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Black-hole laser to Bogoliubov-Cherenkov-Landau crossover:
From nonlinear to linear quantum amplification
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The black-hole laser (BHL) effect is the self-amplification of Hawking radiation in the presence of a pair
of horizons which act as a resonant cavity. In a flowing atomic condensate, the BHL effect arises in a finite
supersonic region, where Bogoliubov-Cherenkov-Landau (BCL) radiation is coherently excited by any static
perturbation. Thus, experimental attempts to produce a black-hole laser unavoidably deal with the presence of a
strong BCL background, making the observation of the BHL effect still a major challenge in the analog gravity
field. Here, we perform a theoretical study of the BHL-BCL crossover using an idealized model where both
phenomena can be unambiguously isolated. By drawing an analogy with an unstable pendulum, we distinguish
three main regimes according to the interplay between quantum fluctuations and classical stimulation: quantum
BHL, classical BHL, and BCL. Based on quite general scaling arguments, the nonlinear amplification of the
initial amplitude of the quantum fluctuations up to saturation is identified as the most robust trait of a quantum
BHL. A classical BHL behaves instead as a linear quantum amplifier, where the output is proportional to the
input. The BCL regime also acts as a linear quantum amplifier, but its gain is exponentially smaller as compared
to a classical BHL. In addition, we find that the decrease in the amplification for increasing BCL amplitude or
the nonmonotonic dependence of the growth rate with respect to the background parameters are complementary
signatures of black-hole lasing. We also identify interesting analog phenomena such as Hawking-stimulated
white-hole radiation or quantum BCL-stimulated Hawking radiation. The results of this work not only are of
interest for analog gravity, where they help to distinguish each phenomenon and to design experimental setups
leading to a clear observation of the BHL effect, but they also open the prospect of finding applications of analog
concepts in quantum technologies.
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I. INTRODUCTION

As noted by Unruh [1], the equations of motion governing
the perturbations around an ideal potential flow are formally
analog to those of a massless scalar field in a curved spacetime
described by the so-called acoustic metric. This discovery
gave rise to the field of analog gravity, in which inaccessi-
ble gravitational phenomena can be modeled using tabletop
experiments such as atomic Bose-Einstein condensates [2,3],
water waves [4,5], nonlinear optical fibers [6,7], ion rings
[8,9], quantum fluids of light [10,11], or even superconducting
transmon qubits [12]. As a result, analogs of the dynamical
Casimir effect [13], Sakharov oscillations [14], superradiance
[15], inflation [16], Hawking radiation [17], the Unruh ef-
fect [18], quasinormal ringdown [19], back-reaction [20], or
cosmological particle creation [21] have been observed in the
laboratory. Quantum field simulators of curved spacetimes are
already available in the laboratory [22].
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In this context, another remarkable phenomenon is the
black-hole laser (BHL) effect [23], i.e., the self-amplification
of Hawking radiation due to successive reflections between a
pair of horizons, leading to the emergence of dynamical insta-
bilities in the excitation spectrum. In an atomic condensate,
the BHL effect can take place because of its superluminal
dispersion relation, which allows the radiation reflected at the
inner horizon to travel back to the outer one [24–30]. Other
analog setups have been proposed to observe black-hole lasing
[31–34].

Originally, due to its stimulated character, it was thought
that the observation of the BHL effect would be a first step
towards the dreamed observation of the Hawking effect. In
actuality, it has been rather the opposite. This is because in
a condensate the BHL effect arises in a finite supersonic re-
gion, which is energetically unstable according to the Landau
criterion so any static perturbation will resonantly produce
Bogoliubov-Cherenkov-Landau (BCL) radiation [35], the
analog of the undulation in hydraulic setups [36]. Further-
more, the BHL modes are expected to contain similar wave
vectors and frequencies to those of the BCL wave, as the latter
is also stimulated by the scattering of Hawking radiation at
the inner horizon. Therefore, experimental attempts to isolate
the BHL effect will be hindered by a background BCL sig-
nal. Indeed, the first reported observation of the BHL effect
in 2014 [37] was later explained in terms of experimental

2643-1564/2023/5(4)/043282(22) 043282-1 Published by the American Physical Society

https://orcid.org/0000-0001-6229-9640
https://orcid.org/0000-0002-0947-286X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.043282&domain=pdf&date_stamp=2023-12-22
https://doi.org/10.1103/PhysRevResearch.5.043282
https://creativecommons.org/licenses/by/4.0/


DE NOVA AND SOLS PHYSICAL REVIEW RESEARCH 5, 043282 (2023)

BCL fluctuations [38,39]. A mechanism of BCL-stimulated
Hawking radiation was identified in 2021 [40], whose role in
the 2014 experiment was recently confirmed [41]. Hence, the
observation of the BHL effect still remains a major challenge
in the analog field.

As a result, it is of paramount importance to understand
the characteristic features of both the BHL and BCL mecha-
nisms in order to eventually achieve a true BHL configuration.
So far, the literature has mostly addressed the BHL-BCL
crossover by directly simulating realistic setups resembling
the actual experiments [38–45]. In this work, we adopt an
alternative approach by using a simple yet highly idealized
model, namely, the flat-profile model [46,47], where the cou-
pling constant and external potential are perfectly matched so
that the background condensate flow is homogeneous while
the speed of sound is tunable at will. Albeit quite unfeasible
from an experimental point of view, the theoretical simplicity
of this model has allowed to clearly identify key features of
several phenomena such as Hawking correlations, resonant
Hawking radiation, or black-hole lasers [47–49], helping in
this way to understand the underlying physics in more realistic
scenarios of higher complexity [17,50,51].

Here, the flat-profile configuration allows us to neatly iso-
late the BHL and BCL contribution to the dynamics so their
genuine signatures can be extracted. Using this simplified
model, we report an intensive campaign of numerical sim-
ulations using the truncated Wigner approximation [46,52]
to compute the dynamics of the quantum fluctuations. In
particular, we focus on evaluating density-based observables,
especially the density-density correlation function [46,47], the
main tool in actual experiments [17,37,40,53].

Dynamical instabilities are quantized like unstable har-
monic oscillators [24,28,30]. Hence, a black-hole laser is
conceptually similar to an unstable pendulum. Based on this
analogy, according to the interplay between quantum fluctua-
tions and Cherenkov stimulation, where the latter plays the
role of an external force, we identify three main regimes:
quantum BHL, classical BHL, and BCL. In a quantum BHL,
the dynamics is fully driven by the amplification of the quan-
tum fluctuations of the lasing modes, akin to the zero-point
decay of the unstable equilibrium position of a pendulum. In
a classical BHL, the lasing instability is given a well-defined
classical amplitude, excited by the background Cherenkov
wave, akin to the case where a small kick is given to an unsta-
ble pendulum. In the BCL regime, the Cherenkov stimulation
is large enough to completely dominate the dynamics, over-
shadowing the BHL effect, akin to applying a strong external
force which overcomes gravity.

In all cases, the dynamics eventually saturates when the
system reaches a certain metastable state. We find that the
most characteristic signature of each regime is its efficiency
in amplifying the initial amplitude of quantum fluctuations
during the transient before saturation. A quantum BHL be-
haves as a nonlinear quantum amplifier, increasing quantum
fluctuations up to the same saturation amplitude regardless of
their initial strength. This is because in a quantum BHL the
dynamics is also driven by quantum fluctuations themselves
rather than by a background mean field. A classical BHL
corresponds instead to a linear quantum amplifier, where the
output is proportional to the input, with this process taking

place around a well-defined mean-field trajectory which de-
termines the saturation point. The BCL regime also provides
linear quantum amplification around a background mean field,
but its gain is exponentially smaller as compared to a classical
BHL. This is because there is no microscopic mechanism of
amplification operating, and the amplification merely origi-
nates due to the background density modulation of the BCL
wave. Our analysis relies on general scaling arguments that
are quite independent of the details of the model.

The above results imply that the quantum amplification
decreases with the BCL amplitude in the lasing regime, in
contrast with its increasing behavior in the Cherenkov regime,
providing a qualitative characterization tool. Complementar-
ily, we propose the strongly nonmonotonic dependence of the
lasing growth rate with respect to the background parameters
(e.g., the cavity length or the flow speed) as another criterion
to distinguish classical BHL from BCL stimulation, since the
latter is expected to depend smoothly on the properties of the
background flow.

Remarkably, in the process of analyzing the BHL-BCL
correlation patterns, we also identify interesting analog
phenomena such as Hawking-stimulated white-hole [54]
(HSWH) radiation at the beginning of the black-hole lasing
process, or BCL-stimulated Hawking radiation [40] of a quan-
tum origin, which can be understood as spontaneous resonant
Hawking radiation [55] above a nonlinear BCL undulation
that acts as a resonator.

Apart from their intrinsic interest for the analog field,
where they help to isolate the distinctive signatures of each
phenomenon and to design experimental setups leading to an
unambiguous demonstration of the BHL effect, the results of
this work may also have a potential impact on atomtronics
[56] and on the more general field of quantum technologies.

The article is arranged as follows. Section II introduces the
model considered in this work while Sec. III discusses the
tools used for the analysis. The numerical results are presented
in Sec. IV. A global discussion on the physical significance of
the findings of the paper is included in Sec. V, along with a
summary table containing the main results for each identified
regime. Conclusions and future perspectives are outlined in
Sec. VI.

II. THE MODEL

In order to study the BHL-BCL crossover, we use the
flat-profile model as a testing ground [46,47,57], where both
phenomena can be controlled and isolated. For times t <

0, we consider a stationary one-dimensional homogeneous
quasicondensate [58] flowing from left to right, described
by a time-independent Gross-Pitaevskii (GP) wave function
�0(x) = √

n0eiqx. The corresponding sound and flow speeds
are c0 = √

gn0/m and v = h̄q/m, with g the coupling constant
and m the mass of the atoms. Hereafter, we set h̄ = m = c0 =
1, and rescale the GP wave function as �(x, t ) → √

n0�(x, t )
so it becomes dimensionless. The interested reader may con-
sult Refs. [47,59] and Refs. [51,57] for detailed discussions
that follow the notation of this work on both Hawking radia-
tion and black-hole lasers, respectively.

