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Core-periphery is a key feature of large-scale networks underlying a wide range of social, biological, and
transportation phenomena. Nodes in the core have an influential position in the network, and thus, the periphery
can be under structural disadvantage if the groups are aligned with external attributes such as gender or
economic status. Despite its prevalence in empirical data, it is unclear whether core-periphery is a consequence
of fundamental network evolution processes. While preferential attachment can create degree heterogeneity
indistinguishable from core-periphery, it does not explain why cores and peripheries are aligned with some
external node attribute, i.e., why specific groups of nodes gain dominance and become cores. We show that even
small amounts of assortative attachment, e.g., homophily in social networks, can break the symmetric effect
of preferential attachment and that the interplay of the two mechanisms leads to one of the groups emerging
as a prominent core. A systematic analysis of the phase space of the proposed model reveals the levels of
assortative and preferential attachment necessary for a group to become either core or periphery. We find that
relative group size is significant, with minority groups typically having a disadvantage on becoming the core
for similar assortative attachment levels among groups. We also find that growing networks are less prone to
develop core-periphery than dynamically evolving networks and that these two network evolution mechanisms
lead to different types of core-periphery structures. Analyzing five empirical networks, our findings suggest that
core nodes are highly assortative, illustrating the potential of our model as a tool for designing and analyzing

interventions on evolving networks.
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I. INTRODUCTION

Core-periphery is a ubiquitous property of group-level
relationships in networks of social, biological, and infrastruc-
tural phenomena [1-4]. It involves a notion of meso-scale
dominance, where a group of core nodes captures a dis-
proportionate number of connections, whereas the remaining
periphery nodes are largely connected to the core and sparsely
among themselves. Classical examples of core-periphery
structure involve economic and geopolitical networks be-
tween countries, where a core group dominates trade [5-7],
economic relationships [8,9] or soft power [10,11], but also
encompass networks involving stakeholders or influential in-
dividuals [12], such as the so-called old boys’ club [13]. In
addition to such classical examples, core-periphery structures
have been observed in a broad array of empirical phenomena
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and domains of knowledge, including transportation networks
where most routes pass through urban hubs [14], social me-
dia networks that become centralized depending on the type
of information shared [15], and protein-interaction networks
where structural centrality is related to relevant biological
functions [16].

Nodes in the core are at a position of power or importance,
whereas peripheral nodes have weaker influence. This can be-
come an issue of structural inequality in social, transportation,
and economic networks when the core and periphery groups
are aligned with some pre-existing, external attribute of nodes.
In social, political, and cultural contexts, such an external
grouping might be the gender, language, nationality, religion,
or ethnicity of individuals. In transportation and economic
networks, groups might be determined by relevant features
of the population or country under study. While it is gen-
erally understood how core-periphery structures can emerge
through network mechanisms such as preferential attachment
[3,14,17-19], these models do not offer an explanation as to
when and how core-periphery structures aligned with external
node attributes emerge. Understanding the mechanisms and
underlying causes for such an emergent structural alignment is
an important first step toward policies for reducing the effects
of ubiquitous structural inequalities in society [20].

Published by the American Physical Society
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We model emergent core-periphery and its alignment with
external attributes in terms of network evolution processes.
A common form of topological dominance occurs through
heterogeneous degree distributions. The effect is large enough
that such distributions alone can explain core-periphery parti-
tions in two-group detection problems, i.e., when determining
which nodes belong to the core or the periphery [21].
Heterogeneous degree distributions, in turn, emerge naturally
from network evolution processes involving preferential at-
tachment [22]. This mechanism is arguably behind many
evolving phenomena in nature and society, and while it has
been extensively modeled as an explicit driver (where, say,
a node is selected with probability proportional to its de-
gree), it also appears implicitly as the consequence of other
dynamic processes such as link or vertex copying and tri-
adic closure [23]. Preferential attachment, however, cannot
solely explain why certain groups of nodes characterized by
relevant node attributes [1] become the core and others the
periphery.

To understand how core-periphery structure may arise on
networks with a predetermined notion of groups, we need
to include an additional network mechanism based on node
attributes. Nodes commonly display a preference for forming
links with nodes similar (or dissimilar) to themselves [24,25].
This mechanism is known as homophily in social networks or
assortative mixing in general [26]. In sociology, homophily is
used as an explanatory mechanism for a wide array of social
identities, including group partitions based on, e.g., gender,
socioeconomic status, or political affiliation. Homophily has
also been linked to emergent network phenomena like com-
munity structure [27,28], biased perceptions, and biases in the
rankings of minority groups [29,30]. Assortative attachment
is, however, not constrained to sociological contexts and ap-
pears in many other networked systems such as biological
food networks [31], phylogenetic networks [32], and func-
tional brain networks [33]. Both assortative and preferential
attachment encompass broad mechanisms underlying network
evolution, which stresses the importance of understanding
how they interact in evolving systems.

We show how the combination of preferential and assor-
tative attachment leads to networks with a strong alignment
between predetermined groups and core-periphery structure.
Our results show that even small amounts of assortative mix-
ing can break the symmetry of preferential attachment (which
favors high-degree nodes irrespective of their group) and lead
instead to prominent group-aligned core-periphery structures.
These results can be explained by the interaction of these
two mechanisms resulting in a cumulative advantagelike cycle
[20]: Preferential attachment favors possible new connections
to high-degree nodes, and at the same time, assortativity be-
comes more effective within the group that becomes the core,
even if the other group is also assortative. In cases where both
groups are assortative enough, this cumulative process leads
to a bifurcation where either of the two groups can end up
being the core. Last, while core-periphery can be modeled
with pairings of highly assortative and highly disassortative
groups, the interaction with preferential attachment both re-
duces disparities necessary for structural dominance to occur
and cumulatively amplifies the influence of the assortative

group.

