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We explore the dynamics of quantum spin systems in two and three dimensions using an exact mapping to
classical stochastic processes. In recent work, we explored the effectiveness of sampling around the mean-field
evolution as determined by a stochastically averaged Weiss field. Here, we show that this approach can be sig-
nificantly extended by sampling around the instantaneous Weiss field associated with each stochastic trajectory
taken separately. This trajectory-resolved approach incorporates sample to sample fluctuations and allows for
longer simulation times. We demonstrate the utility of this approach for quenches in the two-dimensional and
three-dimensional quantum Ising model. We show that the method is particularly advantageous in situations
where the average Weiss field vanishes, but the trajectory-resolved Weiss fields are nonzero. We discuss the
connection to the gauge-P phase-space approach, where the trajectory-resolved Weiss field can be interpreted as
a gauge degree of freedom.
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I. INTRODUCTION

Quantum spin systems play a prominent role in the field
of many-body physics with diverse applications ranging from
quantum magnetism to nonequilibrium dynamics [1–3]. They
also play a crucial role in the development of theoretical
techniques ranging from methods of integrability [4–8] to
numerical algorithms [9–14]. A notable challenge is the the-
oretical description of two- and three-dimensional quantum
spin systems, where the lack of integrability and the dimen-
sion of the Hilbert space stymies progress. The growth of
quantum entanglement in real-time dynamics also impedes
the description of nonequilibrium phenomena beyond short
timescales; this is particularly severe in higher dimensions,
as discussed in Refs. [15–19]. In addition, tensor network
representations are computationally less tractable than in one
dimension, with the number of network contractions scaling
exponentially with the system size [20]; this significantly
reduces the accessible timescales. Recent progress has been
made using machine learning techniques [14,19,21] and via
semiclassical approaches based on the truncated Wigner ap-
proximation [22–25].

Recently, a stochastic approach to quantum spin systems
has been developed, based on a Hubbard-Stratonovich de-
coupling of the exchange interactions [26–34]. This approach
provides an exact reformulation of the quantum dynamics in
terms of classical stochastic processes. Quantum expectation
values are computed by averaging over independent stochastic
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trajectories and the method can be applied in arbitrary dimen-
sions. In recent work, we showed that one could extend the
accessible simulation times in this approach through the use
of an effective Weiss field [33]. Similar conclusions have also
been inferred using saddle-point techniques [32,34]. These
approaches allow one to expand around the stochastically
averaged time evolution in order to reduce the need for large
stochastic fluctuations. We further discussed [33] the con-
nection to the gauge-P phase-space formulation [35] and the
possibility to make efficient choices of gauge. This comple-
ments a large body of phase-space techniques which have
emerged in recent years [22–25,35–52].

In this work, we show that the stochastic approach can
be significantly enhanced by allowing the Weiss field to be
determined on a trajectory by trajectory basis. This allows
one to generalize the expansion around a single mean-field
trajectory and incorporate sample to sample fluctuations. This
trajectory-resolved approach is particularly advantageous in
situations where the stochastically averaged Weiss field van-
ishes. We show that the approach can lead to longer simulation
times for a range of quantum quenches in both two and three
dimensions. In particular, we demonstrate an exponential im-
provement in the sampling efficiency. This establishes the
technique as a viable tool for the simulation of nonequilibrium
quantum spin systems beyond one dimension.

The layout of this paper is as follows. In Sec. II, we pro-
vide an overview of the stochastic approach. In Secs. III and
IV, we discuss the use of trajectory-averaged and trajectory-
resolved Weiss fields, respectively. In Sec. V, we use these
Weiss fields to simulate quantum quenches in the two- and
three-dimensional quantum Ising model. In Secs. VI and VII,
we discuss the growth of stochastic fluctuations under time
evolution. We conclude in Sec. VIII and provide an Ap-
pendix on the associated links [33] to the gauge-P phase-space
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formalism [35,39,41,43,53–55]. We also provide details of our
numerical simulations.

II. STOCHASTIC FORMALISM

In this section, we recall the principal features of the
stochastic approach to quantum spin systems [26–34]. The
method is applicable to generic quadratic spin Hamiltonians
in arbitrary dimensions,

Ĥ = −1

2

∑
jkab

Jab
jk Ŝa

j Ŝ
b
k −

∑
j

ha
j Ŝ

a
j , (1)

where Jab
jk is the exchange interaction between sites j and k,

and ha
j is an applied magnetic field. The spin operators Ŝa

j obey
the canonical commutation relations [Ŝa

j , Ŝb
k ] = iεabcδ jk Ŝc

k,

where a, b ∈ {x, y, z} label the spin components, εabc is the
antisymmetric symbol, and we set h̄ = 1.

The dynamics of the quantum spin system is encoded in
the time-evolution operator Û (t ) = Te−i

∫ t
0 Ĥ (t )dt , where T de-

notes time ordering. By decoupling the interactions by means
of a Hubbard-Stratonovich transformation [56] over auxiliary
fields ϕ j , one obtains

Û (t f , ti ) = T

∫
Dϕ e−S[ϕ]+i

∫ t f
ti

dt
∑

ja �a
j Ŝ

a
j , (2)

where �a
j = 1√

i
ϕa

j + ha
j ∈ C and the integration is performed

over all paths with Dϕ = ∏
ja Dϕa

j . The parameter �a
j plays

the role of an effective, complex magnetic field. In writing
Eq. (2), we define the noise action [30,32–34],

S[ϕ] = 1

2

∫ t f

ti

dt
∑
jkab

ϕa
j (J−1)ab

jkϕ
b
k , (3)

which allows one to regard the fields ϕ as correlated random
noises with the Gaussian measure Dϕ e−S[ϕ]. The time-
evolution operator (2) can be recast as

Û (t ) = 〈
Te−i

∫ t
0 Ĥ s (t ′ )dt ′ 〉

ϕ
, (4)

where Ĥ s ≡ −∑
ja �a

j Ŝ
a
j is referred to as the stochastic

Hamiltonian and 〈·〉ϕ denotes averaging over the Gaussian
noise variables. Equation (4) motivates the introduction of the
stochastic evolution operator Û s(t ) = Te−i