Quantum fluctuations of the condensate are described
by the Bogoliubov–de Gennes (BdG) equations. For a
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FIG. 1. Flat-profile BHL configuration with v = 0.6, c2 = 0.2. (a) Dispersion relation in the subsonic region. The blue and red lines signal
the ± branches of Eq. (1), while the ± label denotes whether the modes travel along or against the flow. (b) Dispersion relation in the supersonic
region. For a certain frequency below the cutoff frequency ωmax, all wave vectors are purely real (horizontal dashed line). The BCL mode has
zero frequency and finite wave vector kBCL. (c) Spectrum of dynamical instabilities as a function of the cavity length L. Solid (dashed) lines
are the imaginary (real) part of the frequency. Vertical solid (dashed) black lines represent the critical lengths Ln (Ln+1/2). The thick solid black
envelope highlights the growth rate � of the dominant mode. The dash-dotted green line is the inverse of the round-trip time. Blue dots indicate
the numerical values considered. (d) Schematic depiction of the model used in this work. The initial homogeneous condensate is characterized
by its sound (horizontal dashed blue) and flow speed (solid red). At t = 0, the sound speed is quenched to c2 for x > 0 (horizontal dotted blue)
and a black hole is formed. At t = tBCL > 0, a delta barrier is switched on at x = L (vertical arrow), which stimulates BCL radiation. Finally,
at t = tBHL � tBCL, the speed of sound is quenched back to its original value for x > L, giving rise to the flat-profile BHL (solid blue).

homogeneous condensate, the BdG modes are given in terms
of plane waves with wave vector k, and the corresponding dis-
persion relation is determined by the flow and sound speeds v

and c as

ω = vk ± �k, �k =
√

c2k2 + k4

4
, (1)

with �k the usual Bogoliubov dispersion relation for a con-
densate at rest and vk the Doppler shift. This dispersion
relation yields four wave vectors for given frequency ω, dis-
playing two qualitatively different regimes, subsonic (v < c)
or supersonic (v > c), as shown in the upper row of Fig. 1.
In the subsonic case, Fig. 1(a), for a given frequency ω > 0

there are two modes with real wave vector (the other two ones
are exponentially growing and decaying solutions), labeled as
b±, where the ± indicates whether they propagate along or
against the condensate flow, respectively. In the supersonic
case, Fig. 1(b), for any positive frequency below the cutoff
ωmax all wave vectors are purely real. The p1± modes arise
from the + branch in Eq. (1), while the p2± modes arise from
the − branch and are the conjugates of the negative energy
modes in the + branch. The presence of these negative energy
modes is a characteristic feature of a supersonic flow, reveal-
ing its energetic instability. Specifically, the Landau criterion
establishes the appearance of a zero-frequency mode, the BCL
mode, with a finite wave vector kBCL = 2

√
v2 − c2 computed
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by vkBCL = �kBCL . As a result, any static perturbation in the
flow will resonantly excite BCL radiation in the condensate
[35]. This is because the BdG equations describe at the same
time both linear collective motion, coherently imprinted on
the condensate and accounted by linear perturbations δ� of
the GP wave function, and quantum quasiparticle excitations,
accounted by the quantum fluctuations of the field operator
δ�̂ around the mean-field coherent expectation value. Nev-
ertheless, we recall that energetic instability (the presence of
modes with negative energy) is only a necessary condition
for dynamical instability (the presence of modes with blowing
complex frequency), but not sufficient [60].

In our configuration, we choose the initial condensate to be
subsonic, v < 1. Now, at t = 0, we quench inhomogeneously
both the external potential W (x) and the coupling constant
g(x) so that

g(x) + W (x) = Eb, (2)

with Eb some constant energy that can be subtracted from the
Hamiltonian. In this way, �0(x) = eivx remains a stationary
solution of the GP equation. However, the BdG modes do
experience nontrivial dynamics as the sound speed is now
c(x) = √

g(x). Specifically, we choose g(x) as a piecewise
homogeneous function so that the condensate remains un-
changed for x < 0 and becomes supersonic for x > 0, with
a sound speed c2 < v. Hence, we reach a black-hole config-
uration (i.e., a subsonic-supersonic flow transition) with the
event horizon (i.e., the subsonic-supersonic interface) placed
at x = 0. This process mimics the formation of a black hole
and the subsequent production of Hawking radiation in ac-
tual experiments [17,37,40,53], which is characterized by
the spontaneous emission of b−, p2+ modes from the event
horizon into the exterior or interior (subsonic or supersonic
regions) of the black hole, respectively.

At t = tBCL > 0, an additional localized delta potential
V (x) = Zδ(x − L) is switched on at x = L > 0. Since the
barrier is placed in the supersonic region, it will stimulate
the emission of BCL radiation, here of wave vector kBCL =
2
√

v2 − c2
2, with a certain amplitude ABCL. This is a simple

model of the BCL stimulation that occurs in the experiment,
which can be previous to the birth of a second horizon. Finally,
at t = tBHL � tBCL, we quench back the coupling constant
for x > L according to Eq. (2) so that the condensate recov-
ers there its subsonic character. Hence, a white-hole horizon
(a supersonic-subsonic interface, the time reversal of a black-
hole horizon) forms at x = L, and the whole structure now
possesses two horizons, giving rise to a BHL configuration.
Throughout this work, we consider long onset times tBCL, tBHL

in order to mimic the presence of a stationary period of spon-
taneous Hawking radiation and the eventual formation of an
inner horizon in the experiment [40]. We have checked that
the main conclusions of this work, concerning the BHL-BCL
crossover, are rather insensitive to the transient before the
BCL and BHL onsets.

Quantitatively, a black-hole laser is characterized by a dis-
crete BdG spectrum of dynamical instabilities, computed as
a function of the cavity length L for the flat-profile model in
Fig. 1(c) (see Refs. [49,61] for the technical details). The crit-
ical lengths Ln at which a new dynamical instability emerges

(vertical solid lines) can be derived analytically:

Ln = L0 + nπ√
v2 − c2

2

,

L0 =
arctan

√
1 − v2

v2 − c2
2√

v2 − c2
2

, n = 0, 1, . . . . (3)

All these modes are born as degenerate unstable modes, i.e.,
modes with purely imaginary frequency, ωn = −ω∗

n . For half-
integer values n + 1/2, the above equation yields the lengths
Ln+1/2 at which the nth unstable mode becomes oscillatory,
developing a nonvanishing real part of the frequency (vertical
dashed lines). The dominant mode is that with the largest
growth rate, �n = Im ωn, and determines the total growth rate
� of the lasing instability, � = maxn �n [thick solid black
envelope in Fig. 1(c)]. For short cavities, this is typically the
mode with the largest value of n. However, as the cavity be-
comes larger and larger, the competition between the different
unstable modes becomes stronger and stronger.

Qualitatively, we can understand these dynamical insta-
bilities as Hawking p2+ modes reflected at the white-hole
horizon and scattered into p2− modes that will bounce back
towards the black hole, further stimulating the production
of Hawking radiation and thus leading to a process of self-
amplification [23,28]. This simple argument yields a good
estimation for the order of magnitude of the growth rate of the
instability, � ∼ 1/τRT [green dashed line in Fig. 1(c)], with
τRT the round-trip time for a zero-frequency p2+ mode to
travel back and forth between the horizons. This frequency
choice is motivated by observing that the dominant mode
has either zero or small real part of the frequency, which
also implies that the p2− wave vector involved in the lasing
instability will be close to the BCL wave vector. Thus, BCL
stimulation and BHL self-amplification share similar short
wavelengths and low frequencies, something that strongly
complicates their clear distinction in real setups [37–45]. Here
emerges the importance of the flat-profile configuration: be-
cause of the fine-tuning condition (2), the white hole does
not further stimulate BCL radiation. Indeed, if the delta po-
tential was not switched on, Z = 0, there would not be any
Cherenkov stimulation from the white hole and we would
have the flat-profile BHL of Ref. [57]. On the other hand, if
the white hole was never switched on, tBHL = ∞, we would
only have BCL stimulation. Hence, by comparing scenarios
with and without white hole, and with and without Cherenkov
stimulation, we can isolate the genuine BHL features from
those of BCL.

Compactly, the model for the condensate dynamics de-
veloped in this section is encapsulated in the following GP
equation:

i∂t�(x, t ) = HGP(x, t )�(x, t ), �(x, 0) = �0(x) = eivx,

HGP(x, t ) = − 1
2∂2

x + g(x, t )[|�(x, t )|2 − 1] + V (x, t ),

V (x, t ) = Zδ(x − L)θ (t − tBCL), (4)

g(x, t ) = 1 + (c2 − 1)[θ (x)θ (t )

− θ (t − tBHL)θ (x − L)],
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with θ the Heaviside function. A schematic summary of the
model is presented in Fig. 1(d).

III. THE TOOLS

We simulate the time evolution of the condensate by nu-
merically integrating the time-dependent GP equation (4).
Quantum fluctuations are added via the truncated Wigner
approximation [46,52], which computes symmetric-ordered
expectation values from ensemble averages of integrations of
the GP equation using a stochastic initial condition

�W (x, 0) = [1 + δ�W (x)]eivx. (5)

In turn, δ�W (x) is given in terms of the BdG modes around
the initial homogeneous condensate:

δ�W (x) = 1√
N

∑
k

αkukeikx + α∗
k v

∗
k e−ikx, (6)

where N is the total number of particles (we recall that in
our units the density n0 is factorized out from the GP wave
function) and uk, vk are the usual Bogoliubov components

uk =
k2

2 + �k√
2k2�k

, vk =
k2

2 − �k√
2k2�k

. (7)

Thus, the quantum fluctuations δ�̂(x, t ) of the field opera-
tor �̂(x, t ) around the mean-field condensate are accounted
here by the initial condition δ�W (x), where the amplitudes

αk, α
∗
k are stochastic variables that mimic the usual phonon

annihilation and creation operators α̂k, α̂
†
k , [α̂k, α̂

†
k′ ] = δkk′ .