We use a combination of modeling and empirical data
analysis to show the implications of the interplay between
preferential and assortative attachment mechanisms on net-
works. Using a systematic mean-field analysis, we find the
amounts of assortative and preferential attachment that lead
to core-periphery structures in network models. Our results
indicate that the two archetypes of core-periphery structures,
hub-and-spoke and layered [4], are typical outcomes of both
rewiring and growing network models. We also examine how
relative group sizes may have a large impact on the emer-
gence of core-periphery structures, including which group
becomes the dominant one. Finally, by fitting the appropriate
types of network models to real-world networks, we com-
pute the size of the effects of interplay between the two
mechanisms and discuss the implications of interventions
that could reduce the emergence of core-periphery struc-
tures by changing the strengths of preferential attachment in
the system.

II. METHODS

A. Network evolution models

We develop two models, one for growing and another for
rewiring networks, that combine preferential and assortative
attachment and unequal group sizes. Our models are inspired
by well-known social network mechanisms: a rewiring model
mixing homophily and implicit preferential attachment [23]
and a growing model mixing homophily and explicit preferen-
tial attachment [29]. Together, our two evolving systems allow
us to examine core-periphery structures in a wide variety of
systems, as many real-world evolving networks fall into one
of these two categories [2].

Both models share central iteration steps in which a focal
node finds a candidate node to connect to (Fig. 1, right). In
these central steps, a parameter ¢ controls the balance between
two candidate selection methods, preferential attachment and
random choice. Once a candidate node is selected, the assor-
tativity parameter s,;, controls the probability that a focal node
from group a connects to a candidate from group b. The two
models differ in their initial and final steps. For the growing
model, the focal node is not connected to the initial network
and finds m candidates to connect. In the rewiring model,
the focal node is randomly selected, and if a link is created,
then a connection to a random neighbor is deleted from the
focal node.

Instead of a matrix {s,;} of four independent assortativity
parameters, we only use two free parameters (s,, = s, and
Spp = Sp), Which also determine the complementary proba-
bilities of choosing a candidate node from the other group
(sap =1 —15, and s, = 1 — s,). This approach reflects the
actual acceptance rate for the group of the focal node, in the
sense that group a is assortative if s, > 0.5 and disassorta-
tive otherwise. To see this, given s,, and s,,, we show that
there exists a reparameterization constant k that defines new
variables §,, = ks,, and 5., = ks, such that §,, = 1 — 5,,.
Setting k = Smisab meets that requirement, and so §, = §,, is
our chosen free parameter for group a. This reparameteriza-
tion, valid for 0 < §, < 1, impacts the evolution rate of the
model but not its fixed points.
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FIG. 1. Core-periphery typology and network evolution models. (left) Block-model typology of group relations detected by our core-
periphery measure €2,, with a as core and group densities p,, pp, and p,,. We characterize networks on a spectrum that ranges from hub-and-
spoke (1 > 2, > 0) and layered networks (€2, = 0), both of which are core-periphery relations, to disjoint groups (—1 < €, < 0). (right)
Main iteration steps of growing and rewiring models used in this paper, for two groups (circles and squares). Step I: Focal node. In the
growing model, a focal node (shaded) arrives in the network, with the node assigned to group a with probability n,. This focal node will find
m candidate nodes from the existing network. In the rewiring model, a focal node is selected randomly from the network. Step I1: Candidate
selection. For both models, with probability ¢, a candidate is selected via preferential attachment, i.e., with probability proportional to degree.
With probability 1 — ¢, a candidate is selected uniformly at random. Step Il1: Link creation. If the focal and candidate nodes belong to the same
group (e.g., a), a link is created with the choice homophily probability of the group (s,); otherwise, a link is created with probability 1 — s,,.
Step 1V: Iteration. In the growing model, steps II and III are repeated for m candidates, with the focal node possibly rejecting some candidates.
In the rewiring model, if the candidate node is accepted, a link is created between the focal node and the candidate. At the same time, the link

with a random neighbor of the focal node is removed.

B. Characterizing core-periphery structures

Core-peripheries were introduced in social network anal-
ysis by Borgatti and Everett [1]. Despite the intuitive notion
of group dominance, precise definitions and measurements of
core-periphery have been the subject of debate [3,4]. Borgatti
and Everett defined ideal group dominance as a fully con-
nected core, a spectrum of inter-group mixing, and a periphery
disconnected from itself, and measured core-periphery as the
correlation between the empirical adjacency matrix and an
ideal matrix of the same size. Many authors have since then
proposed various definitions of core-periphery with different
underlying assumptions or for specific domains [1-4]. Some
of the most common formulations focus on group densities
[4,34,35] but also include k cores [18], notions of centrality
[3], and network capacity [36]. More recently, Gallagher et al.
[4] have proposed a typology of core-periphery with two main
classes based on group densities: hub-and-spoke networks, as
a generalization of Borgatti and Everett’s ideal structures, and
layered networks, where the periphery is as likely to connect
to itself as to the core.

