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Particle-environment interactions in arbitrary dimensions: A unifying analytic framework
to model diffusion with inert spatial heterogeneities
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Inert interactions between randomly moving entities and spatial disorder play a crucial role in quantifying
the diffusive properties of a system, with examples ranging from molecules advancing along dendritic spines
to antipredator displacements of animals due to sparse vegetation. Despite the ubiquity of such phenomena,
a general framework to model the movement explicitly in the presence of spatial heterogeneities is missing.
Here, we tackle this challenge and develop an analytic theory to model inert particle-environment interactions in
domains of arbitrary shape and dimensions. We use a discrete space formulation, which allows us to model the
interactions between an agent and the environment as perturbed dynamics between lattice sites. Interactions
from spatial disorder, such as impenetrable and permeable obstacles or regions of increased or decreased
diffusivity, as well as many others, can be modelled using our framework. We provide exact expressions for
the generating function of the occupation probability of the diffusing particle and related transport quantities
such as first-passage, return, and exit probabilities and their respective means. We uncover a surprising property,
the disorder indifference phenomenon of the mean first-passage time in the presence of a permeable barrier in
quasi-1D systems. We demonstrate the widespread applicability of our formalism by considering three examples
that span across scales and disciplines. (1) We explore an enhancement strategy of transdermal drug delivery.
(2) We represent the movement decisions of an animal undergoing thigomotaxis, the tendency to remain at
the peripheries of its enclosure, using a spatially disordered environment. (3) We illustrate the use of spatial
heterogeneities to model inert interactions between particles by modeling the search for a promoter region on
the DNA by transcription factors during gene transcription.
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I. INTRODUCTION

Local interactions between mobile agents or particles and
their environmental features plays a crucial role in the dynam-
ics of many systems across disciplines and scales [1–5]. When
such environmental features are inert heterogeneities, the local
interactions only affect the movement dynamics of the agents.
A wide array of spatial heterogeneities can be classed as inert,
e.g., impenetrable or permeable barriers, areas of reduced or
increased mobility, lattice defects such as disclinations, and
traps that are reversible.

In some instances, the presence of such heterogeneities
is by design, e.g., in manufacture engineering where mate-
rials are constructed to have specified diffusive characteristics
[6,7]. In other scenarios, spatial heterogeneities occur natu-
rally. In ecology, animals alter their foraging behavior due
to variations in vegetation cover [8,9]. In molecular biology,
particles undergo fence hindered motion in the lipid bilayer
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membranes of eukaryotes [10,11], and slow down dramati-
cally when moving within the cell cytoplasm due to exclusion
processes [12]. While the relationship between mobility and
spatial disorder in these and other systems has always been
a focus of scientific studies, it is the highly resolved nature
of modern observations that has made apparent the need
for a general framework to model inert particle-environment
interactions.

Investigations on movement dynamics in spatially disor-
dered systems date back as early as the 50’s [13–17]. Despite
such a long history most analyses lack a rigorous quantitative
description of the “microscopy” of the interaction events be-
tween the particle and the environment. In the past, transport
in highly disordered media has been studied approximately,
linking the Hausdorff–Besicovitch dimension of fractal struc-
tures to a diffusion constant via scaling arguments [18]. Other
approaches have kept the geometry nonfractal utilizing ran-
dom walks on regular lattices, the so-called random walk
in random environments model [19–25]. These studies have
been instrumental for bringing to light universal concepts
such as weak ergodicity breaking and power-law waiting
times [26,27] as properties of disordered environments. They
also often pertain to 1D domains [28], and have used tech-
niques such as the effective medium approximation to find
statistical properties of the movement dynamics. It is pre-
cisely the absence of explicit spatiotemporal representation of
higher-dimensional particle dynamics, that has hampered the
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widespread applicability of these various models to current
high-fidelity observations.

More recent theoretical applications to movement in disor-
dered environments have focused on the diffusive dynamics
in the cell (e.g., see reviews in Refs. [29–31]). Many attempts
in this area are macroscopic and tackle particle dynamics
without representing the local interactions. Some efforts, giv-
ing importance to the very slow dynamics that emerge from
overcrowding effects, have modelled particle movement via
fractional diffusion [32]. The relative size of accessible versus
inaccessible regions has been accounted for using diffusion
on percolation clusters and has highlighted the difference be-
tween compact versus noncompact exploration of space [33].
Such theoretical efforts have provided valuable insights such
as the emergence of subdiffusion [34] or non-Gaussian yet
Brownian motion from quenched disorder [35].