∫ t
0 Ĥ s (t ′ )dt ′

and the
stochastic state |ψ s(t )〉 = Û s(t )|ψ s(0)〉. As can be seen from
Eq. (3), the exchange interactions enter the representation via
the correlations of the noise. For both analytical and numer-
ical calculations, it is convenient to convert these noises to
Gaussian white noise by diagonalizing the noise action (3)
[28–34]. Specifically, we decompose the original fields ϕa

j

in terms of white noise variables, φa
k , as ϕa

j = ∑
kb Oab

jkφ
b
k ,

where OT J−1O = 1 and the bold symbols indicate matrices.
The time-evolution operator (4) can be further simplified by
means of a so-called disentangling transformation [28]. This
eliminates the time-ordering operation by introducing a new
set of variables ξ a

j ,

Û s
j (t ) = Te−i

∫ t
0 Ĥ s

j dt = eξ+
j (t )Ŝ+

j eξ z
j (t )Ŝz

j eξ−
j (t )Ŝ−

j . (5)

The variables ξ satisfy the stochastic differential equa-
tions (SDEs) [28–33],

−iξ̇+
j = �+

j + �z
jξ

+
j − �−

j ξ+2

j , (6a)

−iξ̇ z
j = �z

j − 2�−
j ξ+

j , (6b)

−iξ̇−
j = �−

j eξ z
j , (6c)

where �±
j = 1

2 (�x
j ∓ i�y

j ) and ξ a
j (0) = 0. Time evolution

can therefore be achieved by solving these SDEs numeri-
cally. In order to evaluate generic local observables 〈Ô(t )〉 =
〈ψ (0)|Û †ÔÛ |ψ (0)〉, one may decouple the forward and
backward time-evolution operators independently [29]. Ex-
pectation values therefore reduce to averages over these
classical stochastic variables,

〈Ô(t )〉 = 〈ψ (0)|Û s†
ϕ̃ (t )ÔÛ s

ϕ (t )|ψ (0)〉ϕ,ϕ̃, (7)

where ϕ and ϕ̃ correspond to the forward and backward
evolution, respectively, as indicated by the subscripts on the
evolution operators. Employing the disentangling transforma-
tion given in (5), one may recast this in the form 〈Ô(t )〉 =
〈 f (ξ, ξ̃ )〉ϕ,ϕ̃, where the function f (ξ, ξ̃ ) depends on the oper-
ator Ô. Evaluating this expression involves solving the SDEs
(6) and computing the classical average over realizations of
the stochastic process. In general, the variables ξ grow without
bound as they approach coordinate singularities, leading to a
failure of numerical integration schemes. This can be seen by
considering the action of Û s(t ) on an initial down-state |↓〉,

Û s(t )|↓〉 = e−ξ z
j (t )/2[|↓〉 + ξ+

j (t )|↑〉]. (8)

It is evident that the up-state |↑〉 is associated with the diverg-
ing quantity |ξ+

j (t )| → ∞. As discussed in Ref. [31], these
singularities can be eliminated by a suitable parametrization
of the Bloch sphere. Specifically, one introduces a second
coordinate patch ξ̃ for the Bloch sphere, which instead has
the coordinate singularity at the down-state |↓〉. Singularities
can therefore be avoided by mapping between the coordinate
patches whenever the evolution crosses the equator of the
Bloch sphere, associated with |ξ+

j | = 1. Note that by using the
parametrization (8), the variable ξ− in Eq. (6c) is not required.
Since any spin state can be obtained as a rotation from a
down-state |↓〉, the parametrization (8) can be used generi-
cally, provided one introduces a state preparation protocol. For
example, one may rotate the down-state |↓〉 to the initial state
|ψ j (0)〉 = Û s

j (0,−δ)|↓〉, over some arbitrary time interval δ

before t = 0. In practice, this evolution need not be computed
since we are only interested in calculating the time evolution
from t = 0; the initial conditions on ξ are constrained by the
initial state according to Û s

j [ξ j (0)]|↓〉 = |ψ j (0)〉. Entangled
initial states can be treated by introducing a probability dis-
tribution over these initial conditions [31]. Further extensions
also exist for combining the SDEs (6) with matrix product
states [31]. Although this results in improvements in one
dimension (1D), we do not pursue this here; for 2D and 3D
systems, the number of tensor network contractions scales
exponentially with the system size [20] and no advantage is
gained. Instead, we turn our attention to the use of Weiss
fields.
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III. TRAJECTORY-AVERAGED WEISS FIELD

In recent work in both Euclidean [32] and real-time evo-
lution [33,34], it has been noted that the sampling efficiency
can be improved by shifting the Hubbard-Stratonovich fields
by a constant at each time slice t : ϕ(t ) → ϕ(t ) + 	ϕ(t ). As
discussed in Ref. [33], it is convenient to parametrize this
as 	ϕa

j (t ) = √
i
∑

kb Jab
jk mb

k (t ). This introduces a term of the

form
∑

kb Jab
jk mb

k (t )Ŝa
j into the stochastic Hamiltonian, which

can be interpreted as a Weiss field:

Ĥ s(t ) = −
∑

ja

ha
j Ŝ

a
j −

∑
jkab

Jab
jk mb

kŜa
j

− 1√
i

∑
ja

ϕa
j

(
Ŝa

j − ma
j Î

) + 1

2

∑
jkab

Jab
jk ma

j m
b
k Î, (9)

where Î is the identity operator. In writing Eq. (9), we have
included Î-dependent terms in the definition of the stochastic
Hamiltonian to ensure that the Gaussian measure is still in the
original form given by Eq. (3). The Weiss field allows one
to sample the noise fluctuations around a single determinis-
tic “mean-field” trajectory determined by ma

j (t ). This can be
selected to reduce stochastic fluctuations. In previous work
[33], we set this equal to the trajectory-averaged Weiss field
ma

j = 〈na
j〉ϕ , where

na
j = 〈ψ s(t )|Ŝa

j |ψ s(t )〉
|ψ s(t )|2 (10)

is the expectation value of the a component of the spin. In
writing Eq. (10), we include the normalization factor |ψ s(t )|2
since the stochastic state |ψ s(t )〉 is unnormalized. Equa-
tion (10) can be calculated self-consistently from a relatively
small number of trajectories [33]; we use four iterations of
O(103) samples. The stochastic sampling is then carried out
around the deterministic trajectory determined by the first
two terms in Eq. (9). The trajectories are reweighted via
the non-Hermitian term in Eq. (9). This procedure therefore
corresponds to a form of importance sampling [32,57]. As
discussed above, without loss of generality, we may consider
the SDEs starting from an initial spin-down state,

− iξ̇+
j = �+

j + �z
jξ

+
j − �−

j ξ+2

j , (11)

−iξ̇ z
j = �z

j − 2�−
j ξ+

j + 2√
i

∑
a

ϕa
j m

a
j +

∑
kab

Jab
jk ma

j m
b
k, (12)

where the Î-dependent terms in (9) enter into the evolution of
ξ z

j [33] and the effective magnetic field becomes

�a
j = 1√

i
ϕa

j + ha
j +

∑
kb

Jab
jk mb

k . (13)

It can be seen that this consists of the applied magnetic fields
ha

j , the Hubbard-Stratonovich field ϕa
j , and the Weiss field

contribution. At this stage, we note that the O(m2) terms in
(9) and (12) may be safely ignored since they result in a
deterministic phase for the stochastic state |ψ s(t )〉.