Given the various approaches to characterizing core-
peripheries in the literature, we choose two metrics that
capture different aspects of network structure, both requiring
a prior definition of which group is a potential core. For a
core group g € {a, b} where a, b are the two groups in the
network, we introduce 2, as a measure of the difference

between densities of core and periphery, which leads to the
classification of hub-and-spoke and layered networks as in
Ref. [4] (Fig. 1, left). We focus on the group with the largest
density, which we refer to as density dominant. For example,
group a is density dominant if o, > max{p.,, op}, With p, the
fraction of links in group g, and p, the fraction of intergroup
links. Then 2, takes the form:

_ Pab — Pb

2 ,
Pab + Pb

6]

which is 1 for the ideal hub-and-spoke structure, 0 for an
layered network, and —1 for two disjoint groups (Fig. 1, left).

As a second measure of core-periphery, we consider
Borgatti and Everett’s notion of an ideal core-periphery net-
work via the quantity r,, a continuous reparameterization of
the correlation between discrete adjacency matrices [1]. Using
a continuous form allows us to use it on the network statistics
of our mean-field analysis.

All of our theoretical and empirical analyses are based on
the group mixing matrix P, defined as P, = Lf’ where L,
is the number of undirected links between groups a and b,
and L is the total number of links. Both measures of core-
periphery can be written in terms of P, the total density p =
1% for N nodes, and the minority group size n,. We can
derive €2, via the approximation of local densities (derivation
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in the Supplemental Material (SM) [37]):

0
Pu ™ P @
n

a

For r,, we use a continuous form of the adjacency matrix. Let
n, and n, = 1 — n, be the relative number of nodes in each
group and 0 < o < 1 a continuous parameter that regulates
the distribution of intergroup links. The continuous form of
the Borgatti and Everett measure when group a is the core is
(derivation in the SM [37])

\/ﬁ(Paa - ni + aPab - Zananb)
\/(1 — p)(n2 + 2annp)(1 — n2 — 2angny)

3

}"a(Ol) =

We find r, by maximizing over all possible « values, so
that 7, = max, 7,(ar). The measure r, is largely dependent
on statistics from the core but not from the periphery. We
interpret this measure as correlation to an ideal; however, we
frame it in terms of core quality, as it places particular focus
on links within and, to a lesser extent, from the core. In other
words, 7, is larger when the density of the core explains a
larger fraction of the overall density of the network.

Notably, both discrete and continuous r, measures are
dependent on overall network density, which implies that
comparing r, values is only possible for networks of the same
density. We use fixed p = 0.1 in all theoretical analyses to
render them comparable and discuss additional limitations of
1y in the SM [37].

III. RESULTS
A. Mean-field equations

We begin by a systematic analysis of our models, with a
focus on examining the fixed points that describe the final
state of the network after the mechanisms have had sufficient
time to operate. We model the evolution of group interac-
tions in both of our network models using a combination of
approximate mean-field equations (MFEs) and simulations.
The former capture the group-level dynamics of our network
models by representing the intragroup and intergroup link
distributions in a continuous fashion, whereas the latter serve
as a validation for the MFEs. In our mean-field methodology,
we first find the fixed points associated with group mixing and
then characterize their level of core-periphery across parame-
ter space. We compare these results with simulated networks
of 5000 nodes for 100 000 time steps from three different
initial conditions.

We track the evolution of MFEs for the group-mixing ma-
trix P. Since the elements of P satisfy the linear constraint
P.. + P, + Py, = 1, it suffices to characterize the evolution
of the intralink distributions via % and % for each of our
models. Both growing and rewiring models share a candidate-
selection process, which constitutes the main building block
of our algorithms. This is mirrored in the MFEs by consid-
ering a matrix M, where M, is the probability of creating a
link between groups a and b. With probability ¢, we find a
candidate node from b via preferential attachment, and with
probability 1 — ¢, we find it via random choice; this candidate

is then accepted with probability s,, SO

My, = [C(%Pab + Pbb> + (- C)”b]sab’ )

which is derived from a formulation in terms of total degrees
K, and K}, that is, the sum of degrees of all nodes in groups
a and b, respectively (see SM [37]). The matrix M is not
symmetric, as the probability of creating a link from a to
b means selecting nodes from b only.

The MFEs for each model are a function of the matrix of
link-creation probabilities M, relative group sizes n, and ny,
and the group-mixing matrix P. Starting with the rewiring

model, we track dZ’“ as the difference between added links P},

and deleted links P, so that d{% = P} — P... We define T
as the probability that, starting from group a, we follow a link
and end up in group b. In terms of matrix P, T,, = 2*12;0[’ o
Using this notation, the number of added links depends on the
probability of selecting a and then creating a link to a, Pt =
naM,,. Then P,, will decrease under the scenario that (1) a
link is created starting from a to any group (M,, + M), and
(2) a random neighbor in group a is deleted (which happens
with probability 7,,). Therefore, P, = n,T,a(Myq + Map).
By definition, the growing model only adds links, so P,
only decreases when new links are connected to group b.

Thus, we write the growing MFEs in terms of the number of

edges L:
dPy, d (L 1/dL,, dL
= (=) =< ~ZPu). 5
dt dt\ L L\ dt dt
We model % = mn,M,, with m the number of candidate
. . . dL dL;;
neighbors for each new arrival, while ¢ =3, “t. Al-

though Eq. (5) depends on the total number of links L, such
dependency becomes negligible at the fixed points for matrix
P (for derivation see SM [37]).

B. Assortative and preferential attachment
lead to core-periphery

Our main results can be summarized in three key points.
First, core-periphery is an emergent structure of both growing
and rewiring models. Second, these models yield qualitatively
different core-periphery structures: The growing model is
more likely to produce a diffuse core (low but positive r,)
and a layered network (€2, ~ 0). The rewiring model leads
to more acute structural changes since it is more likely to
produce a sharp hub-and-spoke network with a clear core
(large rg and 2, > 0). Last, despite the qualitative differences
between models, both can produce a wide spectrum of core-
peripheries across the parameter space and capture other con-
figurations like disjoint communities and fully mixed groups.

