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Full and fractional defects across the Berezinskii-Kosterlitz-Thouless transition
in a driven-dissipative spinor quantum fluid
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We investigate the properties of a two-dimensional spinor microcavity polariton system driven by a linearly
polarized continuous pump. In particular, we establish the role of the elementary excitations, namely, the so-
called half-vortices and full vortices; these objects carry a quantum rotation only in one of the two, or both, spin
components, respectively. Our numerical analysis of the steady state shows that it is only the half-vortices that
are present in the vortex-antivortex pairing and dissociation responsible for the Berezinskii-Kosterlitz-Thouless
transition. These are the relevant elementary excitations close to the critical point. However, by exploring the
phase-ordering dynamics following a sudden quench across the transition we prove that full vortices become the
relevant excitations away from the critical point in a deep quasi-ordered state at late times. The time scales for
half-vortices binding into full vortices are much faster than the vortex-antivortex annihilations.
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I. INTRODUCTION

In Bose-Einstein condensation, the onset of macroscopic
coherence is connected with the breaking of the Hamilto-
nian symmetry and the system spontaneously choosing an
arbitrary but fixed phase. In two dimensions, quasi conden-
sation is accompanied by the annihilation of topologically
charged objects carrying quantized orbital angular momentum
[1]. Quantum vortices play an important role in quantum
fluid mechanics; in particular, the type of the topological
structures and their reciprocal interactions are crucial for
understanding the two-dimensional (2D) superfluid phase
transition. Quantum vortices have been predicted and ob-
served in a plethora of systems including superconductors [2],
cold atoms [1,3], quantum liquids [4], and quantum fluids of
light [5].

Two-dimensional fluids of polaritons, bosonic quasiparti-
cles emerging from the strong coupling between a microcavity
photon mode and a quantum-well exciton, constitute a
canonical example of optically driven-dissipative condensates
characterized by strong nonlinearities [6,7]. Photon polariza-
tion coupled with the two-component nature of the excitons
spin, making the polaritons a superfluid with a spinor order
parameter [8]. Differently from their scalar counterpart, spinor
superfluids exhibit a richer variety of topological excitations
[9]: a vortex state carrying a quantum charge in only one
of the two components of a spinor system is referred to
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as a halfquantum vortex (HV), distinguished from a pair of
vortices with identical topological numbers in both com-
ponents, the so-called full quantum vortex (FV). Two-
dimensional multicomponent quantum fluid can also hosts
spin quantum vortices (SVs), whose topological charge is
purely determined by their polarization component. The
winding number of a SV—called spin winding number—
corresponds to an integer number of times that the SV linear
polarization vector rotates around the SV core [10]. Fraction-
ally charged vortices have been observed in superconductors
[11] as well as antiferromagnetic atomic condensates [12,13].
In polariton condensates, integer [5], half-integer [14,15] and
spin vortices [10] have been reported. In recent years, a lively
debate originated around the role of different topological ex-
citations in the onset of the superfluid polariton phase. In
equilibrium linearly polarized exciton-polariton condensates,
HVs have been demonstrated to constitute the topological ex-
citations possessing the lowest energy [16]. They are therefore
expected to be responsible for driving the superfluid phase
transition, with a joint critical point in both of the spinor
components. The controversy on whether FVs or HVs are the
relevant excitations leading to the topological phase transi-
tion [17–19] followed from the introduction of a transverse
electric-transverse magnetic (TE-TM) splitting, intrinsic to
the semiconductor microcavity system and responsible for the
coupling between HVs with different degrees of spin [20].
While it has been showed that, accounting for incoherent
driving and dissipation, only FVs are dynamically stable exci-
tations [21], the question concerning the fundamental role of
HVs and FVs on the nature of the phase transition is currently
yet to be answered.

In this article we investigate numerically a nonequilib-
rium Berezinskii-Kosterlitz-Thouless (BKT) phase transition
considering, in contrast to the previous works [22–25], the
intrinsic spinor nature of the 2D polariton condensate. We
explore both the steady state and phase ordering following a
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sudden quench across the critical point to assess the role of
fractional and full vortices in both scenarios.