These classical amplitudes are sampled from the Wigner dis-
tribution of the initial equilibrium state, assumed to be the
T = 0 ground state in the comoving frame of the condensate,
which is a Gaussian distribution characterized by the first- and
second-order momenta

〈αk〉 = 〈α̂k〉 = 0, 〈αk′αk〉 = 〈α̂k′ α̂k〉 = 0,

〈α∗
k′αk〉 = 〈α̂†

k′ α̂k + α̂kα̂
†
k′ 〉

2
= δkk′

2
. (8)

By subtracting the constant factor δkk′/2 in the last equation,
arising from the commutator between annihilation and cre-
ation operators, one retrieves the more usual normal-ordered
expectation value 〈α̂†

k′ α̂k〉. Our initial condition for the quan-
tum state eliminates the vacuum ambiguity arising in the
presence of a black hole, and of dynamically unstable modes
after the BHL onset [62].

Regarding the observables of interest, we focus on com-
puting the density and its correlations as they are measured
in the laboratory through in situ imaging after averaging over
ensembles of repetitions of the experiment [17,37,40,53,63].
Specifically, we will compute the ensemble-averaged density
from the diagonal of the first-order correlation function,

〈n̂(x, t )〉 = G(1)(x, t ) ≡ 〈�̂†(x, t )�̂(x, t )〉 . (9)

In order to characterize quantum fluctuations, we use the
relative second-order correlation function,

g(2)(x, x′, t ) = 〈�̂†(x, t )�̂†(x′, t )�̂(x′, t )�̂(x, t )〉 − 〈�̂†(x, t )�̂(x, t )〉 〈�̂†(x′, t )�̂(x′, t )〉
n2

0

, (10)

where we have momentarily restored units to keep track of the
different scalings. Apart from a trivial delta term, the second-
order correlation function is directly given by the relative
density-density correlations, measurable in experiments,

g(2)(x, x′, t ) = 〈δn̂(x, t )δn̂(x′, t )〉 − 〈n̂(x, t )〉 δ(x − x′)
n2

0

,

(11)
with δn̂(x, t ) = n̂(x, t ) − 〈n̂(x, t )〉 the density fluctuations.
For simplicity, we will also refer to the second-order corre-
lation function as the density-density correlation function.

By expanding the density operator in terms of δ�̂(x, t )
around the initial homogeneous flowing condensate,

n̂(x, t ) = n0 + δn̂(1)(x, t ) + δn̂(2)(x, t ),

δn̂(1)(x, t ) = √
n0χ̂ (x, t ), χ̂ (x, t ) = δ�̂(x, t ) + δ�̂†(x, t ),

δn̂(2)(x, t ) = δ�̂†(x, t )δ�̂(x, t ), (12)

we find that to lowest order in the quantum fluctuations

g(2)(x, x′, t ) � 〈χ̂ (x, t )χ̂ (x′, t )〉 − δ(x − x′)
n0

. (13)

Since 〈χ̂ (x, t )χ̂ (x′, t )〉 has units of inverse length, the normal-
ized density-density correlation function,

G(2)(x, x′, t ) ≡ n0ξ0g(2)(x, x′, t ), ξ0 = h̄

mc0
, (14)

is a dimensionless function that does not depend explicitly
on the density n0 in the BdG approximation, just implicitly
via the healing length ξ0 as the density solely intervenes in
the dynamics at this level through the term gn0 = h̄2/mξ 2

0 .
Specifically, for the initial equilibrium state at t � 0, the
density-density correlation function can be evaluated analyti-
cally by [64,65]

G(2)(x, x′, t ) = G

(
x − x′

ξ0

)
,

(15)

G(z) = − 1

πz

∫ ∞

0
dq

sin 2qz

(1 + q2)
3
2

,

with G(0) = −2/π . This is the celebrated antibunching
phenomenon, resulting from the repulsive nature of the inter-
actions.

When switching back to our system of units, where δ�̂

is relative to the condensate amplitude
√

n0, the above di-
mensional arguments dictate that the typical amplitude of the
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FIG. 2. Schematic depiction of an unstable pendulum. (a) Quantum BHL: The pendulum is placed at its unstable equilibrium position but
quantum fluctuations make it fall. (b) Classical BHL: A small kick on the pendulum causes it to depart some small angle θ from the unstable
equilibrium position, falling down with a well-defined classical trajectory as a result. (c) BCL: A strong external force (horizontal arrows)
pushes the pendulum out of equilibrium, dominating the dynamics instead of gravity.

quantum fluctuations, AQF, scales as

δ�̂ ∼ AQF ∼ 1√
n0ξ0

� 1. (16)

The condition n0ξ0  1 is required so that the relative den-
sity fluctuations are small, g(2) ∼ (n0ξ0)−1 � 1, and thus our
one-dimensional quasicondensate description is valid [66].
Although, strictly speaking, ξ0 = 1 in our units, we will write
the complete dimensionless factor n0ξ0 to stress its physical
meaning as the regulator of the strength of the quantum fluc-
tuations.

From the previous considerations, one can anticipate three
different regimes for the dynamics after the BHL formation
depending on the amplitudes of the background Cherenkov
wave, ABCL, and of the quantum fluctuations, AQF:

(1) Quantum BHL: ABCL � AQF � 1. The BHL instabil-
ity is triggered by quantum fluctuations (e.g., no barrier is
placed, ABCL = 0), and the dynamics is driven by the zero-
point motion of the quasiparticle vacuum.

(2) Classical BHL: AQF � ABCL � 1. The BHL ampli-
fication still dominates the dynamics but the seed of the
instability is now the classical amplitude of the BCL wave
in the condensate, leading to a well-defined mean-field trajec-
tory.

(3) BCL: AQF � ABCL ∼ 1. The amplitude of the BCL
stimulation is highly nonlinear and dominates the mean-field
dynamics towards the saturation regime.

Since a BHL behaves as an unstable harmonic oscillator
[24,28,30], we can qualitatively understand these regimes
using an analogy with an unstable pendulum, Fig. 2. The
unstable equilibrium position is equivalent to the GP wave
function of the flat-profile BHL. However, due to zero-point
motion, this configuration is unstable at the quantum level,
and then the pendulum falls [Fig. 2(a)]. This is akin to a
quantum BHL. We can give a deterministic amplitude to the
pendulum with a small kick [Fig. 2(b)]. The pendulum departs
some small angle θ from its equilibrium position and conse-
quently falls following a well-defined classical trajectory. This
is akin to a classical BHL, where the angle θ plays here the
role of the Cherenkov amplitude ABCL that seeds the BHL in-
stability. If a strong enough force is applied [Fig. 2(c)], it will
drive the pendulum motion outside its unstable equilibrium

position instead of gravity, as in the case where BCL stimula-
tion dominates the dynamics over the BHL mechanism.

IV. NUMERICAL RESULTS

In this section we present the main results of the work,
where we compute the time evolution of the condensate and its
quantum fluctuations (see Refs. [57,67] for the technical de-
tails about the numerical techniques employed in this work).
As reference background BHL parameters, we choose for the
moment those of Fig. 1(d): v = 0.6, c2 = 0.2, and L = 20.
This cavity contains four unstable lasing modes, with the n =
2 mode expected to be the dominant one, leading to a growth
rate � = �2 ≈ 0.02. Regarding the specific parameters in-
volved in the truncated Wigner method, we take Lt ≈ 1885 as
the total length of the numerical grid (periodic boundary con-
ditions are imposed) and N = 107 as the number of particles,
with n0 = N/Lt the condensate density. This yields n0ξ0 ≈
5 × 103  1. The number of modes is Nm = 3000 � N , cor-
responding to a momentum cutoff |k| < 5, much larger than
the typical wave vectors involved in the dynamics. Ensemble
averages are evaluated after 1000 Monte Carlo simulations,
although good convergence is already found for the main
BHL and BCL features after a few hundreds of simulations.
Finally, appropriate factors are subtracted to retrieve the re-
quired normal-ordered expectation values; their explicit form
is discussed in Ref. [68].

In our model, the Cherenkov amplitude ABCL is directly
controlled by the barrier strength Z . The initial amplitude of
the quantum fluctuations, AQF, can be adjusted by a dimen-
sionless control parameter λ in the following way: we increase
the initial density n0 as n0 → λn0 while changing the coupling
constant so that gn0 is kept constant (in particular, gn0 = 1
in our units). By doing so, the mean-field dynamics remains
the same but now n0ξ0 → λn0ξ0. Thinking in more physical
terms, this is like modifying the condensate density by chang-
ing the number of atoms while tuning the coupling constant
using Feshbach resonances [69]. As a result, the amplitude of
the quantum fluctuations in our units will scale as

AQF ∼ 1√
λ

, (17)
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FIG. 3. Time evolution of [(a)–(d), (i)–(l)] the density-density correlation function G(2)(x, x′, t ) and [(e)–(h), (m)–(p)] the ensemble-
averaged density G(1)(x, t ) for a purely quantum BHL (Z = 0) with background parameters v = 0.6, c2 = 0.2, and L = 20. The quantum
strength is set to λ = 1. The black hole is switched on at t = 0 and the white hole is switched on at t = tBHL = 100. The time for each snapshot
is indicated above the panel. Different color curves highlight several features discussed in the main text.

so λ can be regarded as a control parameter of the strength
of the quantum fluctuations. For brevity, we will simply refer
to λ−1 as the quantum strength. Thus, the interplay between
the quantum and Cherenkov seeding will be explored via the
parameters Z and λ, manipulating also the onset times tBCL

and tBHL to further isolate the contribution of each effect.
Since we are mainly concerned about the conceptual differ-

ences between the BHL and BCL mechanisms, we will restrict
the simulations to intermediate times when the system reaches
the saturation regime. This saturation can be associated to a
certain stationary GP solution of the nonlinear spectrum [49].
This solution is in turn also metastable, with a lifetime much
longer than that of the initial BHL configuration, and it will
eventually collapse [57,61]. For sufficiently long times, the
system will either reach the true ground state or the continuous
emission of solitons (CES) state [51,57,67]. However, the

study of such long-time dynamics is beyond the scope of this
work.