Core-periphery emerges from the interplay of assortative
and preferential attachment (see fixed points of our rewiring
model in Fig. 2). In a stylized scenario with a single assorta-
tive attachment parameter and equal group sizes, any amount
of assortativity (s > 0.5) will create strong core-peripheries
in the presence of full preferential attachment (c = 1). When
some preferential attachment is replaced with uniformly
random selection (¢ < 1), core-peripheries still emerge, but
a larger amount of assortative attachment s is required to
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FIG. 2. Homophily and preferential attachment lead to core-
periphery. Core-periphery emergence in terms of differences in
correlation to the ideal (r, — ;) in the rewiring model as a function
of assortativity (s = s, = s,) and preferential attachment ¢, with
equal group sizes n, = 0.5 and fitted simulation values (crosses).
Large homophily and preferential attachment lead to a bifurcation
where either group can become a core. The measure r, — r, helps
visualize this bifurcation since it is positive (negative) when a (b) is
a core. The dotted line represents unstable and stable solutions for
different ¢ values: If ¢ has bifurcated for given s, the dotted line is
an unstable solution; otherwise, the solution is stable. Insets: Visual
representations of networks with N = 200 nodes and L = 1000 links
at four stable points.

reach the transition point. Note that, in this scenario, both
groups can become cores since the MFEs have two stable
fixed points corresponding to the case where each group is
the core (r, — rp either positive or negative). This happens
because no group has clear assortative or size dominance,
resulting in two symmetric fixed points dependent on initial
conditions or small stochastic fluctuations. In the rewiring
model, such dependence occurs when both groups are assor-
tative, including when one group is smaller than the other
(for dependence on initial conditions see the SM [37]). The
lack of core-periphery (r, — r, = 0) can imply vastly differ-
ent network configurations: If both groups are disassortative
the resulting network is mostly mixed, but in an assortative
scenario, the network will consist of mostly disjoint groups.

We explore the phase space of parameters in both models
(Fig. 3). The growing model has single fixed points over the
whole phase space, producing diffuse cores when a group
is density dominant, i.e., in the regions where the density
of a group is larger than other local densities, there is little
correlation to the ideal core-periphery. For fixed assortativ-
ity, higher values of preferential attachment largely result in
layered networks (€2, ~ 0). In contrast, the rewiring model
generates cores with a higher correlation to the ideal hub-and-
spoke structure (large r,) as well as increasingly less dense
peripheries (£2, grows along with ¢).

When comparing both models over the same phase space,
rewiring has a symmetry-breaking effect on the baseline
growth model. The network behaves as a sharp hub and
spoke (large £2,) if one of the groups is assortative, and
even slight disassortativity (sg > 0.4) can lead to a group
becoming the core if the other group is more disassortative.
When both groups are assortative in the rewiring dynamics,
either can become the core. The symmetry-breaking effect
also occurs when both groups are equally homophilous (lower
panel in Fig. 3). Whereas for the growing model the density-
dominant group is usually the larger group, in the rewiring
model, increasing preferential attachment results in either
group becoming a core. Although our models show that larger
groups can more easily become a core when assortativity
parameters are equal, preferential attachment can boost an
assortative minority group (n, < 0.5) to become a core (see
additional regions of the phase space in the SM [37]). These
differences between growing and rewiring models are likely
explained by link rigidity in the growing model, where a given
link remains static once it has been added to the network
(conversely, links in the rewiring dynamics are constantly
shuffled).

Note that the assortative attachment parameters alone
can explain core-periphery relations in both growing and
rewiring scenarios (see the SM [37]), e.g., when one group
is assortative and the other disassortative. However, pref-
erential attachment changes these baseline relations and
induces sharper core-periphery configurations, particularly in
terms of €2,.

C. Likelihood functions for evolution models

We use a temporal maximum likelihood (ML) approach
to fit both of our models to real-world data. We use ML
estimates for parameters 6 = (s4, Sp, c) and assume n, to
be directly observed from the data. We model the tempo-
ral dynamics as a Markovian process: The probability of
observing G;, a network at time #, solely depends on the
network at the previous time step P(G;|G;—1,0, i), where
i; is the group of the focal node at time 7, and is given by
the data. For T time steps, the log-likelihood function takes
the form:

T
10) =) InP(GIG 1,6, i) 6)

t=1

The stepwise likelihoods P(G;|G;_1, 0, i;) are based on the
multinomial distribution, although they differ for the growing
and rewiring models. The multinomial distribution captures
how m independent trials are divided between k categories.
As an example, using the M-matrix notation, a focal node
from group b might choose a rewiring candidate (m = 1)
from k = 2 categories a or b with probabilities My, and My,
respectively. Although a plausible likelihood function, this
form is mathematically degenerate for estimating c, so we use
a degree-based approach. We model the probability pzb that a
focal node from group a creates a link to a node of degree k in
group b. Considering that nf is the number of nodes in group
b of degree k and obviating the notation for temporal data ¢,
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FIG. 3. Fixed-point phase space analysis. Two measures of core-periphery for (left) growing and (right) rewiring models. Bold gray lines
enclose areas where a group g is density dominant (e.g., for A+, we have p, > max{pa, 0»}). Colors depict r, and dotted lines contours of
Q2,, with emphasis on 2, = 0 (a full onion network). In the rewiring model, bold dotted red lines enclose areas with three fixed points, where
both groups can become a core (A+, B+), and an additional fixed point is unstable (U). Strict hub-and-spoke core periphery occurs when
Q, > 0. (top) Models with fixed high preferential attachment (¢ = 0.95) and equal group sizes (n, = 0.5), varying homophily. (bottom) Fixed
associativity (s, = s, = 0.75) varying preferential attachment and minority size.

this probability is

nlk n?
W=lecaerrt—sx+U-="r"—< 5w (D
‘ > (ndj+ntj) > (n +n?)