While the trajectory-averaged Weiss field has been shown
to improve simulation times for a range of quenches [33],
it decays to zero over time; the trajectories spread out over

FIG. 1. Time evolution of the distribution of stochastic trajec-
tories for the z component of spin P(nz ). We consider a quantum
quench in the two-dimensional quantum Ising model from the disor-
dered to the ordered phase. We examine a 3 × 3 array of spins which
are initialized in the state |+〉, which is fully polarized along the pos-
itive x direction, and time evolve with 
/J = 0.1. The spins evolve
rapidly over the Bloch sphere and gather at the poles, as highlighted
by the bright regions. It can be seen that the trajectory-averaged
position 〈nz〉ϕ (dashed line) does not approximate the trajectory dy-
namics. This motivates the use of trajectory-resolved Weiss fields in
the stochastic approach. The data correspond to all of the spins with
N = 1000 stochastic samples.

the Bloch sphere. The situation can be summarized by con-
sidering a quench of the 2D quantum Ising model with
nearest-neighbor interactions,

ĤI = −J

2

∑
〈i j〉

Ŝz
i Ŝz

j − 


N∑
j=1

Ŝx
j , (14)

where we set J = 1 and use periodic boundary conditions. In
Fig. 1, we show the distribution of nz

j over time following
a quench from the disordered to the ordered phase. Over
time, the trajectories spread out over the Bloch sphere, ac-
cumulating at either pole. However, the mean behavior 〈nz

j〉ϕ
remains zero and fails to approximate the trajectories. Large
non-Hermitian fluctuations are therefore required since the
noise must drive the state towards the poles. In Sec. IV, we
address this issue by allowing the Weiss field to vary on a
trajectory by trajectory basis. In Appendixes A and C, we give
two independent derivations of the approach.

IV. TRAJECTORY-RESOLVED WEISS FIELD

In order to treat problems where the trajectory-averaged
Weiss field vanishes, we consider the instantaneous Weiss
field for each trajectory taken separately. We restrict our atten-
tion to the quantum Ising model, but discuss the application to
more general models of the form given by Eq. (1) in the Ap-
pendixes. Specifically, we set mz

j (t ) = nz
j (t ), where nz

j (t ) is the
instantaneous value of the z component of the spin for a single
trajectory. In this approach, each trajectory develops a differ-
ent Weiss field due to the effect of the accumulated noise.
This may be regarded as a form of feedback [50–52], in which
quantum fluctuations recalibrate the reference trajectory. The
trajectory-resolved Weiss fields do not necessarily decay to
zero at long times. In Sec. VII, we show that the use of
these Weiss fields allows samples to contribute more equally
to quantum expectation values. The trajectory dependence of
the Weiss field also changes the effect of 1

2

∑
i j Ji jmimj Î in
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FIG. 2. Time evolution of the Loschmidt rate function λ(t ) fol-
lowing a quench in the two-dimensional quantum Ising model on
(a) a 5 × 5 lattice and (b) a 7 × 7 lattice. The spins are initialized in
the state |ψ (0)〉 = 1√

2
(|⇓〉 + |⇑〉) corresponding to the superposition

of degenerate ground states and time evolved with 
/J = 8, thereby
quenching across the quantum critical point at 
/J ≈ 1.52 [58].
The results obtained using a trajectory-resolved Weiss field (orange)
improve upon those obtained by the trajectory-averaged Weiss field
(blue). For comparison, the results obtained using QUSPIN’s ODE
Solver [59] on a 5 × 5 lattice are shown (dotted) in both panels;
comparison results for a 7 × 7 lattice are currently beyond reach. The
SDE results are obtained from five batches of N = 105 stochastic
samples with a time step 	 = 0.001. The latter is chosen to ac-
curately resolve the Loschmidt peaks. The faded lines indicate the
standard error of the mean.

Eq. (9) on the stochastic state |ψ s(t )〉; it goes from a remov-
able deterministic phase to a stochastic phase that determines
how trajectories “interfere.”

For simulations, it is convenient to introduce a small time
delay δ into the trajectory-resolved Weiss field so that mz

j (t ) =
nz

j (t − δ). This enhances the numerical stability without ap-
proximation; see Appendix B. Throughout this work, we
solve the SDEs (11) and (12) using the Stratonovich-Heun
predictor-corrector scheme. In simulations with a trajectory-
resolved Weiss field, we set δ = 	, where 	 is the time step,
unless stated otherwise. In general, we find that a time step of
	 = 0.01 is sufficient for most of our simulations, unless the
observable in question involves very small quantities, such as
the Loschmidt amplitude. The use of a different time step is
highlighted in each instance.

V. SIMULATIONS

In this section, we demonstrate the improvements for
numerical simulations when using trajectory-resolved Weiss
fields. For simplicity, we focus on quantum quenches of the
nearest-neighbor quantum Ising model (14) in both two and
three dimensions, although improvements can also be seen in
one dimension. In Fig. 2, we show results for the Loschmidt

FIG. 3. Time evolution of the Loschmidt rate function λ(t ) fol-
lowing a quench in the three-dimensional quantum Ising model on
a 5 × 5 × 5 lattice. The spins are initialized in the state |ψ (0)〉 =

1√
2
(|⇓〉 + |⇑〉) corresponding to the superposition of degenerate

ground states and time evolved with 
/J = 8, thereby quenching
across the quantum critical point at 
/J ≈ 2.58 [58]. The results
obtained using a trajectory-resolved Weiss field (orange) improve
upon those obtained by the trajectory-averaged Weiss field (blue).
The SDE results are obtained using five batches of N = 105 stochas-
tic samples and a time step of 	 = 0.001. The latter is chosen to
resolve the Loschmidt peaks. The faded lines indicate the standard
error of the mean.

rate function,

λ(t ) = − 1

N
ln |〈ψ (0)|ψ (t )〉|2, (15)

following a quantum quench in two dimensions from an initial
state with 
 = 0 to 
 = 8J . Explicitly, we consider the initial
state |ψ (0)〉 = 1√

2
(|⇓〉 + |⇑〉), which is the superposition of

the symmetry-broken ground states,

|⇓〉 =
N∏

i=1

|↓〉i, |⇑〉 =
N∏

i=1

|↑〉i. (16)

In Figs. 2(a) and 2(b), we show the results for a 5 × 5 and
a 7 × 7 lattice, respectively. It can be seen from Fig. 2(a)
that the trajectory-resolved approach allows simulations to be
carried out for longer time durations, before departures arise.
For comparison, we show results obtained by QUSPIN’s ODE
solver [59] for a 5 × 5 lattice. The results are in excellent
agreement until t ∼ 3/J , after which the stochastic fluctu-
ations are not well sampled. Similar behavior is evident in
Fig. 2(b), although we can only compare to the QUSPIN results
for the smaller system size, as 7 × 7 is not possible at present.