II. MODELING SPINOR OPO POLARITONS

We evolve the photonic and excitonic complex fields (ψ ,
φ) described by the equations of motions within the truncated
Wigner approximation (h̄ = 1) [6]:

id

(
ψ±
φ±

)
=

[
H0

(
ψ±
φ±

)
+ HTE-TM

(
ψ∓
φ∓

)
+

(
F±
0

)]
dt

+ i

(√
κψdW ψ

±√
κφdW φ

±

)
. (1)

In this notation, the Hamiltonian operator reads

H0 =
(

− ∇2

2mph
− iκψ �R/2

�R/2 g|φ±|2w + α|φ∓|2w̄ − iκφ

)
, (2)

where the indices − (+) are related to the left (right) cir-
cular polarizations for photons and − (+) 1 spin states for
excitons, respectively. Here, κψ,φ indicates the photon and
exciton decay rates, g (α) the interactions between the same
(different) spin excitons, �R the Rabi coupling, and |φ±|2w =
(|φ±|2 − 1/dA) and |φ∓|2w̄ = (|φ∓|2 − 1/2dA) the reduced
Wigner densities [6] with dA = dxdy the grid unit area. In
Eq. (1), the TE-TM operator corresponds to

HTE-TM = β

((
∂
∂x ∓ i ∂

∂y

)2

0

)
, (3)

with β the TE-TM splitting coefficient. The system is with a
linearly polarized homogeneous continuous-wave pump F+ =
F− = fp exp i(kp · r − ωpt ) with momentum kp, strength fp,
and frequency ωp, resonant with the bare lower-polariton dis-
persion, so that polaritons undergo parametric scattering into
the signal and idler states [26]. dW ψ,φ

± are the independent
white complex Gaussian noise terms, with zero mean and
local correlations in time and space: 〈dWm(r, t )dW ∗

m′ (r, t )〉 =
δm,m′δr,r′dt/dA and 〈dWm(r, t )dWm′ (r, t )〉 = 0 (where for
convenience we rewrite dWm ≡ dW ψ,φ

± ). Correspondingly,
physical observables can be calculated by appropriate aver-
ages over stochastic realizations.

In this work, we have considered specific system pa-
rameters relevant for current experiments [10,15]: mph =
2.3 × 10−5m0, where m0 denotes the electron mass, �R =
4.4 meV, g = 2 µeV µm2, and κψ,φ = 0.1 meV. We have ig-
nored the exciton dispersion as mX 
 mph. The stochastic
equations Eqs. (1) are implemented into the XMDS2 software
[27] using a N2 grid with N = 256 points and length L =
N × a, where a = 0.87µm is the uniform grid spacing. The
pump is injected at finite momentum kp = (kp, 0) in the x
direction, with kp = 1.6 µm−1.

The introduction of the TE-TM coupling term in Eq. (1)
leads to energy splitting between the different linear polar-
ization states of the photonic fields; this acts as an effective
photonic spin orbit coupling [8]. Notably, the strength of such
a term in semiconductor microcavities is intrinsically always
nonzero, and dependent on the specifics of the microcavity
sample. To make contact with experiments, we use typical

FIG. 1. Schematic diagram and typical phase profiles with topo-
logical defects in the polariton optical parametric oscillator (OPO)
regime. (a) Sketch of the microcavity polariton system, excited by
a linearly polarized pumping mechanism. Both FVs and HVs are
optically emitted from the cavity. The phases ϑ of the (b) left (−)
and (c) right (+) polarization fields of two typical phase distributions
above the lower threshold. Vortices and antivortices are depicted in
red and black, respectively. While the top two vortices in the (+)
component correspond to two HVs, the four vortices in the lower
part of the sample correspond to two FVs with opposite sign.

parameters from Ref. [9]: β = 0.026h̄2/2mψ , where mψ =
2.310−5 m0 and m0 the electron mass, corresponding to β =
0.043 meVµm2. As previously mentioned, each polarization
state is able to host either HVs or FVs [28], which can be
studied experimentally by measuring the light leaking from
the microcavity, as depicted in Fig. 1(a).