Denoting by xi the observed number of links created
from a focal node in group i =i, to a node of degree k
in group b and generalizing m trials at each time step,
we have that the likelihoods at time ¢ for the rewiring
model are

m! : ia : ib
P(G|Gi-1,0, i) = = | [ @ F O PPy,
e ! nkx;a(t)!x;b(t)!lj k k

®)

The likelihood function for the rewiring model follows Eq. (8)
when m = 1. The growing model, however, includes several
candidate connections (m > 1) and an unobserved number of
rejected candidates (denoted x™ with probability p™). We ob-
tain the marginal probability distribution by integrating over
the unobserved number of rejected candidates, thus yielding

two different expressions for the likelihood functions of our
models (for details on these functions see the SM [37]). The
functions do not have simple analytic solutions, and thus,
we use a numerical optimization approach with a BFGS al-
gorithm [38]. We validate our procedure by reconstructing
the parameters from simulated data (details available in the
SM [37]).

The focus on parameter inference means that the nonpa-
rameterized mechanistic components of our model are not
modeled. These components include the randomized selection
of the focal node (assumed to occur with probability n,) and
the link deletion step. In practice, the focal node is determined
by the data themselves, and link deletion in the rewiring model
occurs when the lifespan of a link is longer than a sliding
window Atf and not when a focal node creates a new con-
nection. These deviations could effect differences between
observed and predicted group-mixing matrices P; however,
we found this approach to be the least invasive solution for dis-
parities between our evolution model and the empirical data
(details of data preprocessing to fit our models are available in
the Appendix).
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D. Evolution mechanisms in empirical networks with
core-periphery

We showcase an empirical association between preferential
attachment, assortativity, and core-periphery, and illustrate
the potential of our models in predictive settings by fitting
five network datasets using ML estimates. We select datasets
with the criteria that they are temporal in nature and have at
least two predetermined groups of nodes. These datasets cover
different fields and span large observation periods, including
Twitter discussions about climate politics collected in Finland
for 11 months, with the minority group composed of political
actors (Twitter), the evolution of gendered dynamics in boards
of directors over 9 years (Boards), two citation networks with
groups determined both by geography (Cit-geo) and subfields
within physics (APS), and airport use networks in the United
States (Airport). When discussing social networks, we re-
fer to assortative attachment as choice homophily [23]. For
each dataset, we fit the model that is more likely to capture
the evolution mechanisms, so that our two citation datasets
are growing networks, while Twitter, Boards, and Airport are
rewiring (even if these datasets also include node growth, we
focus on link rewiring as the more prominent mechanism).
All datasets allow for the construction of various networks
based on metadata or different temporal and geographical
aggregations. We systematically filter for networks that (i)
display some degree of core-periphery and (ii) show evidence
of preferential attachment (see the Appendix for details on
each dataset).

Our data analysis confirms several key results regarding
core-periphery in networks. Figure 4 depicts both the em-
pirical association and theoretical predictions of our models,
where the density of each group is related to its estimated
assortativity. We find that the predefined groups in the data
have an aligned core-periphery structure. In such alignments,
the core groups are more assortative than peripheries (s, >
sp). We corroborate that the evolution mechanisms follow
their more common typologies, i.e., rewiring networks are
hub-and-spoke, whereas growing networks fall between lay-
ered and slightly disjoint structures. This likely occurs due to
the effect of preferential attachment, which largely increases
intergroup links for the growing model and intracore links for
the rewiring models.

Our model predicts that the preferential attachment mech-
anism strongly amplifies core-periphery structures that would
otherwise be weak if solely explained by different assortative
preferences within core and periphery nodes. To quantify this,
we examine the effect of preferential attachment via the the
group-mixing matrix P, defined as the fraction of links that
fall within/be.tween groups, P, = m We compare
P* and P’_,, i.e., the MFE fixed points using the estimated
parameters P* against the fixed points with no preferential
attachment (c = 0). We find that, in the growing model,
preferential attachment increases the number of intergroup
links at the expense of the periphery when the periphery
is disassortative, while slightly increasing the number of
within-periphery links when it is assortative. Notably, for the
rewiring model, preferential attachment vastly increases the
fraction of links within the core at the expense of links within
the periphery.

The Twitter dataset of discussions of climate policy is
an interesting example of a network with a homophilous
core and a heterophilous periphery. The peripheral majority
group (composed of nonpolitician Twitter users) displays het-
erophilous behavior. This could be related to the fact that the
minority group (politicians), are clear stakeholders in pub-
lic policy, which implies a form of influence. Indeed, such
public positions might already be a form of preferential at-
tachment in the sense that people retweet politicians because
of their importance outside of Twitter. From the perspective
of our model, this is captured as a heterophilous choice to
retweet, and indeed, such heterophilous-homophilous pairing
could already explain some forms of core-periphery. However,
modeling preferential attachment in terms of node degrees
allows us to see a distinct effect: Retweeting popular people
means that even more people are exposed to them in a way
that cumulatively amplifies their messages. In the end, our
models strongly suggest that these compound effects yield
structural group dominance in the overall network where the
peripheral nodes are more likely to be connected to politicians
than to nonpoliticians, while politicians form a tight net. This
result is in line with Ref. [15], which reports that discourse
networks on Twitter shift to core-peripheries when sharing
specialized information from government agents (forming the
core) but become decentralized in generic discussions. We
highlight that this analysis does not account for a polarized
discourse. However, one could hypothesize that different po-
litical parties have central roles within their own political
spheres.

