04 05 06 07 08 09
& §

FIG. 15. The heat map illustrates two-dimensional switching trajectories from regulated to nonregulated state, defined on the evolved
genotype type J2 at T = 0.67 (RS2), the same as that used in Fig. 10. Star, square, and orthogonal lines below these points are the same as in
Fig. 10.

the two-dimensional space spanned by the first and second APPENDIX B: REGULATED TO NONREGULATED STATE
eigenvectors of the genotype at the evolutionary step. This is
indicated at the right top of the panels. The circles and squares
denote the regulated and the nonregulated states, respectively.
The case where (m,)_ increases before (mj{)+ is shown in
Fig. 8.

Figure 15 shows the switching trajectory from the case
with regulation to without regulation in the evolved J2
genotype, as shown in Fig. 10. Figure 16 shows the conver-
gence to the nonregulated state starting from arbitrary initial
conditions.

APPENDIX C: DERIVATION OF THE FREE ENERGY DENSITY

1= /dmkS(mk - —ngs)

for k = 1, 2 to the partition function with regulation as

We introduced the equality:

z+=/dm1+dm; > ﬁS(mk——ZékS>exp|:Zz:'BT —1}

SIS% eSg k=1 k=1
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FIG. 16. Heat map on the two-dimensional space for relaxation trajectories from an initial condition to the nonregulated state defined in
the evolved genotype of type J2, as shown in Fig. 11. Star, square, and the orthogonal lines below these points are the same as in Fig. 11.
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The integrals were implemented by utilizing the saddle point method [46,47].
For the nonregulated case, we obtained

2
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1. Free energy under assumptions A1-A3

Under the assumptions Al and A3, Z* = Z~ holds, and
we denote it as Zy. given by

Ze=) exp | BrY (5'€] +57€)SS;
s

i<j

1 N
~ g/dmldmﬁ (m1 — ﬁ ;sl}s,')

1 & AN
8(m2 — ﬁ ZZZI gl_ZSl-) exp |:'BT(m% + m%):|

= /dmldmzdmldﬁlz exp(—Nﬁuml —Nﬁ12m2)

oo | 5 o )
X H 2 cosh (il ~/N&} + imav/NE?)

AN
= /dmldmz exp {—ﬂT(m% + m3)

+ Z In cosh [ﬁix/ﬁ(mlfil + mzéiz)] }, (C3)

Here, we introduced the saddle point method for the integrals
with respect to 77y and 772;. Under the assumption A2, when the
system size is sufficiently large, the summation with respect to
the components of the eigenvectors can be replaced with the
integral according to the Gaussian distribution as

Zy = /dmldmzexp [ — @( T+ m)

+N / Dzlncosh (B /m? +m§z)]. (C4)

By introducing the saddle point method to the integrals of m1;
and my, we obtained the approximated free energy fipp.

APPENDIX D: FRUSTRATION

We investigate how the configuration of genotypes changes
through evolution depending on temperature. We focus
on the triplets of interactions J;;JjJi;. From the form of
Hamiltonian, the expression of phenotypes that satisfy S;S; =
sign(J;;), S;Sk = sign(Jj¢), and SiS; = sign(Jy;) is preferred
to minimize the interaction energy —(SiJ;;S; + S;JjxSk +
SiJiSi) when the triplets take a positive value. However, if
the triplets take a negative value, namely, frustrated, there
is no unique configuration of S;, S;, and S to minimize the

(a) [AAF]
A Freesite R

~
=
=~

AAF
© LPooooo
—O = NWRAUO

I
=)
o
o

[AFF]
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0 0.2040.608 1 1.21.41.61.8 2
T

FIG. 17. (a) Schematic pictures of less frustrated plaquettes in
the RS2 phase. (b) Temperature dependence of the mean of triplets
Apar and Axpr among 100 samples of evolved J € J(T') after 10°
generations.

term —(S;J;;S; + S;JjkSk + SiJikS;). Frustration is an obsta-
cle to attaining the unique energy minimum. Authors of a
previous study showed that frustration is suppressed by evolu-
tion to achieve robust phenotype expression with funnel type
dynamics [32].

In our model, we set active, regulatory, and remaining free
sites where the fitness is quantified through the active and
regulatory sites. The direct connection between the active and
regulatory sites is prohibited when we consider the allosteric
interaction between them. Hence, we introduced the following
mean of triplets:

1
ApAF = JijJ ki, (D)
2ijed 2oker Miidjwliil ,,j; ,; o

1

DO Jiidudi, (D2)

AAFF =
Diea 2jker Wi Wil 7 At

where A and F denote the set of active sites and free sites.
Equation (D1) is defined in terms of the triplets (i, j, k), where
i and j are in the active sites, and k is the free site, as shown
in Fig. 17(a). Equation (D2) is defined for the triplets (i, j, k),
where i is in the active site, and j and k are in the free sites.
For the randomly constructed genotypes, Egs. (D1) and (D2)
are zero at a sufficiently large system size. When Egs. (D1)
and (D2) defined for evolved genotypes are positive, the
frustrations of the corresponding triplets are reduced through
evolution.

Figure 17(b) shows the temperature dependence of the
mean of the triplets of AAF and AFF. Their values increase
from zero at RS1 as well as RS2, which is consistent with
findings of a previous study [32]. However, compared with
the results of a previous study, these values are smaller, i.e.,
the reduction in frustration is moderate. This moderate reduc-
tion of the frustration is caused by the existence of the two
desirable patterns.
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