The exciton-exciton interactions are spin dependent; they
are repulsive between two excitons with the same spin and
attractive between excitons with opposite spins [29,30]. This
leads to a circulation-dependent interaction between vor-
tices of different polarizations [16]. Noteworthy, experimental
measurements find that typical cross-spin scattering rate is
about 5%–10% of the same-spin scattering rate [21,31].
Thus, we chose a typical value α = −0.1g = −0.2 µeV µm2.
Similar ratios of inter- and intracomponent interactions are
considered in the case of multicomponent ferromagnetic
superfluids [32].

At the mean-field level, the sum of the single-component
OPO signal and idler phases are locked to that of the external
pump [26,33]. In the spinor quasi-ordered phase, considering
the splitting of linear polarizations as a phase-locking term
between the two components, only FVs can be excited. This
picture changes substantially with the inclusion of fluctuations
modeled by the noise term in Eq. (1) where the quantum
fluctuations are responsible for the separation of FVs into HVs
[10,15].
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III. THE SPINOR BKT PHASE TRANSITION

We proceed by investigating the steady-state properties
characterizing the spinor BKT phase transition. The stochastic
equations (1) are let to evolve in a two-dimensional plane
with periodic boundary conditions until the steady state is
reached. The Wiener noise terms are adiabatically switched
on along the dynamics, and mean-field wave functions are
used as initial conditions. Once the steady state of the photonic
component is achieved, a filtering process is applied in order
to extract the different fields ψn(r, t ) for the modes n = s, p, i
(i.e., signal, pump, and idler), as well as the corresponding
momenta kn at which each mode is peaked in the momen-
tum distribution. Details on the filtering process, the resulting
steady-state diagram, and identification of the critical points
are reported in Refs. [22,34]. Our steady-state calculations
show that, as in the single-component case, the spinor OPO
quasi-ordered phase possesses two different thresholds. We
extract a lower mean-field threshold (LT) at fp = 1.082 and
an upper threshold (UT) at fp = 5.149 (the latter being the
same as in the single-component case).

To further elucidate the role of different vortex species in
the phase transition, we detect, locate, and count the number
of HFs and FVs. To recognize a single topological charge, we
look, in each component, for quantized circulation loops in the
phase, as done in our previous works [22,23]): this allows us
to extract the position and circulation sign of the topological
defect. By spatially overlapping the vortex positions of both
components, we count a FV where two single-component
vortices overlap in the numerical grid; a HV is instead de-
tected in the case where only a single topological charge is
present. Typical phase configurations of the two polarization
components with a FV and a HV are reported in Figs. 1(b)
and 1(c). Finally, measuring the sign of each single circulation
allows us to distinguish between HVs and FVs of different
signs.

Figure 2(a) shows the number of the different vortex
species across the spinor phase transition, obtained by cal-
culating the steady-state distribution of topological defects
at different pump strengths fp across the LT. We plot the
normalized average number of HVs (FVs) as red circles
(blue diamonds) and green triangles (orange squares), for the
left (−) and right (+) components, respectively. We omit to
plot half-antivortices (HAVs) in each of the two components,
as we find that these curves overlap exactly their opposite-
circulation counterparts, i.e., HVs, marked as red circles and
green triangles. Similarly to the behavior observed in the
single-component BKT transition [22], all curves exhibit a
clear kink at the critical point between the disordered (charac-
terized by a saturated vortex number) and quasi-ordered phase
(where vortices decay as the pump strength increases) located
around Fth/F MF

th = 1.014, reported as a vertical blue line in
Fig. 2(a).

Importantly, comparison of the different curves of Fig. 2(a)
shows that the number of HVs is by more than two orders of
magnitude larger than of FVs, suggesting that the spinor BKT
steady-state transition is driven by HVs instead of FVs. From
Fig. 2(a) we can also note that the number of FVs/FAVs (full
antivortices) in one component are found to be comparable
with the number of spin vortices (labeled as V-AV and AV-V

FIG. 2. Vortices across the spinor BKT transition. (a) The aver-
age number of vortices in the photonic component of the OPO signal
(rescaled by its average maximum value) for each type, namely,
half-vortices, full vortices, and spin vortices (labeled as V-AV and
AV-V). The BKT critical point is indicated as a blue vertical line.
(b) The vortex-vortex correlation functions b and d , quantifying the
pairing between a vortex and an antivortex, and the tendency to form
a HV rather than a FV, respectively.

and plotted as magenta triangles and green circles, respec-
tively), both tiny. We now need to assess the sensitivity of our
vortex counting routine limited by the size of the numerical
grid. We compare the number of FVs and SVs to a simple
combinatorics argument. The probability of finding either FVs
or SVs in an empty lattice of N points, given N1 and N2

vortices for left and right components, can be calculated as
one minus the probability of all HV combinations on the
lattice:

χ (N1, N2) = 1 −
[

N!