In Fig. 3, we show similar results for a 3D lattice with
125 sites on a 5 × 5 × 5 grid. This is a far more challenging
problem due to the increase in dimensionality. The results
for the trajectory-resolved approach show clear Loschmidt
peaks, which extend beyond those obtained by the trajectory-
averaged approach. This complements earlier investigations
[60] which were unable to resolve the sharp nonanalyticities
due to significant finite-size effects.

Having established the utility of trajectory-resolved Weiss
fields, we now examine the differences in performance
for quenches that have significant trajectory-averaged Weiss
fields, and quenches that do not. In Fig. 4(a), we show results
for the transverse magnetization Mx = 1

N

∑
j〈Ŝx

j 〉 following a
quantum quench within the ordered phase of the 2D quantum
Ising model (14) on a 7 × 7 square lattice with 49 sites.
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FIG. 4. Time evolution of the transverse magnetization Mx (t )
following quenches of the 2D quantum Ising model for a 7 × 7 lattice
with 49 spins. (a) The spins are initialized in the fully polarized state
along the z axis |⇓〉 and time evolved with 
/J = 0.2. The results
obtained with the trajectory-resolved Weiss field (orange) and the
trajectory-averaged Weiss field (blue) are in very good agreement.
The normalization |ψ (t )|2 indicates that the former reaches slightly
longer timescales. The success of the latter is consistent with the
presence of a nonvanishing trajectory-averaged Weiss field as shown
in (c). (b) The spins are prepared in the fully polarized state |+〉
along the x axis and time evolved with 
/J = 0.1. In this case,
the trajectory-resolved Weiss field performs much better than the
trajectory-averaged Weiss field. This is consistent with a vanishing
trajectory-averaged Weiss field as shown in (c). The results are in
very good agreement until the norm of the quantum state, |ψ (t )|2,
departs from unity. The results in (a) correspond to five batches of
N = 2 × 105 stochastic samples, while the results in (b) correspond
to five batches of N = 6 × 105 stochastic samples, all obtained with
a time step 	 = 0.01. The faded lines indicate the standard error of
the mean.

We start from the fully polarized state |⇓〉 with all spins
down, and time evolve using the Hamiltonian with 
/J =
0.2. As can be seen in Fig. 4(c), this quench is associated
with a nonzero trajectory-averaged Weiss field over the du-
ration of the simulation, corresponding to a nonvanishing
mean field in the initial state. It is evident from Fig. 4(a)
that the trajectory-resolved Weiss fields perform better than
the trajectory-averaged ones, although the relative gains
from their use are modest in this case. This can also be seen
from the behavior of the norm of the quantum state, |ψ (t )|2,
which remains close to unity when the stochastic fluctua-
tions are adequately sampled [31,33]. In the Appendixes, we

FIG. 5. Exponential scaling of the required number of samples,
N , vs the breakdown time tb of the simulations: N ∼ ceαtb . The data
correspond to quantum quenches in the 2D quantum Ising model for
a 3 × 3 array of spins. The spins are initialized in the fully polarized
state |+〉 along the x axis and are time evolved with 
/J = 0.1.
The trajectory-resolved Weiss field (circles) is shown to require less
samples than the trajectory-averaged Weiss field (diamonds) to reach
a given time. This is confirmed by the coefficient α of the linear fit,
which suggests a reduction in the exponent by a factor of approxi-
mately 2.7 for this simulation. Each of the data points corresponds to
the mean of 10 batches of simulations of N runs, with the standard
error indicated by a bar.

provide data for a quench in 3D within the ordered phase. The
results demonstrate similar performance improvements when
using the trajectory-resolved Weiss field.

The difference between the two approaches is noticeably
greater for quantum quenches without a significant trajectory-
averaged Weiss field. This is illustrated in Fig. 4(b) for a
quantum quench in the 2D quantum Ising model from the dis-
ordered phase to the ordered phase. Specifically, the system is
initialized in the fully polarized state in the x direction, |+〉 =∏N

j=1
1√
2
(|↓〉 + |↑〉) j , and time evolved with the Hamiltonian

with 
/J = 0.1. It can be seen that the simulation time with
the trajectory-resolved Weiss field is approximately double
that of the trajectory-averaged approach. For this particular
quench, the stochastic trajectories rapidly spread out over the
Bloch sphere and the trajectory-averaged Weiss field remains
close to zero throughout the evolution. As shown in Fig. 4(c),
the use of a trajectory-averaged Weiss field offers little advan-
tage over the case with mz

j = 0. In contrast to the situation in
equilibrium, where the utility of mean fields increases with
dimensionality, their use for dynamics is more subtle. In par-
ticular, the utility of Weiss fields can depend on the details of
the quantum quench, and not just the dimensionality.

The utility of the trajectory-resolved approach can also be
seen in the scaling of the accessible timescale for numerical
simulations with the number of required samples. Following
Refs. [31,33], we define the breakdown time tb as the time
when the normalization |ψ (t )|2 differs from unity by 10%. As
discussed in Refs. [31–33], the number of samples, N , scales
exponentially with the breakdown time, corresponding to the
onset of strong fluctuations. Specifically, N ∼ ceαtb where
the growth exponent α depends on the details of the quench.
In Fig. 5, we compare the scaling of the trajectory-averaged
approach with the trajectory-resolved approach for a quench
in the two-dimensional quantum Ising model with a 3 × 3
array of spins. It can be seen that the growth exponent α is
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FIG. 6. Growth of the stochastic state normalization |ψ s(t )|2 for
a single trajectory following a quench of the 2D quantum Ising
model with a 3 × 3 array of spins. The initial state |ψ (0)〉 = |+〉 is
evolved with 
/J = 0.3. We compare a direct numerical evaluation
of |ψ s(t )|2 (solid line) against the theoretical prediction given by
Eq. (18) (dashed line). For the latter, we use the value of nz

j (t )
obtained from the numerical procedure as an input. The data are
obtained using the Stratonovich-Heun scheme [62,63] without time
delay and a time step of 	 = 0.001. The growth of the stochastic
state normalization is required in order to maintain the overall nor-
malization of the quantum state.

significantly reduced for the trajectory-resolved case, in com-
parison with the trajectory-averaged case. In Secs. VI and VII,
we show that this is related to a reduction in the fluctuations
of the normalization of the stochastic state.