Our empirical analysis is constrained by some limitations
that hinder our capacity to predict the mixing patterns in P for
some datasets. Real-world data might deviate from some of
the assumptions of our model. For example, nodes might not
be uniformly active in link creation but display more hetero-
geneous behavior. Nodes might also follow additional mixing
patterns, e.g., other assortativity groupings based on politi-
cal positions on Twitter. In the case of the rewiring model,
link deletion might not necessarily follow from link creation.
Despite these shortcomings, our model can provide further
insights in datasets where these constraints are not as strong.
In the following section, we examine an application where
parameters are not static, showing how parameter changes
affect mixing patterns and core-periphery.

E. An application: Effect of interventions in social networks

Core-periphery is closely related to the concept of the old
boys’ club in social sciences, in which wealthy people with
similar social and educational backgrounds help each other in
business and restrict opportunities for outsiders [39]. In social
networks, people in the core are more likely to be connected to
well-connected people; therefore, they enjoy advantages that
come with social capital such as access to novel ideas, job op-
portunities, and referrals [40]. Here, we examine the use of our
model in the Boards network [41], which includes monthly
data on boards of directors in Norway between 2002 and
2011. The groups are determined by two genders, and a link
reflects that two people belong to the same board. We contex-
tualize three dates that reflect significant behavioral changes
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FIG. 4. Empirical association between estimated parameters and group densities in core-peripheries and effect of preferential attachment

given parameters. For each plot, each line represents a network, with the x axes depicting the estimated assortative mixing parameters (s, by
triangles, s, by dots) for both groups under (left) growing and (right) rewiring models. For the visualization of intergroup density py ,, we
define s,., = @ The top row depicts the association to observed densities at the end of the observation period, and the bottom row depicts
the estimated effect of removing preferential attachment. Here, positive (negative) values imply gained (lost) links in a group. We observe that
minority nodes (g = a), which are the core in most of our datasets, tend to be highly assortative, while growing (G1) and rewiring (R1) models
follow the typologies of layered and hub-and-spoke structures based on the order of group densities, with an average 2, = 0.224 for rewiring
networks and Q, = —0.04 for growing networks. This is likely explained by the effect of preferential attachment that increases intergroup
mixing in the growing model (G2) and core mixing in the rewiring model (R2). We normalize group densities to render datasets visually
comparable as empirical densities vary widely. The normalization p, = ﬁ then affects the range but not the order of group densities. To

see the effect of preferential attachment, we compare with a homophilous-mixing baseline. P* — P)_, depicts the difference in fixed points
between the estimated full model (c, s4, sp, 1,) and the model for ¢ = 0, where positive (negative) values imply a loss (gain) of links on the

entries of the matrix P. For the Airport and Twitter datasets, estimated parameters cluster together.

affecting our parameters: In 2004, women made up <12% of
boards, triggering talks between the Norwegian government
and companies to address such gender disparity. Since this
issue was not addressed, in 2006, the government established
a 2 y period for reaching at least 40% representation of each
gender. On average, boards complied, and this was the case
after 2008 [41].

We examine the effect of policy interventions, namely, to
increase the minority size (fraction of women) per board, on
the dynamics of core-periphery in the network. To do so, we
analyze the Boards dataset using the rewiring model (Fig. 5).
Although there is only one direct policy, such an increase of
the minority size per board entails several indirect effects in

homophily and preferential attachment. We find that, in the
beginning, women are much more homophilious than men
[Fig. 5(a), s, > sp], whereas at the end of the observation
period, both genders largely converge in near-random mixing
values (s,, s, ~ 0.44). This is largely in line with the policy, as
it encourages mixing by increasing the fraction of women per
board, not at a global scale. However, we also find that the
preferential attachment value c¢ largely increases over time.
At the same time, women still make up <40% of all nodes
(despite being, on average, at least 40% of members in each
board). This is on par with findings from Ref. [41], in which
it was observed that some women directors became promi-
nent directors in the field, participating in several boards.
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FIG. 5. Analysis of the Boards dataset, including the effect of government policy on estimated parameters and simulated policies affecting
preferential attachment. In these data, women are the minority group a (red) and men the majority group b (blue). (a) Evolution of our four
fitted model parameters following five stages of an affirmative action government policy. (b) We sequentially display the evolution of the group
mixing P matrix at each time range (five panels with dates) and include the effect of varying preferential attachment values on the x axis, where
the line ¢° is the estimated value. In the y axis, we depict the evolution of group mixing P, where large dots are the initial values P° and crosses
the final values P". Fixed points of the group mixing matrix P* are depicted as solid lines, and shaded areas represent regions where the fixed
points are in core-periphery with a as the core. We compare the actual network evolution during the observation period (dots to crosses) to
simulated policies (arrows) of increasing or decreasing ¢ given the initial conditions of the time range. Both simulated policies and empirical
evolution tend toward the fixed points, with the empirical observations largely matching predicted trajectories.

Similar observations regarding positive homophilous tenden-
cies among women has also been shown in the case of
Japanese board networks [42].