Other investigations have put emphasis on the spatiotem-
poral dynamics of the environment and, inspired by recent
experiments [36–38], have developed the so-called diffusing-
diffusivity models, where the diffusion strength of the medium
itself is a random variable [39–42] or more recently a corre-
lated random variable [43]. Such models have also been the
subject of theoretical investigations [44,45]. These approaches
have brought important insights and have broadened the tools
and techniques with which to study disordered systems. How-
ever, they too lack the mechanistic connection between the
environmental heterogeneities and the moving particle [32].
With the advent of new experimental techniques such as
super-resolution microscopy and single-particle tracking [46],
the need for an explicit consideration of particle-environment
interactions has also emerged in microbiology [47,48].

The challenge in fulfilling this need stems from the sym-
metry breaking role that disorder plays on the underlying
diffusive dynamics. In most instances describing explicitly
multiple heterogeneities is an unwieldy boundary value prob-
lem. The vast majority of theoretical studies have in fact been
limited to highly symmetric scenarios, e.g., spherically sym-
metric domains with concentric layers of different diffusivity
[49–52] and an array of periodically placed semipermeable
barriers in 1D [53–57].

To bypass this challenge, and to avoid the use of com-
putationally prohibitive stochastic simulations, we propose a
unifying analytic framework to model interactions between
diffusing agents and spatial disorder. We do so by developing
a random walk theory where interactions with heterogeneities
are represented as a perturbation of the transition probabilities
of a homogeneous lattice. By extending the so-called defect
technique [58–60], we are able to model explicitly any in-
ert particle-environment interactions in arbitrary dimensions,
e.g., the passage through porous or permeable barriers, the
movement within regions of altered diffusivity, which we call
sticky or slippery sites as well as shortcut jumps to far away
locations.

The theory allows us to derive mathematical expressions
for the random walker occupation probability, the so-called
propagator. The generating function of these propagators are
exact and obtained in terms of the occupation probability
in the absence of spatial heterogeneities, thereby making
our framework modular in its application. Multiple derived
quantities, such as first-passage, return, and exit probabilities,

which in the past were obtained either numerically or known
only in asymptotic limits [61], can now be readily computed
via the evaluation of certain matrix determinants.

Given the generality of our framework, we have opted to
provide three examples of application. The first deals with
an extracellular process, namely the potential optimization of
transdermal drug delivery [62,63]. The second example is the
modeling of thigmotaxis, the tendency of insects and other
animals to remain preferentially close to physical boundaries
whilst moving [64,65]. The third application concerns with
the search dynamics in a two-particle coalescing process that
is of relevance to early stages of gene transcription [66,67].

The remainder of the paper is organized as follows. In
Sec. II we introduce the general mathematical formalism via a
lattice random-walk Master equation, and show how we rep-
resent different kinds of heterogeneities. In Sec. III we solve
the Master equation and find the exact propagator. Section IV
deals with first-passage statistics and their associated mean,
i.e., mean first-passage, mean exit, and mean return times.
We discuss the computational advantage of evaluating first-
passage statistics over existing methods in Sec. V. The latter
half of the paper, Secs. VI, VII, and VIII, are devoted to the
three applications mentioned previously, which are transder-
mal drug delivery, thigmotaxis, and gene transcription. Lastly,
conclusions and future applications form Sec. IX.

II. MOVEMENT IN HETEROGENEOUS ENVIRONMENTS

We start by defining the dynamics of a Markov lattice
random walk on a d-dimensional lattice via

ϕ(n, t + 1) =
∑

m

An,mϕ(m, t ), (1)

where n is a d-dimensional vector and An,m is the transition
probability from site m to site n such that

∑
m Am,n = 1 for

any site n on the lattice, i.e., with d = 1, A is a probability
conserving transition matrix, and when d > 1, A is actually
a tensor. For convenience in inverting generating functions,
as compared to Laplace inversion, we use a discrete time
formulation with the variable t . Changes to a continuous time
description is straightforward [68], but is omitted here. We
refer to this equation as the homogeneous Master equation and
its solution, given a localized initial condition, as the homoge-
neous propagator. The underlying lattice is referred to as the
homogeneous lattice whose size can be finite or infinite.