VI. STOCHASTIC STATE NORMALIZATION

In this section, we discuss how the normalization of the
stochastic state determines the sampling efficiency of the
approach. To see this, we note that an arbitrary normalized
state |ψ (t )〉 can be expressed as the average over normalized
stochastic states, ||ψ s(t )〉, according to

|ψ (t )〉 = 〈
W (t ) ||ψ s(t )〉〉

φ
, (17)

where W (t ) = |〈ψ s(t )|ψ s(t )〉|1/2 is the norm of the stochastic
state. It can be seen that W (t ) corresponds to the weight of
each sample in the ensemble. A large spread directly inhibits
sampling. As we show in Appendix A 3, the norm of the
stochastic state grows monotonically in time. For the quantum
Ising model, this is given by

|ψ s(t )|2 = exp

⎧⎨
⎩

∫ t

0
dt ′ ∑

j

ν j

[
1

4
− nz

j (t
′)2

]⎫⎬
⎭, (18)

where ν j = ∑
k |Ozz

jk|2; see Appendix A 3. We verify Eq. (18)
in Fig. 6 for a single stochastic trajectory following a quench
in the 2D quantum Ising model. It can be seen from Eq. (18)
that the normalization is controlled by deviations from the
fully polarized spin state. The growth of the norm with time is
required in order to maintain the overall normalization of the
quantum state, |ψ (t )|2 = 1. To see this, we note that

|ψ (t )|2 = 1

N 2

N∑
r,r′=1

〈
ψ s

r′ (t )
∣∣ψ s

r (t )
〉
, (19)

FIG. 7. (a) Distribution P(γ ) at a fixed time Jt = 20 following
a quench in the two-dimensional quantum Ising model for a 3 × 3
lattice of spins. We start in the fully polarized state |⇓〉 and quench
to 
/J = 0.7, taking N = 5 × 104 stochastic samples. The use of a
trajectory-resolved Weiss field (orange) results in a narrower distri-
bution than the trajectory-averaged case (blue) and the case without
a Weiss field (red); this makes the dynamics easier to sample. The
distributions are approximately normal, as indicated by the solid
line fits. (b) Time evolution of the variance var(γ ). The variance
grows linearly following an initial transient. The growth rate for the
trajectory-resolved case is lower than the other two cases, which
again aids sampling. The variance for the trajectory-averaged case
is only comparable to the trajectory-resolved case at very short
timescales, when the state is well approximated by fluctuations
around a product state. Inset: Time evolution of the mean of the
distribution 〈γ 〉φ . The linear growth rate is similar for all three cases.

where r and r′ are independent sample indices. If |ψ s
r (t )〉

was normalized, then the overlaps in Eq. (19) would be less
than or equal to unity. As such, |ψ (t )|2 < 1. It follows that
the normalization of |ψ s

r (t )〉 must grow with time in order
to maintain the condition that |ψ (t )|2 = 1. This reflects the
independent decouplings of the forward and backward time
evolution in the stochastic approach.

VII. GROWTH OF FLUCTUATIONS

Having demonstrated that the norm of the stochastic state
grows with time, we now examine its distribution. Given
the exponential scaling of W with time, it is convenient to
consider the distribution of γ = ln W . In Fig. 7(a), we show
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the distribution P(γ ) at a fixed time for different values of the
Weiss field. It can be seen that P(γ ) is normally distributed, as
indicated by the solid lines. The use of a trajectory-resolved
Weiss field results in a narrower distribution than the other
cases. In particular, it leads to a reduction in the extremal
values of W = eγ , which contribute the most to ensemble
averages. This leads to an improvement in the sampling effi-
ciency. In Fig. 7(b), we show the growth of the variance var(γ )
as a function of time. It can be seen that the growth rate is
reduced when using the trajectory-resolved Weiss field, even
at late times. In contrast, the growth rate for the trajectory-
averaged Weiss field eventually follows the case without a
Weiss field; this was also observed in Ref. [32], by sampling
around a saddle-point trajectory in Euclidean time. In the
inset of Fig. 7(b), we show that the mean of the distribution
〈γ 〉φ changes very little with the choice of Weiss field. The
improvements in the scaling are therefore attributed to the re-
duction of the variance with a trajectory-resolved Weiss field.
Although the focus of this work is on 2D and 3D systems,
similar improvements can also be seen in 1D, as shown in
Appendix D.

In closing this section, we briefly comment on the role of
fluctuations on the success of the trajectory-resolved Weiss
field. Over timescales in which the dynamics can be approx-
imated by fluctuations around a well-chosen product state
trajectory, both the trajectory-averaged and the trajectory-
resolved Weiss fields can efficiently encode the evolution.
However, a key advantage of the trajectory-resolved approach
is that it can remain efficient beyond this timescale. In the
trajectory-resolved approach, an entangled superposition such
as a triplet state 1√

2
(|↑↓〉 + |↓↑〉) can be obtained from two

separate trajectories, |↑↓〉 and |↓↑〉, with each encoding its
own Weiss field. In contrast, there is no single product state
that approximates this triplet state. The trajectory-resolved
approach therefore has a notable advantage for simulating
quantum dynamics.

VIII. CONCLUSION

In this work, we have investigated the real-time dynamics
of quantum spin systems in two and three dimensions by
means of an exact stochastic approach. We have shown that
the use of a trajectory-resolved Weiss field can significantly
extend the accessible simulation times, with an exponential
improvement in the sampling efficiency. We have illustrated
the utility of this approach for exploring dynamical quan-
tum phase transitions in two and three dimensions, although
the applicability is broader. Our results address a critical
shortage of exact simulation techniques for nonequilibrium
quantum spin systems in two and three dimensions. It would
be interesting to see if trajectory-resolved Weiss fields can
be used in other contexts, for example in situations which
traditionally involve expanding around a single mean-field
configuration.