A. Correlation patterns

We begin by studying the time evolution of the density-
density correlation function G(2)(x, x′, t ) and the corre-
sponding ensemble-averaged density G(1)(x, t ), displayed in
Figs. 3–7 for different values of Z and λ. We focus on the
qualitative correlation patterns exhibited, leaving the quanti-
tative analysis for the following sections.

In Fig. 3, we present the case of a purely quantum BHL
as there is no BCL stimulation (Z = 0), so the dynamics is
fully driven by quantum fluctuations. At t = 0 [Fig. 3(a)],
the homogeneous condensate is at equilibrium and G(2)(x, x′)
displays the expected antibunching along the main diagonal
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FIG. 4. Same as Fig. 3 but now a delta barrier of amplitude Z = 0.01 is placed at x = L = 20 and switched on at t = tBCL = 50. Solid red
and green lines mark the expected positions of solitons from the mean-field trajectory; see also Fig. 5.

x = x′, Eq. (15). Then, the black hole is switched on and
the emission of Hawking radiation begins, as revealed by
the emergence of the celebrated Hawking moustache [marked
by a blue line in Fig. 3(b)], stemming from the correla-
tions between the Hawking b− and the partner p2+ modes
[46]. Along them, we observe the correlations between the
Hawking and the p1+ modes [47] (red line), and the correla-
tions between the p1+ and the p2+ modes (green line), which
represent the bosonic analog of the Andreev reflection [70].
Self-correlations of both the p1+ and p2+ modes can be also
seen along the main diagonal (yellow line). All these lines
are predicted following the usual hydrodynamic approxima-
tion [47]. Since there is no BCL stimulation, the background
condensate remains homogeneous, as shown by Fig. 3(f).

At t = tBHL = 100, the white hole is switched on and a
BHL configuration is reached. At early times after the BHL
onset [Fig. 3(c)], the presence of an inner horizon is revealed
by fringe patterns in the supersonic-upstream (blue circle) and

supersonic-downstream (green circle) regions. They result
from the correlation between the Hawking (blue) or Andreev
(green) modes and their partner p2+ modes, now reflected
at the inner horizon as p1−, p2− modes with large wave
vector close to kBCL. On the other hand, the white band of
self-correlations along the main diagonal vanishes away as
the downstream region becomes subsonic again. In turn, the
correlation between the reflected p1−, p2− modes gives rise
to a checkerboard pattern inside the lasing cavity (magenta
circle), which is the white-hole analog of the Andreev corre-
lations since here the outgoing supersonic modes have large
wave vector for low frequencies.

Physically, we can understand all these features as white-
hole radiation [54] stimulated by the scattering of the
Hawking radiation emitted from the black hole. We denote
this phenomenon as Hawking-stimulated white-hole radiation
or, more compactly, HSWH radiation. We compare HSWH ra-
diation with the spontaneous white-hole radiation that would
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FIG. 5. Same as Fig. 4 but now λ = 1000.

arise in the absence of a black hole in the leftmost column
of Fig. 8. Specifically, Fig. 8(a) is a snapshot of the density-
density correlation function at t = 140, while Fig. 8(d) shows
the same result without switching on the black hole at t = 0,
so only the white hole placed at x = L is present. We observe
that a checkerboard pattern also emerges from the white-hole
horizon because of the scattering of vacuum fluctuations. The
checkerboard amplitude is expected to grow logarithmically
in time [54]. However, spontaneous white-hole radiation lacks
the scions of the Hawking and Andreev correlations [blue and
green circles in Fig. 3(c)], which arise between the white-hole
horizon and distant regions along the Hawking and Andreev
bands almost immediately after the white-hole onset, and thus
can be regarded as the most distinctive signature of HSWH ra-
diation. We note that the fringes parallel to the main diagonal
in Fig. 8(d) are a transient feature, arising due to the dynamical
Casimir effect induced by the sudden change of the coupling
constant in the upstream region [54].

At this stage, the continuous spectrum of spontaneous
Hawking radiation contributes to the white-hole stimulation.

As time goes by, the discrete nature of the unstable lasing
spectrum enters in place. In particular, the dominant mode
begins to overshadow the remaining fluctuations and to drive
the dynamics [Figs. 3(d), 3(h), 3(i), and 3(m)]. This can
be seen by the emergence of a strong checkerboard pattern
in the supersonic-supersonic correlations [magenta square of
Fig. 3(d)], and of an incipient ripple in the supersonic density
[magenta line of Fig. 3(h); notice the change of scale].

Eventually, the dominant mode reaches a large ampli-
tude where nonlinear effects are crucial [Figs. 3(j)–3(l) and
3(n)–3(p)]. This is singularly illustrated by Fig. 3(k), where
we have enlarged the spatial span of the plot. We observe
the emergence of a highly enhanced moustache (blue circle)
along with a series of parallel stripes both upstream and
downstream (green circles), resulting from the monochro-
matic character of the instability. These features are strong
enough to extend beyond the supersonic region and give rise to
upstream-downstream correlations (red circles). In this way,
the localized dark band (red circle) in Fig. 3(j) which is paral-
lel to the moustache is just a transient feature before reaching
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FIG. 6. Same as Fig. 4 but now Z = 0.75.

the monochromatic regime, resembling the relation between
the multimode and the monochromatic stimulated periods
in the experiment [40]. The checkerboard pattern also reaches
a large amplitude while the density profile shows a peaked
structure whose amplitude is saturated, corresponding to the
n = 3 nonlinear GP solution [49,57].

Therefore, the BHL dynamics can be mainly understood
in terms of the dynamics of a single mode. In order to further
validate this interpretation, we compute the contribution to the
density-density correlation function from the dominant mode
by using the corresponding BdG wave function. The result is
depicted in Fig. 8(e), where we compare it with the correlation
function at an intermediate time t = 250 [Fig. 8(b)], when the
dominant mode stands well above the remaining lasing modes
but the system is not fully yet in the saturation regime. A good
agreement is found between both correlation patterns; most of
the blurring in Fig. 8(b) can be attributed to nonlinear effects
(see discussion in the following paragraphs).

In Fig. 4, we now switch on a weak delta barrier (Z = 0.01)
at t = tBCL = 50, placed at the eventual position of the inner
horizon so it stimulates a small BCL amplitude. The dynamics

for times t < tBCL remains the same. For early times after the
BCL and BHL onsets [Figs. 4(a)–4(h)], we see that the only
noticeable difference is the emergence of a small ripple in the
density profile arising from the background BCL wave. On the
opposite side, precisely because of its deterministic classical
nature, the BCL wave does not show up in the correlation
function.

The presence of an initial classical amplitude modifies the
dynamics for later times. The first effect is that the nonlinear
regime is reached sooner [Figs. 4(i) and 4(m)]. The second ef-
fect is that several features of the correlation function become
distorted as compared to the purely quantum case [Figs. 4(j)–
4(l) and 4(n)–4(p)].

More information can be inferred if we reduce the quantum
strength by setting λ = 1000 (Fig. 5). The early dynamics
[Figs. 5(a)–5(h)] is almost identical. However, the nonlinear
regime is dramatically altered [Figs. 5(i)–5(p)]. Both the den-
sity profile and the correlation function are less smoothed
and more peaked, losing most of the quantum BHL features
of Fig. 3. In addition, the density profile now clearly dis-
plays soliton emission (solid red and green lines), which was
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FIG. 7. Same as Fig. 6 but now only BCL stimulation is present, tBHL = ∞. Blue circles in panel (l) highlight monochromatic features
arising from quantum BCL-stimulated Hawking radiation, as discussed in the main text.

unobserved in the previous cases. These solitons also show up
in the correlation function as sharp features since they carry
a large localized density depletion. We can understand the
disappearance of solitons for strong quantum fluctuations as
follows. In each individual trajectory of the truncated Wigner
ensemble, solitons are always emitted [57]. In a quantum BHL
(Fig. 3), the dynamics is solely driven by the amplification
of quantum fluctuations, mainly by that of the amplitude of
the dominant mode. The quantum nature of this amplitude
leads to strong variations between different trajectories, and in
particular between the positions of the emitted solitons. Since
both G(1) and G(2) are obtained from ensemble averages, soli-
tons are washed out by the averaging process. In contrast, in
the classical BHL of Fig. 5, the dominant mode has an initial
well-defined amplitude, from which the instability develops.
Thus, all the trajectories of the ensemble amount to small
quantum fluctuations around the deterministic classical tra-
jectory given by Eq. (4). When averaging over the ensemble,
the mean-field trajectory is then recovered, which neatly dis-
plays solitons. Figure 4 represents a limiting case where both

quantum and classical BHL are competing. The mean-field
dynamics is driven deterministically by the BHL amplification
of the classical BCL seed. Nonetheless, the lasing cavity also
amplifies quantum fluctuations, which become sufficiently
strong in the saturation regime to blur the sharp soliton fea-
tures when computing ensemble averages. These arguments
also explain the peaked checkerboard pattern within the lasing
cavity in the saturation regime of Fig. 5, which now can
be understood as fluctuations around the highly nonlinear
ripple in the background mean-field density, in contrast to
the blurred checkerboard for stronger quantum fluctuations in
Figs. 3 and 4.