N1! N2!(N − N1 − N2)!

](
CN1

N CN2
N

)−1
.

(4)
In the above equation, the expression in square brackets gives
the number of ways of placing N1 and N2 HFs on an empty
lattice of N points with single occupation. The curved brackets
account for all possible combinations of vortices in a lattice
of N points. Without restricting ourselves to singularly oc-
cupied sites, we can independently place the N1 and N2 left
and right vortices, so that the total number of combinations
is the product of their individual binomial coefficients. By
computing Eq. (4) at each pump power, we find that such a
statistical distribution matches the FV and SV curves [35]; we
conclude that the small but nonzero number of FVs and SVs
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FIG. 3. Phase ordering following a rapid quench from disordered to deeply quasi-ordered state. Average density distributions |ψ |2 =
(|ψ−|2 + |ψ+|2)/2 for a single realization at (a) early [t = 0.3 ns], (b) intermediate [t = 0.807 ns], and (c) late times [t = 1.434 ns] after an
instantaneous quench of the drive across the lower BKT threshold. The marks (×) and (×) identify Vs and AVs in the right polarization,
respectively, while (+) and (+) correspond to Vs and AVs in the left polarization.

in the vicinity of the critical point is not physical but rather
an artifact of our vortex counting routine operating on a finite
numerical grid.

To further confirm our results, we calculate the vortex-
vortex correlation functions:

b ≡ 〈r××〉 + 〈r××〉 + 〈r++〉 + 〈r++〉
〈r××〉 + 〈r××〉 + 〈r++〉 + 〈r++〉 (5)

d ≡ 〈r×+〉 + 〈r+×〉 + 〈r×+〉 + 〈r+×〉
〈r××〉 + 〈r++〉 + 〈r××〉 + 〈r++〉 , (6)

where the marks (×) and (×) identify vortices and antivortices
in the right polarization while (+) and (+) are vortices and
antivortices in the left polarization, respectively. The observ-
able b is a tool to quantitatively measure the average distances
between vortices and antivortices in the same polarization,
normalized to the maximum value. In other words, it quan-
tifies paring of vortices in a given polarization; in the limit
b = 0 (b = 1), the average distance of V-AV pairs is null
(maximum), indicating paired (free) vortices. The quantity d
instead represents the tendency to form a FV: the limit d = 0
correspond to a population of FVs only, while at d = 1 the
two polarization field are populated by two uncorrelated HV
gases. From the results shown in Fig. 2, we can conclude that
the spinor BKT steady-state transition is driven by HVs and
not FVs.

IV. PHASE ORDERING DYNAMICS FOLLOWING
A RAPID QUENCH

In the previous section, we discussed the static properties
of the spinor polariton system across the BKT transition.
In the next part of this work, we explore the dynamics of
topological excitations after a sudden quench into the quasi-
ordered phase. Such phase ordering has been studied before
to investigate many-body classical and quantum systems [36].

As in our previous works [23], we numerically quench
from a noise configuration to a quasi-ordered state (F/F MF

th =
1.12) on average free from any topological defects in the
steady state. In Fig. 3 we show snapshots of the density

distribution at three different characteristic times of a single
stochastic realization: just after the sudden quench, t = 0.3 ps
[Fig. 3(a)], at an intermediate state t = 0.807 ns [Fig. 3(b)],
and at very late times, t = 1.434 ns [Fig. 3(c)]. Figure 3 shows
that at early times [Fig. 3(a)], just after the quench, the system
presents a random distribution of HVs and HAVs character-
istic of our chosen initial condition; a very low number of
FVs are formed. At intermediate times [Fig. 3(b)], instead, the
vortex cloud starts to interact and we observe the formation of
FVs and AFVs, as well as the annihilation of HV pairs with
opposite sign, and eventually, annihilation of FVs. We note
that the annihilation between HVs is much faster than the
formation and annihilation of FVs. At late times [Fig. 3(c)]
we observe a fluid populated only by fully formed FVs free
to proliferate and annihilate. These observations suggest that
the dynamics towards the steady state after a sudden quench is
characterized by an interplay of different time scales for HV
and FV annihilation, and FV formation.