Since spatially heterogeneous dynamics are defined rela-
tive to the homogeneous system, we define heterogeneities as
locations or defects where the dynamics are different from the
corresponding ones on the homogeneous lattice. Examples of
heterogeneities are depicted in Fig. 1.

The heterogeneities displayed in Fig. 1 emerge from the
modification of the outgoing transitions from one or more
sites, hence we refer to these altered transitions as heteroge-
neous connections. For example, given a partially reflecting
barrier in between two neighboring sites, the jump proba-
bility from either of the two sites to the other is reduced,
while the probability of staying put at either of the sites
is increased. Conversely, by connecting together two non-
neighboring sites, we may wish to reduce the probability of
staying put at a given site, whilst adding the possibility of
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FIG. 1. Examples of the spatial heterogeneities within a square
lattice of width 10 with reflecting boundaries. Panel (a) depicts open
partitions with the solid black lines indicating impenetrable barriers.
When these barriers enclose a region, some space becomes inacces-
sible indicated by the sites colored dark grey in panel (b). Panel
(c) shows a lattice where three pairs of non-neighboring sites have
a long-range connection, i.e., transitions from a dashed site include
the nearest-neighbors as well as the site connected via the dashed
line. Panel (d) is an example of where the diffusivity of the striped
sites is smaller than the regular (nonstriped) sites. The central site
flagged by a red square and the two sites flagged by a blue diamond
are, respectively, the initial condition and the absorbing targets for
use in later sections.

hopping to the site further away. One can represent con-
veniently these or any other heterogeneity through a mod-
ification of the transitions as depicted in Fig. 2. Formally,
the outgoing connections of the sites u and v are adjusted
by introducing the parameters λv ,u and λu,v to create two
heterogeneous connections. Although we choose to modify
transitions in both direction, i.e., from u to v and v to u, this
does not have to be the case. Modifications of only outgoing
connections are also permitted, e.g., see the dashed arrows
connecting the additional sites r and s.

The construction implicitly conserves probability, which
can be evinced by picking a defect, e.g., u, and summing over
all of the outgoing probabilities. The changes induced by the
λ parameters cancel each other out leaving

∑
w Aw,u, with w

representing all the neighbors of u, equal to the homogeneous
outgoing probability. To ensure positive probability for a given
heterogeneous site u, we have the conditions

λw ,u � Aw,u, (2)

for all w with a heterogeneous connection in the direction u
to w, and

0 � Au,u +
∑
w

λw ,u , (3)

FIG. 2. A schematic representation of the transition probabilities
after the introduction of spatial heterogeneity or disorder. The prob-
ability of hopping from site u to v is given by Av,u. When λv ,u is
positive, the probability of jumping from u to v decreases, while
the probability of staying put increases. When λv ,u is negative, the
opposite effect occurs with a decrease in the probability of staying,
while increasing the jump probability from u to v. The parameter
λu,v affects the transition probability from v to u and the probability
of remaining at v in an equivalent manner.

which enforces upper and lower bounds on the λ parameters
although each one of them can be positive or negative. This
formulation allows one to perturb arbitrarily the homogeneous
lattice creating any type of probability conserving particle-
environment interactions.

A. Quantitative representation of heterogeneities

To understand the practicality of the formalism, we fo-
cus on the three specific types of heterogeneities in Fig. 1,
namely, barriers [Figs. 1(a) and 1(b)], long-range connec-
tions [Fig. 1(c)], and sticky sites [Fig. 1(d)]. In the following
subsection, we present convenient parametrization for the
constant λ’s to construct such heterogeneities.

1. Barriers and anti-barriers

With u and v two neighboring sites, we construct a partially
reflecting barrier by having λv ,u = αv Av,u and λu,v = αuAu,v

where αv , αu ∈ [0, 1] is a measure of the reflectivity of the
barrier. When αv , αu = 1 we have an impenetrable barrier
(shown in Fig. 3), while with αv , αu = 0 we regain the ho-
mogeneous transition. Notice that the barrier does not need to
be symmetric, i.e., αu �= αv , with the extreme scenario being a
barrier with λv ,u = Av,u and λu,v = 0 yields a one-way barrier
or gate. In such a case the movement from v to u is allowed
but from u to v is not.