The data supporting this article is openly available from the
King’s College London research data repository, KORDS, at
[61].
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APPENDIX A: STOCHASTIC HAMILTONIAN

In this Appendix, we derive the stochastic Hamiltonian (9)
in the main text including the trajectory-resolved Weiss field.
For simplicity, we consider Heisenberg models of the form

Ĥ = −
∑

jk

1

2

(
Jxx

jk Ŝx
j Ŝ

x
k + Jyy

jk Ŝy
j Ŝ

y
k + Jzz

jk Ŝz
j Ŝ

z
k

)

−
∑

j

(
hx

j Ŝ
x
j + hy

j Ŝ
y
j + hz

j Ŝ
z
j

)
, (A1)

where Jaa
jk is the exchange interaction in direction a and ha

j is
an applied magnetic field.

1. Ito convention

As discussed in the main text, the stochastic Hamiltonian
(9) is obtained via the change of variables,

ϕ′a
j (t ) = ϕa

j (t ) +
√

i
∑

k

Jaa
jk ma

k (t ). (A2)

Here we consider the specific case of the trajectory-resolved
Weiss field for which ma

k (t ) = na
k (t ), as given in Eq. (10).

The substitution of (A2) into Eq. (2) and rearrangement of
the terms generates the stochastic Hamiltonian (9). However,
in principle, one should also check for the possibility of a
nontrivial Jacobian matrix J associated with the field trans-
formation (A2),

J ab
j′ j (t

′, t ) = δϕ′a
j′ (t

′)

δϕb
j (t )

. (A3)

Here we show that the Jacobian J = det(J ) is, in fact, trivial.
To see this, we note that since na

j (t ) does not depend on future
noise configurations, the matrix (A3) is lower-triangular in the
time domain. The Jacobian therefore reduces to a product of
equal-time contributions, which lie along the diagonal of the
matrix. To exploit this, we choose the following discrete-time
version of (A2) including the trajectory-resolved Weiss field,

ϕ′a
jτ = ϕa

jτ +
√

i
∑

k

Jaa
jk na

k(τ−1). (A4)

Here we employ the discrete real-time index τ , which should
not be confused with Euclidean time. Since na

k(τ−1) does not
depend on ϕa

jτ , the diagonal entries of the matrix (A3) are
unity. As such, the Jacobian is unity. In the language of
stochastic processes, this aligns with the Ito definition since
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the fields ϕa
jτ and na

j(τ−1) are uncorrelated; the field ϕa
jτ is as-

sociated with the stochastic evolution operator Û s(τ − 1, τ ).
In the next section, we derive the stochastic Hamiltonian in
the Stratonovich formalism.

2. Stratonovich convention

For numerical simulations, it is often convenient to work
in the Stratonovich formalism due to the robustness of the
associated numerical schemes. Here we consider models of
the form (A1) with Jaa

j j = 0. In the absence of a Weiss field,
the Stratonovich and Ito SDEs (6) coincide [30]. The same
is true in the presence of a trajectory-averaged Weiss field.
However, new terms arise in the Stratonovich SDEs with a
trajectory-resolved Weiss field. To see this, we first consider
the evolution equation

i∂t |ψ s(t )〉 = Ĥ s(t )|ψ s(t )〉, (A5)

where Ĥ s(t ) is the stochastic Hamiltonian (9) in the Ito form.
Since Ĥ s(t ) is noninteracting, the evolution equation on site j
can be written as

d
∣∣ψ s

j (t )
〉 = A jdt +

∑
ka

Ba
jkdW a

k , (A6)

where W a
k are independent Weiner processes associated with

the white noises φa
k . Here,

A j =
(

i
∑

a

ha
j Ŝ

a
j + i

∑
ka

Jaa
jk na

k Ŝa
j − i

2

∑
ka

Jaa
jk na

j n
a
k Î

)∣∣ψ s
j (t )

〉
,

Ba
jk = [√

i
(
Ŝa

j − na
j Î

)
Oaa

jk

]|ψ s
j (t )〉, (A7)

where Oaa
jk is defined in Sec. II. The associated Stratonovich

equations are given by

d
∣∣ψ s

j (t )
〉 = A j − 1

2

∑
kla

Ba
lk

∂Ba
jk

dλl
+

∑
ka

Ba
jkdW a

k , (A8)

where λl ≡ {|ψ s
l 〉, 〈ψ s

l |} [63]. Comparison with (A5) allows
one to define the stochastic Hamiltonian in the Stratonovich
formalism,

Ĥ s(t ) = −
∑

ja

ha
j Ŝ

a
j −

∑
jka

Jaa
jk nb

kŜa
j − 1√

i

∑
ja

ϕa
j

(
Ŝa

j − na
j Î

)

+ 1

2

∑
jka

Jaa
jk na

j n
a
k Î + i

∑
ja

νa
j

2

[
1

4
− na

j (t )2

]
Î, (A9)

where νa
j = ∑

k |Oaa
jk |2. Only the final term differs from the

Ito form of the stochastic Hamiltonian given in Eq. (9). In the
next section, we will show that this contribution determines
the normalization of the time-evolving stochastic state.

3. Stochastic state normalization

We consider the normalization of the stochastic state fol-
lowing an infinitesimal time interval δt ,

〈ψ s(t + δt )|ψ s(t + δt )〉
= 〈ψ s(t )|eiĤs†δt e−iĤ sδt |ψ s(t )〉
= 〈ψ s(t )|ψ s(t )〉 + δt (−i〈Ĥ s〉 + i〈Ĥ s†〉)

+ δt2
(− 1

2 〈(Ĥ s)2〉 − 1
2 〈(Ĥ s†)2〉 + 〈Ĥ sĤ s†〉) + O(δt3).

(A10)

In the Stratonovich formalism, the O(δt2) contributions van-
ish as δt → 0 and we therefore consider the O(δt ) term. The
Hermitian terms in Eq. (A10) cancel out at this order, leaving
just the non-Hermitian part,

− 1√
i

∑
j

ϕa
j (t )

[
Ŝa

j − na
j (t )Î

] + i
∑

ja

νa
j

2

[
1

4
− na

j (t )2

]
Î.

(A11)

The expectation value of the first term in Eq. (A11) vanishes,
leaving only the second term to contribute to Eq. (A10). Inte-
grating over time yields

|ψ s(t )|2 = exp

{ ∫ t

0
dt ′ ∑

ja

νa
j

[
1

4
− na

j (t
′)2

]}
. (A12)

The result (A12) can also be obtained in the Ito formalism
using Eq. (9). In this case, the contributing term appears at
second order in the expansion (A10) due to the properties
of Weiner differentials in the Ito description. Specifically,
the expectation value of their square does not vanish and
one should use dWkdW ′

k → dt δkk′ in Eq. (A10) [63]. This
makes some of the second-order terms in (A10) first order. In
contrast, dWkdWk′ → 0 in the Stratonovich description. The
coefficient νa

j = ∑
k |Oaa

jk |2 in Eq. (A12) can be interpreted as
the effective interaction strength at site j in the a direction.
This can be seen by using the bond noise description intro-
duced in Ref. [33]. In this description, νa

j = JaZa
j , where Za

j
is the number of interactions experienced by spin j in the a
direction; here, for simplicity, we assume that the interactions
are of equal strength, Ja.