In Fig. 6, instead of diluting quantum fluctuations, we in-
troduce a strong potential barrier which generates a large BCL
amplitude. This is already observed soon after the onset of the
barrier [Figs. 6(e) and 6(f)]. Moreover, the Cherenkov wave
now does show up in the density-density correlation function
as a checkerboard pattern [Figs. 6(a) and 6(b)], contradicting
the naive intuition that it should not appear there. The answer
to this apparent paradox is that here the large BCL amplitude
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FIG. 8. Density-density correlation function G(2)(x, x′) for different configurations. The scale is not shown since we are only interested in
the qualitative spatial structure of the correlation patterns. (a) Snapshot at t = 140 of the simulation in Fig. 3. (b) Same as (a) but for t = 250.
(c) Snapshot at t = 80 of the simulation in Fig. 6. (d) Same as (a) but without black hole. (e) Spatial correlation pattern arising solely from
the dominant mode in (b), computed in the BdG approximation by taking Eq. (20) and setting 〈α̂†

I α̂I 〉 = 1/2, 〈α̂I α̂I〉 = 0. (f) Same as (c) but
now replacing quantum fluctuations by particle-number fluctuations. Specifically, we take as initial condition in the truncated Wigner method
�W (x, 0) = √

1 + δn eivx , with δn a Gaussian variable with zero mean and
√

〈δn2〉 = 0.001.

cannot be regarded as a linear BdG mode on top of a uniform
condensate, but instead it strongly back-reacts onto the mean-
field background around which quantum fluctuations evolve.
The large modulation of the background density is translated
into a checkerboard pattern in the density-density correlation
function, similarly to the saturation regime of Fig. 5. The
white-hole onset barely alters the dynamics, except for the
emission of trains of solitons into the downstream region.

We further confirm that the checkerboard structure arises
due to the strong BCL modulation of the mean-field back-
ground in the rightmost column of Fig. 8, where we compare
our results with a simulation that only includes particle-
number fluctuations [39]. A good agreement is observed
between the correlation patterns in the cavity region, revealing
the same underlying mechanism since the spatial structure in
the case of particle-number fluctuations can only emerge due
to the background envelope.

Finally, in Fig. 7, we analyze the same case of Fig. 6
but without white hole, tBHL = ∞, so the dynamics is purely
driven by BCL stimulation. We observe that the evolution is
essentially the same, especially in the cavity and the upstream
region. The only significant difference arises in the down-
stream region, which now is supersonic and does not support
trains of solitons. Thus, we conclude that the main correlation
patterns of Fig. 6 can be unambiguously attributed to BCL
stimulation.

Interestingly, due to the supersonic character of the down-
stream region, at late times we can observe monochromatic
features arising from quantum BCL-stimulated Hawking

radiation [40] [blue circles in Fig. 7(l)], where quantum fluc-
tuations around the nonlinear mean-field BCL background
stimulate Hawking radiation. Actually, since the BCL mod-
ulation acts as a resonant cavity, we can also understand this
phenomenon as spontaneous resonant Hawking radiation [55].

B. Quantum versus classical BHL

Once we have identified the main correlation patterns, we
proceed to perform a quantitative analysis. Specifically, we
evaluate the Fourier transform of the correlation functions
inside the lasing cavity [magenta lines in Figs. 3(d) and 3(h)].
As figures of merit, we choose

G(2)
peak (t ) ≡ max

k,k′
|G(2)(k, k′, t )|,

(18)
G(1)

peak (t ) ≡ max
k

|G(1)(k, t ) − G(1)(0, t )|,

where in the last line we are subtracting the background
homogeneous contribution from the condensate. These ob-
servables are expected to capture the main dynamics of the
BHL and BCL regimes because both involve modes with
well-defined wave vector within the lasing cavity. In partic-
ular, G(1)

peak represents the amplitude of the density ripple and

G(2)
peak that of the checkerboard pattern, which are characteristic

features of both regimes from their very beginning.
We display the time evolution of G(2)

peak (upper row) and

G(1)
peak (lower row) in Fig. 9, where the columns correspond

to Z = 0, 0.001, 0.01, 0.1, and 0.75, respectively. Inside each
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FIG. 9. Time evolution of G(n)
peak for a BHL configuration with v = 0.6, c2 = 0.2, and L = 20. The vertical solid (dashed) line signals

tBCL (tBHL). Columns, from left to right, correspond to Z = 0, 0.001, 0.01, 0.1, and 0.75, respectively. Blue, red, orange, and purple solid
lines represent λ = 1, 10, 100, and 1000. [(a)–(e)] G(2)

peak (t ). Dashed green lines in (a)–(c) represent the theoretical prediction ln G(2)
peak ∼ 2�t ,

Eqs. (22), (27). [(f)–(j)] G(1)
peak (t ). Dash-dotted black lines represent the theoretical prediction ln G(1)

peak ∼ 2�t in (f), Eq. (22), and ln G(1)
peak ∼ �t

in (g) and (h), Eq. (27).

panel, blue, red, orange, and purple curves represent λ = 1,
10, 100, and 1000. Vertical solid (dashed) lines signal the
onset of the BCL (BHL) mechanisms.

We first focus on the case of a purely quantum BHL
[Figs. 9(a) and 9(f)], where we note that the blue curve cor-
responds to the simulation of Fig. 3. We observe that, before
the BHL onset, the amplitude of the density-density correla-
tions is essentially constant (note the logarithmic scale) and
independent of λ. This last property arises precisely because
of the use of the normalized correlation function of Eq. (14).
On the other hand, the perturbations around the homogeneous
background in the average density do depend on λ since
〈δn̂(1)(x, t )〉 = 0 and hence

〈n̂(x, t )〉 − n0 = 〈δn̂(2)(x, t )〉 = 〈δ�̂†(x, t )δ�̂(x, t )〉 ∼ λ−1,

(19)

so G(1)
peak ∼ λ−1.

After the BHL onset, both the average density and the
density-density correlations exponentially increase. Specifi-
cally, since the dominant mode drives the dynamics, in this
regime we expect the quantum fluctuations to be grosso modo
described by

δ�̂(x, t ) � e�t

√
λn0ξ0

[uI (x)e−iγ t α̂I + v∗
I (x)eiγ t α̂

†
I ], (20)

with the time t measured here starting from the BHL onset,
uI and vI the BdG components of the dominant mode, γ the
real part of its frequency, and α̂I its amplitude. We recall that,
since dynamically unstable modes have zero norm according
to the BdG inner product, their amplitudes do not behave as
annihilation operators but they instead commute with their
conjugate, [α̂I , α̂

†
I ] = 0 [28]. In a quantum BHL, the phase of

the amplitude of the dominant mode is expected to be random
and hence we can neglect 〈α̂I α̂I〉 � 0. This assumption yields
that G(1)

peak and G(2)
peak behave as

G(1)
peak(t ) ∼ 〈δn̂(2)〉 ∼ e2�t

λ
,

G(2)
peak(t ) ∼ λ 〈δn̂(1)δn̂(1)〉 ∼ e2�t . (21)

Hence, for a quantum BHL,

ln G(n)
peak(t ) ∼ 2�t, n = 1, 2, (22)

since G(1)
peak(t ) also scales quadratically in the field fluctuations

because the Z2 symmetry of a purely quantum BHL sets
〈δ�̂(x, t )〉 = 0 [61]. Using the pendulum picture, we can un-
derstand the Z2 symmetry as that of the quantum fluctuations
around the initial unstable position.

The prediction of Eq. (22) is depicted in dashed green and
dash-dotted black lines in Figs. 9(a) and 9(f), respectively,
where � is obtained from Fig. 1(c). A good agreement with
the numerical results is observed, extending the qualitative
agreement between the spatial correlation patterns present in
the central column of Fig. 8. Nevertheless, this approximation
necessarily fails at early times after the BHL onset, when
the whole spectrum of Hawking radiation contributes to the
checkerboard amplitude through HSWH radiation, and at late
times, when nonlinear effects become crucial. Both limits give
rise to deviations from the dashed green slope. In particular,
the exponential growth ceases when the system reaches the
saturation regime. There, both G(1)

peak and G(2)
peak saturate to

the values G(1)
sat and G(2)

sat (latest times in Fig. 9). Using these
values, we can define the saturation time tsat as the time when
G(2)

peak reaches G(2)
sat . Technically, we extract G(1)

sat and G(2)
sat from

the simulations by averaging in time once in the saturation
regime, and take tsat as the time needed for G(2)

peak(t ) to reach

the value G(2)
peak(t = 0) + 0.9[G(2)

sat − G(2)
peak(t = 0)]. We have

checked that the main conclusions are quite insensitive to the
specific details of these definitions.

To capture the underlying physics governing these pro-
cesses, we use a crude model in which Eq. (20) governs the
whole lasing period until the saturation regime, estimating in
this way G(2)

sat and tsat.
For a quantum BHL, Fig. 9 shows that G(1)

sat does not depend
on λ but G(2)

sat does, which is precisely the opposite behavior to
that of G(1)

peak and G(2)
peak before saturation. This is because the

saturation regime is reached when quantum fluctuations have
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FIG. 10. Saturation values for a BHL with v = 0.6, c2 = 0.2, and
L = 20. Red lines represent linear fits to the black dots. (a) Saturation
amplitude G(2)

sat as a function of the quantum strength λ−1 for a
quantum BHL with Z = 0 [Fig. 9(a)]. (b) Saturation time tsat for
the simulations in (a). (c) G(2)

sat as a function of the barrier strength
Z for fixed λ = 1000. Black dots correspond to tBHL = 100 and blue
squares to pure BCL stimulation, tBHL = ∞, with tBCL = 50. The fit
is restricted to small values of Z . (d) tsat for the points fitted in (c).

grown enough to enter the nonlinear regime,

δn̂ ∼ 1. (23)

Our crude model then predicts

G(1)
sat ∼ 1 ∼ e2�tsat

λ
,

G(2)
sat ∼ λ ∼ e2�tsat , (24)

so

ln G(2)
sat ∼ ln λ, tsat ∼ ln λ

2�
. (25)

We represent both G(2)
sat and tsat as a function of λ for a purely

quantum BHL in Figs. 10(a) and 10(b), finding good agree-
ment with the expected scaling.