We also take the five temporal snapshots of the Boards
network and show how the data evolve [Fig. 5(b)]. The tra-
jectories predicted by our model capture the changes in the
data; by the last time interval, the behavior seems to be near
stationary. In the first two periods, men capture between 80
and 60% of connections, with a decreasing trend. In latter
periods, dynamics show that ¢ has increased to 0.70, and
homophilies are near random mixing. At this stage, the effect
of ¢ on the group-mixing P is small, likely changing the
distribution of links within groups, not between them. Our
model demonstrates that interventions that modify homophily
and preferential attachment have a profound impact on the
fixed points, leading to more favorable outcomes for women.
Although the network structure is gradually approaching these
fixed points, our model predicts that the transition to fully real-
ize the potential of these new circumstances may be impeded
by substantial structural inertia.

Our model allows us to examine the level of group-mixing
P if there had been an alternative policy that would af-
fect a different parameter, such as preferential attachment
(we include full interventions in the SM [37]). This could
happen, e.g., by restricting the number of boards that a sin-
gle person can belong to or by encouraging multiple board
memberships. We track the evolution of the initial P matrix
from new c values (red and blue arrows in Fig. 5). According
to our model, increasing preferential attachment could result
in women becoming a core at the fixed point if such a policy
did not affect other parameters. In most cases, reducing c
would be disadvantageous to women as a group, as they would
likely share an even smaller fraction of connections. This
investigation can pinpoint scenarios in which boys’ clubs (or
elites in general) emerge in social networks and examine ways
to mitigate their effect. In the case of the Boards network,
the indirect increase of preferential attachment leads to some
female directors becoming prominent, with an emergent elite
not only determined by gender but by participation on several
boards [41].
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IV. SUMMARY AND DISCUSSION

Our findings show that core-periphery is an emergent effect
of the interaction between two common network evolution
patterns, assortative and preferential attachment. We focus on
core-peripheries where groups are identifiable from extranet-
work characteristics and where group behavior is a driving
mechanism in network evolution. We explore two minimal
network evolution models that incorporate varying group
sizes, preferential and assortative attachment, and basic mech-
anisms of real-world evolving networks: a growing model
where nodes are added and a rewiring model where links are
redistributed. Our models disentangle assortative and pref-
erential attachment by creating connections with a two-step
mechanism. First, a focal node finds a candidate to connect to,
selected with varying degrees of preferential attachment. Then
the focal node accepts or rejects the candidate via assortativity
or choice homophily. Preferential attachment exposes focal
nodes to popular, high-degree candidates irrespective of their
group partitions, while assortativity determines whether the
two nodes will actually connect.

These two mechanisms interact in a way that leads to
core-periphery, even in the presence of two assortative groups
(which would otherwise be largely disjoint communities).
Once one of the groups starts gaining dominance in number of
links, the focal node is mostly exposed to the dominant core,
so links within that group are favored by both mechanisms,
making the periphery group lose even more connections rel-
ative to the core. This iterative process promotes cumulative
effects that lead to a specific group gaining a dominant posi-
tion in the network. This scenario can be triggered by several
factors including the initial network configuration, one group
being more assortative than the other, relative group sizes, or
even random perturbations.

We have found that group dominance differs qualitatively
for growing and rewiring network dynamics. The growing
model develops structures more akin to layered networks
with high intergroup connectivity and diffuse cores, while
the rewiring model produces cores connected mainly to
themselves and highly disconnected peripheries. We largely
attribute these differences to edge deletion when rewiring.
Indeed, both models have the same mechanism for link cre-
ation and differ when a neighbor detaches from the focal
node. Over longer time scales, this means that links can ef-
fectively get transferred from one group to another. Although
real-world link formation and deletion might involve more
elaborate mechanisms, the joint analysis of minimal growing
and rewiring models sheds light on the various ways in which
the interaction of assortative and preferential attachment leads
to groups of nodes gaining dominant positions.

In empirical networks that display core-periphery, our
model fitting shows that core nodes tend to be highly as-
sortative, with the more distinct core-peripheries having a
larger amount of preferential attachment. We have found ev-
idence that some empirical core-periphery networks may be
driven by an assortative core and a disassortative periphery,
highlighting the importance of asymmetric group mixing. We
have also observed that empirical data largely follow the
core-periphery typology displayed by our theoretical models:
hub-and-spoke networks with sharp cores for the rewiring
dynamics and layered networks for growing dynamics.

Real-world networks probably display more diverse behav-
iors than our models suggest and are likely to be in different
evolution stages. Importantly, we assume that group-level be-
havior is a driving force in network evolution. However, group
affiliations might not be static, binary, or defined as a single
category. Correspondingly, when performing data analysis,
the available metadata might not fully align with the prede-
termined groups [43]. As an example, in the Boards network,
the homophilies tend toward random mixing, but preferential
attachment increases. Authors of previous work have shown
that, at the latter stages, a group of women became promi-
nent in several boards. In this case, it would be interesting
to assess whether different group partitions became relevant
or whether only the increased preferential attachment was at
play. A scenario we do not cover is when emergent topo-
logical structures affect such node attributes. For example,
in citation networks, first-mover advantage [44] may result
in nodes gaining income or access to prestigious institutions.
However, such scenarios would not explain, e.g., the role of
elite education, race, and gender in old boys’ networks [45] or
the shift between centralized and decentralized social media
dynamics with particular nodes at the core [15]. In many such
cases, it is helpful to model group behavior as a driver of
social network evolution. Our results strongly suggest, how-
ever, that if highly connected nodes become assortative, the
combination of preferential and assortative attachment would
further entrench their dominant position in the network. Other
possible extensions to our model could include systematic late
arrivals—a group of people arrives at a latter stage to the
network—as a way of assessing mechanisms for the social
inclusion of minorities.