It is also possible to have dynamics opposite to the par-
tially reflecting barrier. In this case, again with u and v two

FIG. 3. Example of a reflecting barrier between u and v gener-
ated by modifying the transition probabilities (from the left to the
right of the schematic). The modified transitions are indicated by col-
ored arrows. The modification in this case results in an impenetrable
barrier between u and v, with αv = αu = 1.
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FIG. 4. Example of a long-range connection obtained by
rewiring the lazy probability of u and v to create a long-range con-
nection between them (from left to right). In this case βu = βs = 1.

neighboring sites, one has λv ,u = −βv Au,u and λu,v =
−βuAv,v where βv , βu ∈ [0, 1]. As the probability of jumping
to the neighbors increases whilst the probability of staying put
decreases, we have chosen the name antibarrier for this type
of heterogeneity.

2. Long-range connection

When adding an outgoing long-range connection one has
to draw the probability from one or more of the existing
transitions. Let us consider a site u and a non-neighboring
destination site s, where As,u = Au,s = 0. One way of intro-
ducing the outgoing long-range connection is to draw upon the
lazy (also called sojourn) probability using λs,u = −βsAu,u
and λu,s = −βuAs,s, where βu , βs ∈ [0, 1] is the proportion
of the lazy probability added to the long-range connection,
see Fig. 4 for a pictorial representation.

Note this is not the only way; one can also rewire an
existing connection from a neighbor to the non-neighbor. In
such a case, with v a neighbor of u, we let λv ,u = Av,u and
λs,u = −Av,u. The former removes the possibility of jumping
from u to the neighbor v, whilst the latter adds the possibility
of hopping from u to the non-neighbor s.

3. Sticky and slippery sites

Adding a partially reflecting barrier between two neigh-
boring sites naturally increases the probability of staying.
By harnessing this property one can use multiple one-way
partially reflecting barriers between a site w and all of its
k nearest neighbors, r1, . . . , rk , giving λri ,w = αAri,w

, and
λw ,ri = 0 with α ∈ [0, 1] for all i = 1, . . . , k. The result is a
sticky site w, where the probability of staying is increased,
whilst the probability of jumping to any of its neighbors is de-
creased. The introduction of α is used to control and distribute
the stickiness equally across the neighbors in a convenient
manner. See Fig. 5 for a pictorial representation on a 1D
lattice.

Conversely, keeping λw ,ri = 0 and letting λri ,w = − β

k Aw,w

with β ∈ [0, 1] for all i = 1, . . . , k yields a slippery site with
opposite dynamics. As for the sticky site, the introduction of
β is used to control the slippery quality of the site w equally
among its neighbors. Note that we have chosen to divide β by
k so that Eq. (3) is automatically satisfied.

III. HETEROGENEOUS PROPAGATOR

We consider an arbitrary collection of heterogeneous con-
nections given by a set of M paired defective sites or defects,
S = {{u1, v1}, . . . , {uM, vM}}. We use ui and vi with sub-
scripts to indicate the two members of the ith pair, while u and
v without subscripts refers to a generic pair in S. The pairs

FIG. 5. Example of a sticky site on a 1D lattice generated by
reducing all of the outgoing probability to the neighbors as shown
by the thinner arrows, whilst increasing the staying probability of w

as shown by the thicker self loop (from left to right).

are unique, i.e., {ui, vi} �= {u j, v j} for any i �= j; however, a
site can be part of multiple pairs. For example, the set of
pairs, which represents the schematic depicted in Fig. 2 is
S = {{u, v}, {u, r}, {v, s}}, with the sites u and v being part
of two pairs while the sites r and s being part of only one pair
each. The evolution of the occupation probability is given by
the Master equation

�(n, t + 1) =
∑

m

An,m �(m, t ) +
M∑

k=1

(
δn,uk − δn,vk

)
× [

λvk ,uk �(uk, t ) − λuk ,vk �(vk, t )
]
, (4)

where the second summation is over all pairs of heterogeneous
connections. When all λ parameters are set equal to zero,
Eq. (4) reduces to Eq. (1) and the occupation probability
on the heterogeneous lattice �(n, t ) reduces to that of the
homogeneous lattice ϕ(n, t ).