In the regime of classical BHL, the Z2 symmetry is broken
by the BCL stimulation. The Cherenkov wave is a coherent
undulation above the homogeneous background, accounted
by linear perturbations of the GP wave function 〈δ�̂(x, t )〉 =
δ�(x, t ) ∼ ABCL �= 0. This is translated into a classical ver-
sion of Eq. (20) that yields

G(1)
peak(t ) ∼ 〈δn̂(1)〉 ∼ ABCLe�t cos(γ t + δ), (26)

with δ some phase. In the pendulum picture, the amplitude
ABCL is the equivalent of the initial angle θ which breaks
the Z2 symmetry of the unstable equilibrium position. As a
result, a classical BHL can be understood as a well-defined
classical trajectory plus small quantum fluctuations around it.
Consequently, the average density does not depend here on λ.

Precisely because of its classical deterministic character, at
the linear level the BCL amplitude does not show up in the
density-density correlation function and G(2)

peak(t ) still follows

Eq. (21). Thus, the Z2 symmetry-breaking implies now

ln G(1)
peak(t ) ∼ �t, ln G(2)

peak(t ) ∼ 2�t . (27)

These predictions are depicted in dashed green and dash-
dotted black lines in Figs. 9(b) and 9(c) and Figs. 9(g) and
9(h), respectively, where good agreement with the numerical
results is again observed. The small oscillations observed in
G(1)

peak(t ) result from the sinusoidal term in Eq. (26), arising
from the oscillatory component of the frequency of the domi-
nant mode.

The saturation regime is reached now when the mean-field
amplitude, given here by G(1)

peak, grows up to that of a nonlinear
stationary GP solution. In our crude model, the saturation of a
classical BHL is then determined by the condition

G(1)
sat ∼ 1 ∼ ABCLe�tsat . (28)

Therefore, the saturation time is predicted to behave as

tsat ∼ − ln ABCL

�
∼ − ln Z

�
, (29)

since we are in the regime of small ABCL where it is linear in
the barrier amplitude Z , ABCL ∼ Z . Accordingly, the satura-
tion amplitude for the quantum fluctuations will be given by
G(2)

sat ∼ e2�tsat so

ln G(2)
sat ∼ 2�tsat ∼ −2 ln Z. (30)

We represent both magnitudes as a function of the delta
strength Z in Figs. 10(c) and 10(d), finding good agreement
with the predicted scalings in the regime of validity of small
Z . The decrease of both magnitudes with ABCL (controlled by
the barrier strength Z) is quite intuititve: the closer the system
is to the saturation regime, the less time is needed to reach it.
Since the amplification of quantum fluctuations mainly occurs
during the lasing time, a shorter saturation time is translated
into a smaller amplification factor e2�tsat .

C. Classical BHL versus BCL

We now address the distinction between classical BHL and
BCL [Figs. 9(d), 9(e), 9(i), and 9(j)]. Due to the strong BCL
stimulation, leading to a well-defined mean-field trajectory,
the results here are essentially independent of λ. We first
notice remarkable qualitative differences between the fourth
and fifth columns of Fig. 9. In Fig. 9(d), the density-density
correlation function is quite insensitive to the rather large
BCL amplitude [Fig. 9(i)]. However, once the white hole is
switched on, a large amplification of quantum fluctuations
is observed again, although with a different growth rate as
compared to the expected BHL one [dashed green lines in
Figs. 9(a)–9(c)]. Two main factors contribute to this behavior:
(i) the starting point for the BHL amplification in Fig. 9(d) is
not anymore some linear BCL wave on top of a homogeneous
stationary condensate, where the BdG spectrum of Fig. 1(c)
is still expected to be valid, and (ii) even if the linear BdG
approximation was valid, the saturation time is so short that
there is no room for the dominant mode to stand above. On the
other hand, Fig. 9(e) shows some amplification of the quan-
tum fluctuations even when the BCL mechanism is operating
alone, and the BHL onset barely affects the dynamics.
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FIG. 11. Time evolution of G(2)
peak for different BHL onsets tBHL =

50 (solid blue), tBHL = 100 (dashed red), tBHL = 150 (dash-dotted
green), and tBHL = ∞ (dotted magenta). The BHL parameters are
v = 0.6, c2 = 0.2, and L = 20, and the quantum strength is set to
λ = 1000. Vertical solid (dashed) lines signal the BCL (BHL) onsets,
where the former is fixed to tBCL = 50. [(a)–(d)] Delta strength values
Z = 0.1, 0.3, 0.5, and 0.75, respectively.

In order to further understand these features, we play with
the BCL and BHL onsets in Figs. 11(a)–11(d) where, for
the corresponding values of Z = 0.1, 0.3, 0.5, and 0.75, we
display the time evolution of G(2)

peak. Solid blue, dashed red, and
dash-dotted green lines in each panel correspond to BHL onset
times tBHL = 50, 100, and 150, respectively, while the dotted
magenta line represents the case where there is no white hole,
tBHL = ∞. The BCL onset and the quantum strength are fixed
to tBCL = 50 and λ = 1000.

In Fig. 11(a), the amplification of G(2)
peak can be unambigu-

ously attributed to the presence of a white hole. However, this
effect is attenuated as we further increase Z . Quantitatively,
for increasing Z , the BCL contribution to the checkerboard
pattern increases while the saturation amplitude G(2)

sat de-
creases. These trends are confirmed by Fig. 10(c), where we
depict the saturation amplitude G(2)

sat for tBHL = 100 (tBHL =
∞) as a function of Z using black dots (blue squares).

Both trends are in fact in close relationship. We have seen
in the previous section that, in the classical regime, saturation
is determined by the moment in which the mean-field density
reaches G(1)

sat . Moreover, the second row of Fig. 9 shows that
the dependence of G(1)

sat on Z is very mild, even in the highly
nonlinear regime of Z ∼ 1. Therefore, the saturation time tsat

is essentially fixed by the starting point of the mean-field
dynamics, in turn given by the initial BCL amplitude ABCL.
Hence, we explain the decrease of G(2)

sat for increasing Z by
extending the arguments leading to Eqs. (28)–(30) to the non-
linear regime.

At the same time (see Figs. 6 and 7 and ensuing dis-
cussion), if the BCL undulation is highly nonlinear, we can
no longer understand it as a perturbation but rather as a
new mean-field background over which fluctuations evolve.
The sharp peaked structure of the BCL wave, alternating
density maxima and minima, results in the emergence of
a checkerboard pattern in the correlation function, whose

origin is completely different from that from a black-hole laser
(Figs. 3–5), arising from the exponential amplification of the
quantum fluctuations of the lasing modes. Accordingly, the
checkerboard amplitude from pure BCL stimulation behaves
very differently; it weakly increases with Z [blue squares in
Fig. 10(c)] and is exponentially smaller than its lasing coun-
terpart (black dots).

For sufficiently strong BCL stimulation [last points in
Fig. 10(c)], both saturation amplitudes converge, indicating
the dominance of the BCL mechanism over the BHL one. In
the BCL regime, the effect of the BHL onset is small, and the
main physics can be understood in terms of the large back-
ground Cherenkov wave. The density ripple saturates here
to the BCL amplitude squared, G(1)

sat ∼ A2
BCL. Regarding the

correlation function, the trend is reversed and the saturated
checkerboard amplitude G(2)

sat now grows with Z or, equiv-
alently, with ABCL. Specifically, we expect G(2)

sat = F (ABCL),
with F some increasing function of ABCL that also depends on
the parameters determining the background flow. Finally, due
to the rapid growth of the BCL wave, tsat will be essentially
limited by the time τBCL < τRT needed for the BCL wave to
travel towards the black hole and extend over the full cavity,
tsat � τBCL.

D. Mean-field parameters

We analyze in this section the role of the background
parameters determining the BHL configuration. For the sake
of clarity, we focus on variations of the cavity length L and
the flow speed v, which can be both controlled in the experi-
ment: the cavity length is related to the depth of the waterfall
potential and the flow speed to its velocity [37].

The spectrum of dynamical instabilities as a function of
L is shown in Fig. 1(c), where blue dots mark the numeri-
cal values considered in this section. In Fig. 12 we jointly
depict the time evolution of G(1)

peak (dashed red) and G(2)
peak

(solid blue), both normalized to their corresponding saturation
values, where columns correspond to L = 5, 11.4, 15, 20, and
30 and rows to Z = 0, 0.001, and 0.75, respectively. In this
way, each row matches one of the three regimes discussed
here: quantum BHL, classical BHL, and BCL. Dashed green
and dash-dotted black lines in the first two rows represent
theoretical fits from the predictions of Sec. IV B, in good
agreement with the numerical data.