Importantly, our results clearly show that the spinor BKT
phase transition is driven by HVs, while away from the
transition, deep in the quasi-ordered phase, FVs become the
only relevant long-lived excitations in the system dynamics.
Moreover, we find that the relevance of HVs and FVs seems
to depend on the distance from the phase transition, i.e., the
fluid density, and so the size of the vortex. HVs dominate
close to the transition in a “shallow fluid” where the vortex
core is large, whereas FVs are the longest-lived excitation
in a “deep fluid,” where the vortex core is small. This is
consistent with the presence of attractive interactions between
the HV cores with different circular polarizations, controlled
by the negative-valued parameter α, arising from the attraction
between the excitons with different spin [21].

V. CONCLUSIONS

In this work, we have investigated the nonequilibrium BKT
phase transition in the spinor polariton OPO system. Stochas-
tic equations of motion for the polariton field are solved in
order to reveal the role of the different types of topological
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excitations. We show that at the steady-state level, only HVs
are responsible for driving the polaritons across the BKT
transition. Fast HV/HAV creation and annihilation events due
to the strong fluctuations in the vicinity of the critical point do
not allow HVs to pair into FVs. However, simulation of long-
time dynamics after a sudden quench into the quasi-ordered
phase reveal, instead, that FVs eventually become the only rel-
evant objects at large densities (away from the critical point)
and late times. Importantly, our findings allow us to ascertain
that the driven-dissipative spinor BKT transition is mediated
by fractional vortices rather than full vortices, resolving the
ongoing debate. It is important to stress that we use pa-
rameters typical for semiconductor microcavities. Given that
the interaction strengths and TE-TM splitting does not change
much in these systems, we believe our results are applicable
to all current experiments. Moreover, the physics we describe
is not exclusive to the photonic spin-orbit coupling originated
from TE-TM splitting, but we expect it to be relevant for more

conventional Rashba or Dresselhaus spin-orbit coupling
physics in condensed matter systems, such as cold atoms
[37–39], Fermi gases [40], ferromagnets, and Dirac systems
[41]. This work motivates further research on related ques-
tions, for instance, about the spinor vortex dynamics in the
context of the Kardar-Parisi-Zhang physics [42,43], under dif-
ferent excitation mechanisms, and possible turbulent regimes
[44], characterization of which we leave to future works.
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G. Gigli, M. H. Szymańska, and D. Sanvitto, Vortex and half-
vortex dynamics in a nonlinear spinor quantum fluid, Sci. Adv.
1, e1500807 (2015).

[16] Y. G. Rubo, Half vortices in exciton polariton condensates,
Phys. Rev. Lett. 99, 106401 (2007).

[17] H. Flayac, I. A. Shelykh, D. D. Solnyshkov, and G.
Malpuech, Topological stability of the half-vortices in spinor
exciton-polariton condensates, Phys. Rev. B 81, 045318
(2010).

[18] M. Toledo Solano and Y. G. Rubo, Comment on “Topological
stability of the half-vortices in spinor exciton-polariton conden-
sates,” Phys. Rev. B 82, 127301 (2010).

[19] H. Flayac, D. D. Solnyshkov, G. Malpuech, and I. A. Shelykh,
Reply to “Comment on ‘topological stability of the half-vortices
in spinor exciton-polariton condensates,” Phys. Rev. B 82,
127302 (2010).

[20] I. A. Shelykh, A. V. Kavokin, Y. G. Rubo, T. C. H. Liew,
and G. Malpuech, Polariton polarization-sensitive phenomena
in planar semiconductor microcavities, Semicond. Sci. Technol.
25, 013001 (2010).

[21] M. O. Borgh, J. Keeling, and N. G. Berloff, Spatial pattern
formation and polarization dynamics of a nonequilibrium spinor
polariton condensate, Phys. Rev. B 81, 235302 (2010).

[22] G. Dagvadorj, J. M. Fellows, S. Matyjaśkiewicz, F. M.
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