It is possible that networked systems may not evolve purely
through growing or rewiring mechanisms and that more in-
tricate versions of the link deletion mechanism exist beyond
those included in our model. Thus, we mostly avoided linking
evolution mechanisms to mean-field predictions (we do so
only for the Boards dataset, where rewiring conditions resem-
ble those of our models). Instead, we have compared the effect
of removing preferential attachment on all networks. We find
that preferential attachment amplifies existing disparities in
assortative mixing, increasing the share of links within the
core for the rewiring model and intergroup links for the grow-
ing model.

An example of how our model can potentially be used
for real-world applications comes out of the analysis of the
Boards dataset, a historical scenario with a clear policy in-
tervention that directly affected minority group sizes. While
the two gender groups became more likely to connect to each
other (minimizing homophily disparities), the female group
remained a nominal minority at a global level. Our model
serves as an analysis tool for designing and understanding
alternative interventions. Policies that decrease preferential at-
tachment (by, e.g., limiting the number of boards a person can
belong to within a time period) could have largely decreased
the fraction of links within the minority.

Our findings demonstrate that the combined effects of pref-
erential and assortative attachment can provide a compelling
explanation for the emergence of core-periphery structures in
networks. Furthermore, our models reveal that the different
core-periphery typologies outlined in the literature [4] can
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arise organically as a result of network evolution governed by
these simple mechanisms. By understanding core-periphery
structures as natural outcomes of network evolution, we can
begin to extract valuable insights about how these networks
were formed and developed.

The code used in this paper is available online [46]. The
data for Boards is available in Ref. [41], Airport in Ref. [47],
and APS in Ref. [48]. Cit-geo is subject to a nondisclosure
agreement and belongs to Clarivate Analytics Web of Science
database. Nonpublic data from Twitter (now known as X) is
available from the authors upon reasonable request.
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APPENDIX A: EMPIRICAL DATA ANALYSIS

We analyze datasets of two growing and three rewiring
systems. For each case, multiple networks can be built.
We systematically choose networks that display evidence of
(i) core-periphery with groups determined by metadata and
(ii) preferential attachment. We reject networks where the par-
titions induced by metadata do not display core-periphery, as
they fall outside the scope of our study. However, it is possible
that some topological core-peripheries do not align with the
available metadata [43], whether because there are different
mechanisms at play, or because the metadata is insufficient.

For (i), we construct networks for each dataset. We do not
use the correlation measure r, of Borgatti and Everett [1] since
it depends on the overall network density, making compar-
isons between networks difficult. Instead, we use a two-step
approach based on group densities at their final stage. First,
we identify whether a group g is density dominant in the sense
that pg > max{pg, p;} for g the other group. Second, we char-
acterize the relationship to the periphery group using €2,. For
the growing network, we choose networks where 2, > —0.1,
whereas for the rewiring scenario, the criterion is €, > 0.1.
The different cutoff values correspond to differences in the
networks since the growing models tend to concentrate more
intergroup values in the datasets.

For (ii), given the ML method described in the main text,
we test for evidence that the model with preferential attach-
ment improves the description of the data over the model that
only includes homophily estimates. To do so, we perform a
likelihood ratio test for ¢, retaining networks that strongly
reject ¢ = 0.

APPENDIX B: CONSIDERED DATASETS

We use five temporal datasets from which we analyze sev-
eral core-periphery pairs. For the Airport, APS, and Cit-geo
datasets, many two-group subnetworks can be reconstructed,
in which case we systematically analyze all possible subnet-
works.

For the rewiring model we used a Ar sliding window
approach, where we construct a network using data for Ar.
As we advance in time, we delete the links and nodes that are
not within Af of the most recent item. The datasets for the
rewiring model are

(1) Boards: Boards of directors in Norway during 2002—
2011, with monthly aggregation where groups are women (a)
and men (b), with the gender determined either by analyzing
the names or researching the individuals for ambiguous cases
[41]. We use this dataset for a detailed analysis and use known
policy details to construct the networks, without filtering out
by core-peripheriness. We use Ar = 1 year.

(2) Twitter: Dataset from social media platform X in
Finland, collected between February 2020 and January 2021,
when the platform was known as Twitter. The data collec-
tion included hashtags related to climate change discussions.
Group a is politicians from all political parties as well as
political candidates from the previous election, while group b
is all other actors in the network. We construct several datasets
with Ar = 0.5, 1, 3, and 6 months, with retweet actions on
the platform. Twitter is now known as X; we use the former
name, as it was the platform used during the data collection
period.

(3) Airport: Passenger use of airport network in the United
States from the Airline Origin and Destination Survey (DB1B)
from the United States Department of Transportation [47],
with our dataset spanning the years 1993-1995. Nodes rep-
resent airports, and links are flights between them. For the
groups, we used nine regional divisions defined by the United
States Census Bureau; we tested all pairwise interactions. We
constructed networks on 2 year-periods, with Ar = 1 year.

For the growing model, we construct networks by adding
nodes and their associated links as they appear in the data. To
account for parameter changes, we divide the data into five
observation periods. Starting from the second period, we use
all preceding data as initial conditions. The datasets used for
the growing model are

(1) APS: Citation networks for the American Physical
Society (APS) journal of physics, where groups are different
predefined subfields of physics. We use the version of the data
obtained in 2015 [48].

(2) Cit-geo: Citation network from publications in the
Clarivate Analytics Web of Science database, where we focus
on regional interactions during the period 1900-2010. We
define groups using different geographical and political ag-
gregations, including USA, Western Europe, Eastern Europe,
and Latin America, among others.
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