The first column of Fig. 12 addresses a short cavity where
only one nondegenerate unstable mode is present. Short cav-
ities are translated into short round-trip times as τ−1

RT ∼ 1/L,
and hence large growth rates can be expected. This is what is
seen Fig. 12(a), where the dominant mode governs the dynam-
ics almost from the very beginning of the lasing period (note
also the shorter span in the time axis). In the latest times of
the simulation, the system eventually reaches the ground state
as no other nonlinear solutions are present. Since the ground
state is dynamically stable, the enhanced quantum fluctuations
flow away from the cavity, reducing the magnitude of G(2)

peak.
The nondegenerate character of the unstable mode is clearly
shown in Fig. 12(f), where neat oscillations in the density
growth are observed, as predicted by Eq. (26). Finally, the
BCL regime in Fig. 12(k) presents large periodic oscillations
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FIG. 12. Time evolution of G(n)
peak/G(n)

sat for n = 1 (dashed red) and n = 2 (solid blue), for fixed v = 0.6 and c2 = 0.2. The vertical solid
(dashed) line signals tBCL (tBHL). Columns, from left to right, correspond to L = 5, 11.4, 15, 20, and 30, respectively. [(a)–(e)] Quantum
BHL with Z = 0 and λ = 1. Dashed green line shows the prediction ln G(n)

peak ∼ 2�t , Eq. (22). [(f)–(j)] Classical BHL with Z = 0.001 and

λ = 1000. Dashed green and dash-dotted black lines represent, respectively, the theoretical predictions ln G(2)
peak ∼ 2�t and ln G(1)

peak ∼ �t ,
Eq. (27). [(k)–(o)] BCL regime with Z = 0.75 and λ = 1000.

in its saturation regime because the system reaches a CES
state, induced by the strong potential barrier.

It must be noted that the round-trip time only provides an
estimation of the actual growth rate. From Fig. 1(c), we expect
a highly nonmonotonic dependence of � with respect to the
cavity length. This is indeed observed in the second column of
Fig. 12, where, although the cavity is more than twice longer,
the growth rate is even larger than in the first column. The
oscillation period of the density for classical BHL [Fig. 12(g)]
is also larger, in agreement with the prediction from Fig. 1(c).

For sufficiently long cavities, the qualitative trends con-
verge, as shown by the last three columns of Fig. 12. In the
linear regime, this is because there is an increasing number of
lasing modes and we are closer to the ideal long-cavity limit
where the usual Wentzel-Kramers-Brillouin (WKB) prescrip-
tions become exact [28]. In particular, the nonmonotonic be-
havior of the growth rate is attenuated, and the real part of the
frequency of the dominant mode tends to zero, which trans-
lates into an increasing period of the oscillations in the density
growth [Figs. 12(h)–12(j)]. In the saturation regime, the trends
converge because, once there, the system typically oscillates
around the nonlinear GP solution labeled with the largest
n available, which is highly metastable with a long lifetime
[57,61]. The more regular behavior of the nonlinear regime
suggests that the predicted scalings for the saturation regime,
namely, Fig. 10, are more accurate in the long-cavity limit.

With respect to the flow speed, the spectrum of dynamical
instabilities as a function of v is shown in Fig. 13, where
blue dots mark again the numerical values considered. We
see that now the round-trip time is reduced for increasing
v; in the limit of large supersonic Mach number it scales
as τ−1

RT � 2v/L, resulting in an increasing estimated growth
rate. However, once more, nonmonotonic oscillations of the
actual growth rate are observed, with increasing amplitude.

In particular, the critical velocity vn at which a new unstable
mode emerges is given by the adapted version of Eq. (3):

L =
arctan

√
1 − v2

n

v2
n − c2

2√
v2

n − c2
2

+ nπ√
v2

n − c2
2

, n = 0, 1, . . . . (31)

FIG. 13. Spectrum of dynamical instabilities as a function of the
flow speed v for a flat-profile BHL configuration with c2 = 0.2 and
L = 20. Solid (dashed) lines are the imaginary (real) part of the
frequency. Vertical solid (dashed) black lines represent the critical
velocities vn (vn+1/2). The thick solid black envelope highlights the
growth rate � of the dominant mode. The dash-dotted green line is
the inverse of the round-trip time. Blue dots indicate the numerical
values considered.
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FIG. 14. Same as Fig. 12 but now the cavity length is fixed to L = 20 and the columns correspond to v = 0.4, 0.5, 0.6, 0.7, and 0.8,
respectively.

For half-integer values n + 1/2, the above equation yields the
velocities vn+1/2 at which the nth unstable mode becomes
nondegenerate.

In Fig. 14, we perform the same analysis of Fig. 12 but
now the cavity length is fixed to L = 20 and each column
corresponds to v = 0.4, 0.5, 0.6, 0.7, and 0.8, respectively.
Once more, a good agreement with the theoretical predictions
is found. The oscillation period of the density in the classical
BHL regime also follows the expected behavior. Perhaps the
most remarkable result is the high degree of nonmonotonicity
revealed by the fourth column, v = 0.7, where the growth rate
is halved during the lasing regime as compared to the adjacent
columns v = 0.6 and 0.8, as correctly predicted by Fig. 13.

V. DISCUSSION

We proceed here to critically discuss the results of the
previous section from a global perspective. We first analyzed
in Sec. IV A the characteristic spatial patterns of each regime
(quantum BHL, classical BHL, and BCL) in the ensemble-
averaged density G(1) and in the normalized density-density
correlation function G(2). For a quantum BHL, at early times
we observe HSWH radiation that results from the scattering of
the partner modes of the Hawking effect at the inner horizon.
Due to the existence of low frequency and large wave-vector
modes in the lasing cavity, a checkerboard pattern emerges in
the density-density correlations, similarly to the usual white-
hole radiation stimulated from vacuum fluctuations. However,
here these modes are also correlated with the originally emit-
ted Hawking and Andreev modes, now far away from the
outer horizon, yielding the distinctive signature of HSWH
radiation. All these correlations arise from a continuous spec-
trum. In contrast, at late times, a monochromatic pattern is
observed in both G(1) and G(2), associated to the exponential
growth and subsequent saturation of the single dominant un-
stable mode. This is translated into an enhanced checkerboard
pattern and parallel stripes in the subsonic-supersonic and

upstream-downstream correlations, as well as a large density
ripple within the lasing cavity.

The classical BHL regime differs from the quantum one
(i) at early times, by the presence of a density ripple
due to the background BCL stimulation, and (ii) at late
times, by the presence of sharp features, including soliton
emission. The BCL regime is characterized by a strong rip-
ple that is quite insensitive to the BHL onset, displaying a
checkerboard pattern from the very beginning of the BCL
stimulation.

A note of caution is placed here: the use of any of the above
signatures as a conclusive smoking gun in a real experiment
can be very problematic. For instance, the neat presence of
sharp features (e.g., soliton emission) is indeed an evidence
of classical behavior, either BHL or BCL. However, their ab-
sence does not exclude these phenomena because run-to-run
experimental variations can also wash out these features in the
ensemble average. The presence of HSWH radiation is neither
an unambiguous signature since it can perfectly arise from
an inner horizon that will eventually stimulate enough BCL
radiation to overshadow the BHL amplification, as in actual
experiments [37,40].

Even more confusing can be the presence of a monochro-
matic pattern in the correlation function, which naively could
be attributed to the underlying operation of a quantum BHL,
because that can also be generated by experimental variations
of BCL-stimulated Hawking radiation, as observed in the
2021 experiment [40].

Actually, even the presence of a checkerboard pattern,
common to all phenomena, is of a very different nature de-
pending on the dominant mechanism. In a BHL, it arises at
early times from HSWH radiation, and at late times from
the dominant lasing mode. Once in the saturation regime, the
blurring of the checkerboard is characteristic of quantum
BHL. In contrast, in the BCL regime, the checkerboard is
originated by the large Cherenkov amplitude, whose nonlinear
peaked structure acts as a background density modulation over
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which quantum fluctuations evolve. Nevertheless, experimen-
tal variations can also blur a neat checkerboard arising from
either classical BHL or BCL stimulation. Remarkably, the
intricacy of this problem is captured by Fig. 8, where three
different phenomena (HSWH radiation, exponential amplifi-
cation of the single dominant mode, and BCL background
modulation) give rise to a checkerboard pattern.

Sections IV B and IV C introduced a more robust character-
ization of each phenomenon, based on a quantitative analysis
of the time evolution of the amplitude of the density ripple in
G(1) and of the checkerboard pattern in G(2). In the context
of the quantum-classical transition of a black-hole laser, we
analyzed and confirmed the role of the Z2 symmetry, first pre-
dicted in Ref. [61]. However, this symmetry is very fragile and
a minor BCL stimulation can break it, as seen in Fig. 9(b) (see
also central row of Figs. 12 and 14). In turn, this symmetry
breaking gives an oscillatory character to the growth of the
density ripple, in contrast with the BCL undulation, by defi-
nition a zero-frequency mode. Again, this difference is not a
conclusive distinguishability criterion because in experiments
the BCL wave can acquire a finite frequency in the black-hole
rest frame due to the Doppler shift induced by the recoil of the
inner horizon [38,40].

Nevertheless, even when the Z2 symmetry is broken, sig-
natures of quantum BHL can still be present, revealed as a
dependence of the saturation amplitude G(2)

sat on the initial
strength of the quantum fluctuations, determined here by the
dimensionless parameter λ [see the blue and red curves in
Fig. 9(b) and the blue curve in Fig. 9(c)]. In fact, the blue
and purple curves in Fig. 9(c) correspond to the simulations of
Figs. 4 and 5, respectively, which displayed strong qualitative
differences in their correlation patterns.

Based on the above discussion, we identify the exponential
amplification of the initial quantum fluctuations as the most
robust trait of the BHL effect. Specifically, we characterize
the BHL-BCL crossover using very general scaling arguments
that allow us to quantify the efficiency of the system as a
quantum amplifier. We measure the amplitude of the quantum
fluctuations through the relative density-density correlation
function g(2) of Eq. (10). In the initial state, we can compute
analytically the Fourier transform of the correlation function
[see Eq. (15) and ensuing discussion] from

g(2)(x, x′, t = 0) = 1

2πn0ξ0

∫ ∞

−∞
dk [S0(k) − 1]eik(x−x′ ),

S0(k) = |uk + vk|2 = k2

2�k
= |k|√

4 + k2
, (32)

where S0(k) is the zero-temperature static structure factor.
Thus, at t = 0, the peak of the Fourier transform is at k = 0
and satisfies, apart from some proportionality factor,

g(2)
peak (t = 0) ∝ 1

n0ξ0
� 1. (33)

This is the input of the quantum amplifier. The output is the
saturation value g(2)

sat . Then, we can quantify the gain of the
quantum amplifier as the dimensionless ratio

G ≡ g(2)
sat

g(2)
peak (t = 0)

∝ n0ξ0g(2)
sat = G(2)

sat . (34)

Therefore, the saturation value of the normalized correlation
function G(2)

sat is a good measure of the gain of the quantum
amplifier.