APPENDIX B: TIME-DELAY FORMALISM

In previous works [31,33,34], the Stratonovich-Heun
scheme [62,63] has been successfully used to integrate the
SDEs (6). In the presence of a trajectory-resolved Weiss field,
the additional term appearing in Eq. (A10) necessitates the
use of smaller time steps. To circumvent this, we introduce
a time delay δ into the definition of the trajectory-resolved
Weiss field, such that mz

j (t ) = nz
j (t − δ),

ϕ′a
jτ = ϕa

jτ +
√

i
∑

k

Jaa
jk na

j(τ−1−δ). (B1)

That is to say, the Weiss field is determined by the spin
configuration at a slightly earlier time step. This results in
stochastic delay differential equations (SDDEs) which are
easier to implement numerically. The Ito-Stratonovich con-
version formula for SDDEs is identical to the undelayed case
[64]. In this approach, the last term in Eq. (A10) no longer
appears. As such, the Ito and Stratonovich SDDEs coincide. A
small delay δ provides numerical stability at large time steps,
as afforded by other Stratonovich schemes. For times t < δ,
we set mz(t − δ) equal to the initial magnetization.

To perform the numerical integration of (11) and (12)
for the quantum Ising model in the presence of a delayed
trajectory-resolved Weiss field, we employ the predictor-
corrector scheme used in Ref. [65]. For clarity, we restate
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the SDEs from the main text in the presence of a trajectory-
resolved Weiss field with delay,

−iξ̇+
j (t ) = 


2

[
1 − ξ+2

j (t )
]

+ ξ+
j (t )

[ ∑
k

Jzz
jknz

k (t − δ) + 1√
i

∑
k

Ozz
jkφ

z
k (t )

]
,

(B2)

−iξ̇ z
j (t ) = −
ξ+

j (t ) +
∑

k

Jzz
jknz

k (t − δ)

+
∑

k

Jzz
jknz

j (t − δ)nz
k (t − δ)

+ 1√
i

∑
k

Ozz
jkφ

z
k (t )

[
1 + 2nz

j (t − δ)
]
. (B3)

These can be written in the canonical form

dξ a
j = Aa

j [ξ (t ), ξ (t − δ)]dt +
∑

k

Ba
jk[ξ (t ), ξ (t − δ)]dW a

k ,

(B4)

where

A+
j [ξ (t ), ξ (t − δ)]

= i


2

[
1 − ξ+2

j (t )
] + iξ+

j (t )
∑

k

Jzz
jknz

k (t − δ), (B5)

B+
jk[ξ (t ), ξ (t − δ)] =

√
iξ+

j (t )Ozz
jk, (B6)

Az
j[ξ (t ), ξ (t − δ)] = − i
ξ+

j (t ) + i
∑

k

Jzz
jknz

k (t − δ)

+ i
∑

k

Jzz
jknz

j (t − δ)nz
k (t − δ), (B7)

Bz
jk[ξ (t ), ξ (t − δ)] =

√
iOzz

jk

[
1 + 2nz

j (t − δ)
]
. (B8)

Moving to a discrete-time index, the numerical update scheme
[65] is given by

ξ a
jτ+1 = ξ a

jτ + 	

2

[
Aa

j (ξτ , ξτ−δ ) + Aa
j (ξ̃τ+1, ξτ−δ+1)

]
+ 1

2

∑
k

[
Ba

jk (ξτ , ξτ−δ ) + Ba
jk (ξ̃τ+1, ξτ−δ+1)

]
	W a

kτ
,

(B9)

where δ is the time delay and 	 is the time step. The predic-
tion step is given by

ξ̃ a
jτ+1 = ξ a

jτ + 	Aa
j (ξτ , ξτ−δ ) +

∑
k

Ba
jk (ξτ , ξτ−δ )	W a

kτ .

(B10)
In the absence of a time delay δ, this coincides with the
Stratonovich-Heun predictor-corrector scheme [62,63]. We
therefore refer to this as the delayed Stratonovich-Heun
scheme. In order to illustrate the viability of this method, in
Fig. 8(a) we show results obtained with a relatively large time
delay δ = 0.2 and a time step of 	 = 0.01. The results are in
very good agreement with exact diagonalization (ED) until the
breakdown time tb. In Fig. 8(b), we show the time evolution
of the stochastic variables ξ+

1 (t ) and ξ z
1 (t ) following a quan-

tum quench. It can be seen that the results obtained via the

0 1 2 3 4 5 6 7
Jt

-0.25

0

0.25

0.5

M
x
(t

)

(a) Trajectory-resolved with delay
ED

−4
−2

0
2
4
6

R
e(

ξ+ 1
)

0 1 2 3 4
Jt

0

1

2

R
e(

ξz 1
)

(b)

EM SH SH-δ

FIG. 8. (a) Transverse magnetization Mx (t ) following a quench
of the quantum Ising model from

∏N
i |+〉i to 
/J = 0.3 with N = 3.

The data correspond to a trajectory-resolved Weiss field mz
i = nz

i (t −
δ) with a large delay δ = 0.2 (orange). The results are in excellent
agreement with exact diagonalization (ED) until the breakdown time
tb associated with finite sampling. We use 10 batches of N = 105

samples and a time step of 	 = 0.01. The solid orange line corre-
sponds to the mean and the light orange lines indicate the standard
error. (b) Time evolution of the real parts of ξ+

1 and ξ z
1 for a single

trajectory using the Ito Euler-Maruyama (EM), Stratonovich-Heun
(SH), and delayed Stratonovich-Heun (SH-δ) schemes. We consider
the same setup as (a), but with 
/J = 0.1 and a small time step
of 	 = 10−5. The results for the different integration schemes are
almost indistinguishable, which demonstrates that the time-delayed
result converges to the undelayed result in the limit of a small delay
δ. In this simulation, we use complex noises residing on each bond;
see Ref. [33] for a discussion.

Ito Euler-Maruyama scheme, the Stratonovich-Heun scheme,
and the delayed Stratonovich-Heun scheme with δ = 	 are
in excellent agreement. In practice, this is only true for a
sufficiently small time step. Nonetheless, we find that results
obtained in the delay formalism are robust at large time steps.
This is evident from the simulations presented in the main
text.