In the case of a quantum BHL, the saturation regime is
characterized by the condition

g(2)
sat ∼ 1, (35)

when density fluctuations become nonlinear, of the order of
the condensate density itself. This means that a quantum BHL
behaves as a nonlinear quantum amplifier since it amplifies
the initial quantum fluctuations up to the same saturation
amplitude, with an output not proportional to the input:

GQBHL ∼ n0ξ0. (36)

In other words, the gain depends on the input amplitude
1/n0ξ0, as already revealed by the λ dependence observed in
Fig. 10(a).

In the case of a classical BHL, the saturation regime is
independent of the initial quantum fluctuations, with the satu-
ration time tsat being determined by the mean-field dynamics,
in turn governed by the exponential amplification of the ini-
tial BCL seed. This is translated into a saturation value [see
Eq. (30)]

g(2)
sat ∼ e2�tsat

n0ξ0
. (37)

Hence, a classical BHL is a linear quantum amplifier, with a
gain factor

GCBHL ∼ e2�tsat (38)

independent of the input and exponentially large in the satu-
ration time tsat. Thus, we can also regard tsat as the lasing time
during which the exponential amplification of quantum fluc-
tuations takes place. As a result, this time typically decreases
with the BCL amplitude ABCL as the system then starts closer
to saturation.

In the BCL regime, linear quantum amplification occurs
since the saturation properties are also independent of the
initial quantum strength [Figs. 9(d) and 9(e)]. However, the
quantum gain

GBCL ∝ G(2)
sat = F (ABCL) (39)

is exponentially smaller as compared to that of a classical
BHL [Fig. 10(c)]. This results from the lack of a microscopic
mechanism of exponential amplification, and the enhance-
ment of quantum fluctuations stems just from the large BCL
modulation of the mean-field density. This also implies that
the function F (ABCL) determining the gain increases with
ABCL, in stark contrast with the decrease expected for lasing
amplification. Thus, the dependence of the gain with respect
to the BCL amplitude can be used to distinguish between
classical BHL and BCL.

The relation between the existence of classical trajectories
and linear quantum amplification results from the fact that the
quantum dynamics around a well-defined mean-field back-
ground is linear, governed by the BdG equations. Nonlinear
amplification precisely emerges when quantum fluctuations
back-react onto the condensate, as in a quantum BHL, and
the linear BdG approximation no longer holds. Therefore,
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TABLE I. Summary of the main results for the three regimes discussed in this work: quantum BHL, classical BHL, and BCL. There is no
analytical prediction for G(n)

peak (t ) in the BCL regime due to its highly nonlinear behavior. F (ABCL ) is an increasing function of ABCL and τBCL

is the time that it takes the BCL wave to reach the black hole. The column “Monotonic” indicates a monotonic dependence on the background
parameters of the flow.

G(1)
peak (t ) G(2)

peak (t ) G(1)
sat G(2)

sat tsat Monotonic

Quantum BHL ∼e2�t/n0ξ0 ∼e2�t ∼1 ∼n0ξ0 ∼ ln n0ξ0/2� No
Classical BHL ∼ABCLe�t cos(γ t + δ) ∼e2�t ∼1 ∼e2�tsat ∼ A−2

BCL ∼ − ln ABCL/� No
BCL ∼A2

BCL F (ABCL ) �τBCL Yes

any significant deviation from linear amplification, i.e., any
dependence of the gain on n0ξ0, represents a signature of
quantum BHL, as shown in Figs. 9(a)–9(c).

Further understanding on how each amplifier works can be
extracted from Figs. 12 and 14. Before saturation, the dynam-
ics of G(1)

peak and G(2)
peak are strongly coupled for quantum BHL

and BCL, while they become uncorrelated for classical BHL.
The explanation behind this observation relies on the different
mechanisms governing the dynamics of each magnitude. In a
quantum BHL, the evolution of both G(1)

peak and G(2)
peak is mainly

determined by the same mechanism: the amplification of the
quantum amplitude of the unstable mode. In a classical BHL,
G(1)

peak is determined by the growth of the initial classical BCL

amplitude while G(2)
peak still represents the amplification of the

quantum fluctuations of the unstable mode. The coupling of
both magnitudes is again retrieved in the BCL regime, where
the nonlinear amplitude of the Cherenkov wave that saturates
G(1)

peak is also responsible for the amplification in G(2)
peak.

This analysis yields an important conclusion: the BCL
mechanism requires a large nonlinear mean-field amplitude to
show up in the correlation function, in contrast to a classical
BHL, where mean-field and quantum dynamics (characterized
by G(1)

peak and G(2)
peak, respectively) are decoupled. This implies

that, for a classical BHL, one can have a large checkerboard
amplification which is not translated into a large ripple in
the density profile, as shown in Figs. 4 and 5. Actually, this
statement also applies to a purely quantum BHL due to the
Z2-symmetry suppression of the ripple growth [see Fig. 3(d)].

Hence, a joint analysis of the behavior of G(1)
peak and G(2)

peak
and a quantitative characterization of the quantum gain can
help to distinguish BHL from BCL in experimental setups in
a robust way, regardless of the specific details of the config-
uration. Moreover, the study can be supplemented by varying
the background parameters: any nonmonotonic behavior of
the growth rate of both G(1)

peak and G(2)
peak further hints at the

operation of the BHL effect because the BCL dependence
should be smooth due to its zero-frequency nature. Indeed,
nonmonotonicity is a quite general feature of resonant struc-
tures, not only in analog setups [55]. This general qualitative
analysis can be always complemented with a more specific
quantitative one based on the estimation of the round-trip time
and the expected BCL signal [38–41].

To conclude, we summarize the main results for each
regime in Table I, namely, the behavior of G(n)

peak (t ), the de-
pendence of the saturation parameters on the quantum and
BCL amplitudes, 1/n0ξ0 and ABCL, and the monotonicity with
respect to the background parameters.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have studied the BHL-BCL crossover
using the idealized flat-profile model, which allows to un-
ambiguously distinguish the contribution of each mechanism
to the dynamics. By drawing an analogy with an unstable
pendulum, we have identified three main regimes depending
on the interplay between quantum fluctuations and classical
stimulation: quantum BHL, where the dynamics is driven by
the exponential amplification of vacuum fluctuations; classical
BHL, where the lasing instability has a well-defined coherent
amplitude induced by the background Cherenkov wave; and
BCL, where Cherenkov stimulation governs the evolution un-
til saturation.

General scaling arguments allow us to characterize each
regime according to its behavior as amplifier of the initial
quantum fluctuations. In this way, a quantum BHL is revealed
as a nonlinear quantum amplifier, which takes quantum fluctu-
ations up to the same saturation amplitude regardless of their
initial strength. A classical BHL behaves instead as a linear
quantum amplifier, where the output is proportional to the
input and the gain is exponentially large in the lasing time.
The BCL regime also acts as linear quantum amplifier, but
its nature is very different since the amplification arises from
the strong background modulation induced by the BCL wave,
and not from a microscopic amplification mechanism. This is
translated into an exponentially smaller gain as compared to a
classical BHL.

In order to clearly distinguish between the BHL and the
BCL mechanisms in experiments, the measurement of the
quantum gain can be complemented with a detailed study
of the density ripple and the checkerboard pattern, includ-
ing their joint behavior, the dependence of their saturation
amplitudes with respect to the BCL strength, and the mono-
tonicity of their growth rate with respect to the background
parameters.

From an analog gravity perspective, our work neatly
isolates the BHL and BCL characteristic traits, providing
practical tools for the unambiguous identification of the BHL
effect in future experiments. Furthermore, our analysis sug-
gests that the most reachable target is a classical BHL, where
the background Cherenkov wave is sufficiently attenuated to
become the seed of the BHL amplification instead of over-
shadowing it. At the same time, one can aim at optimizing the
background mean-field configuration in order to maximize the
lasing growth rate. Using the pendulum picture, the idea is to
minimize the external force, so that it just gives a small am-
plitude to the pendulum, and maximize the effect of gravity.
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Once a classical BHL is achieved, the next challenge is the
observation of the quantum BHL effect by further reducing the
BCL background while increasing the amplitude of the quan-
tum fluctuations by approaching the interacting regime n0ξ0 �
1. Nevertheless, a dedicated analysis of realistic experimental
setups, including effects such as temperature, inhomogeneity
and nonstationarity of the background, or experimental varia-
tions, is left for future work.

The results of this study can be also useful for other
analog setups in which low-frequency undulations similar to
the Cherenkov wave compete with the BHL effect [71,72].
Moreover, our model provides an ideal testing ground for the
study of quantum [73–75] and classical [20] back-reaction
within the quantum and classical BHL regimes here described,
respectively. In addition, the identification of novel phenom-
ena such as HSWH radiation or quantum BCL-stimulated
Hawking radiation is also relevant for the analog community.

From a more global perspective, the characterization of
a BHL as a quantum amplifier can be of interest for atom-
tronics and quantum transport. In general, the achievement
and control of a stationary regime of spontaneous emission

of Hawking radiation [40], the emergence of a spontaneous
many-body Floquet state with the subsequent formation of a
continuous time crystal in the long-time regime of a black-
hole laser [67], the behavior of an optical lattice as a low-pass
filter of Hawking radiation [59,76], and the quantum amplifi-
cation here identified open the prospect of using gravitational
analogs to also investigate condensed-matter phenomena and
potential applications in quantum technologies.
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