APPENDIX C: GAUGE-P FORMALISM

In this section, we use the gauge-P phase-space formalism
[35] to give an alternative derivation of the SDEs (11) and (12)
for the specific case of the quantum Ising model. We follow
the discussion in Appendixes B–D of our recent work [33],
and include a trajectory-resolved Weiss field. We begin with
a decomposition of the density matrix ρ̂ in terms of coherent
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FIG. 9. (a) Time evolution of the transverse magnetization
Mx (t ) following quenches in the 3D quantum Ising model. (a) Re-
sults for a 5 × 5 × 5 lattice with 125 spins. The spins are initialized
in the fully polarized state along the z axis |⇓〉 and time evolved
with 
/J = 0.7. The results obtained with the trajectory-resolved
Weiss field (orange) and the trajectory-averaged Weiss field (blue)
are in very good agreement. The normalization |ψ (t )|2 indicates that
the former reaches slightly longer timescales. The results correspond
to four batches of N = 105 stochastic samples, obtained using a
time step of 	 = 0.01. The faded lines indicate the standard error
of the mean. (b) Trajectory-averaged Weiss field vs time, showing a
nonvanishing trajectory-averaged Weiss field.

states |λ j〉,

ρ̂ =
∫

d2λd2λ′d2ω P(λ, λ′, ω) eω
∏

j

|λ j〉〈λ′
j |, (C1)

where λ, λ′ ∈ C, and ω is a complex weight. The decom-
position (C1) is not unique due to the overcompleteness
of the coherent-state basis; see, for example, Refs. [35,66].
Substituting (C1) into the Liouville equation for ρ̂ yields a
Fokker-Planck equation provided the boundary terms vanish
[36]. This, in turn, yields SDEs for the variables λ, λ′, ω. It
is possible to alter these equations and move between differ-
ent representations of P(λ, λ′, ω). In the Ito formulation, the
SDEs can be written in the form

λ̇ j = Aj −
∑

k

gkB jk +
∑

k

B jkφk, (C2)

ω̇ = V − 1

2

∑
k

g2
k +

∑
k

gkφk, (C3)

where Aj (λ) is the drift term, Bjk (λ) is the noise matrix,
and λ = {λ, λ′}. The term V (λ) is needed to ensure a valid
Fokker-Planck equation. The coefficients gk (λ) are arbitrary
functions known as drift gauges [35,66]; these are introduced
by adding trivial terms to the Liouville equation. The drift
gauges reweight trajectories via their influence on ω and λ.

For the quantum Ising model, we employ SU(2) spin
coherent states |z j〉 = exp(ez j Ŝ+

j )|↓〉 [33,39,41] and their
weighted counterparts |z, ω〉 = ∏

j eω j |z j〉. Since the forward

FIG. 10. (a) Distribution P(γ ) at a fixed time Jt = 20 following
a quench in the one-dimensional quantum Ising model with N = 9.
We start in the fully polarized state |⇓〉 and quench to 
/J = 0.3,
taking N = 5 × 104 stochastic samples. The use of a trajectory-
resolved Weiss field (orange) results in a narrower distribution than
the trajectory-averaged case (blue) and the case without a Weiss field
(red). The distributions are approximately normal, as indicated by the
solid line fits. (b) Time evolution of the variance var(γ ). The variance
grows linearly following an initial transient. The growth rate for the
trajectory-resolved case is lower than the other two cases. (c) Time
evolution of the mean of the distribution 〈γ 〉φ . The linear growth rate
is similar for all three cases.

and backward time-evolution protocols are independent in our
approach, we consider a decomposition over states rather than
density matrices [33],

|ψ〉 =
∫

d2zd2ω P(z, ω) |z, ω〉. (C4)

With this parametrization, (C2) and (C3) become

−iż j = −
 sinh(z j ) − 1

2

∑
l

J jl + 1√
i

∑
k

Ozz
jk (φk − gk ),

(C5)

−iω̇ =
∑

j




2
ez j +

∑
jl

1

8
Jjl + i

2

∑
k

g2
k − i

∑
k

gkφk, (C6)

where ω = ∑
j ω j and O is defined in Sec. II. The details of

these calculations are presented in Ref. [33]. The Weiss fields
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mz
j can be introduced by setting

gk (z) = −
√

i
∑

j

(
1

2
+ mz

j

)
Ozz

jk . (C7)

In our previous work [33], mz
j is a time-dependent parameter

which is independent of z and z∗. Here, we allow it to ex-
plicitly depend on these parameters. The trajectory-resolved
Weiss field corresponds to mz

j (z, z∗) = nz
j (z, z∗). In these no-

tations, the Ito SDEs are given by

−iż j =
∑

l

J jl m
z
l + 1√

i

∑
k

Ozz
jkφk − 
 sinh(z j ), (C8)

−iω̇ j = 


2
ez j − 1

2

∑
l

J jl m
z
l − 1√

i

(
1

2
+ mj

) ∑
k

Ozz
jkφk

− 1

2

∑
k

Jk jm
z
kmz

j . (C9)

Setting ξ+
j = ln z j and using Ito’s lemma, Eqs. (C8) and (C9)

coincide with Eqs. (11) and (12) for the quantum Ising model.
In the case of no Weiss field or a trajectory-averaged Weiss
field, the Stratonovich and Ito SDEs (C8) and (C9) are the
same. For the trajectory-resolved Weiss field, the Stratonovich

SDEs contain an additional term −i
νz

j

2 [ 1
4 − nz

j (z, z∗)2] which

should be added to the right-hand side of Eq. (C9), in con-
formity with Eq. (A10). As discussed in Appendix A 3, this
is the only term that contributes to the normalization of the
stochastic state. For further details on the gauge-P approach,
including the use of time delays, see Ref. [67].

APPENDIX D: ADDITIONAL SIMULATIONS

In this section, we provide numerical simulation examples
in other spatial dimensions to complement those in the main
text. In Fig. 9, we show results for a quantum quench in the
ordered phase of the 3D quantum Ising model. It can be seen
that the trajectory-averaged Weiss field extends the simulation
time in a manner akin to that of Fig. 4(a), due to the presence
of a significant trajectory-averaged Weiss field for a quench in
the ordered phase.

In Fig. 10, we consider the distribution of γ = ln W , where
W is the norm of the stochastic state discussed in Sec. VI, for
the 1D quantum Ising model with N = 9 spins. As found in
Fig. 7 for the 2D case, the use of a trajectory-resolved Weiss
field results in a narrower distribution of γ with a slower
growth of the variance. This results in improvements in the
sampling efficiency for quantum dynamics, even in 1D.
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