One can find the generating function (z-domain) solution
of Eq. (4) by generalizing the so-called defect technique to
obtain

�̃n0
(n, z) = ϕ̃n0

(n, z) − 1 + |H (n, n0)|
|H| , (5)

where f̃ (z) =∑∞
t=0 f (t )zt is the generating function of the

time-dependent function f (t ), ϕ̃n0
(n, z) is the propagator gen-

erating function of Eq. (1), while |H| and |H (n, n0)| are
determinants with

H i, j = λvi,ui ϕ̃〈u j−v j〉(ui, z) − λui,vi ϕ̃〈u j−v j〉(vi, z) − z−1δi, j,

(6)

H (n, n0)i, j = H i, j − ϕ̃〈u j−v j〉(n, z)

× [
λvi,ui ϕ̃n0

(ui, z) − λui,vi ϕ̃n0
(vi, z)

]
. (7)

In Eqs. (6) and (7) we have used the notation ϕ̃〈u−v〉(n, z) =
ϕ̃u(n, z) − ϕ̃v (n, z). From here onwards we refer to ϕ̃n0

(n, z)
as the homogeneous propagator, which are known in closed
form in finite domains and in a variety of scenarios [68–70],
while �̃n0

(n, z) is referred to as the heterogeneous propagator.
When t = 0, that is z = 0, we have ϕ̃n0 (n, 0) = δn0,n, while
|H (n, n0)|/|H| = 1 and we recover the appropriate initial
condition, �̃n0 (n, 0) = δn0,n.

In general, the size of matrices H and H (n, n0) depend on
the number of paired defects M. A d-dimensional walk with
one sticky (or slippery) site requires two paired defects for
each of the d dimensions. However, in this case, one can make
a simplification and reduce the size of the matrices by a factor
of 2d . Those simplified matrices, as well as the derivation of
the solution and details of efficient evaluation of the solution,
can be found in Appendices D and H.

In Fig. 6 we plot a snapshot of �̃n0 (n, t ) for the hetero-
geneities depicted in each of the panels of Fig. 1. We use this
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FIG. 6. A snapshot of �n0 (n, t ) at time t = 100 obtained from
Eq. (5) with standard numerical methods [71,72]. Propagator with
different configurations of defects, corresponding with Fig. 1, at
t = 100. For all panels, the homogeneous propagator, ϕ̃n0

(n, z) is
the 2D propagator with reflecting boundaries given in Eq. (23) of
Ref. [68] (see also Appendix H). The parameters used are: a domain
of size N = (10, 10), a localized initial condition with n0 = (6, 6).
We a use diffusion parameter of value q = (0.2, 0.2), which gives
the following transition probabilities: in the bulk of the homogeneous
lattice the probability of jumping to one of the four neighbors is
Ar,s = 0.05 (with r �= s), while the probability of staying at the same
site is Ar,r = 0.8. The reflecting barriers and other heterogeneities
are super imposed on top of the probability. For panels (a) and
(b), λv ,u = Av,u and λu,v = Av,u (for all {u, v} ∈ S) yielding per-
fectly reflecting barriers. For panel (c) λv ,u = − 1

2 Au,u, and λu,v =
− 1

2 Av,v . With this perturbation, when on one of the defective sites,
the probability of staying is reduced to Au,u = Av,v = 0.4, while
the probability of jumping to the non-neighbor is increased (from
zero) to Au,v = Av,u = 0.4. Lastly, for panel (d), for each of the
sticky sites w with k neighbors r1, . . . , rk we use λri ,w = 1

4 Ari,w
(see

Sec. II A 3). For convenience we have omitted color bars for each
panel as we are interested only in the relative differences of the
occupation probability.

figure to demonstrate the qualitative features in the dynamics,
therefore we have omitted the color bars and have chosen
a small domain where such features are more apparent. In
panel (a) the lattice is partitioned by impenetrable barriers
represented by the solid white lines. Here, one can observe
the lowest probabilities in the top-left corner since the walker
has not had the time to travel around the barriers. Panel (b)
contains areas enclosed by impenetrable barriers, with oc-
cupation probabilities that are always zero. The long-range
connection shown in panel (c) has enabled the walker to
spread further than in other panels. Small peaks in the proba-
bility can be observed away from the initial condition, in the
top-left, bottom-left and bottom right corners. In panel (d) the

sticky regions tend to show a higher occupation probability
compared to the homogeneous sites.

Note that we have not placed any restriction on whether
(the homogeneous propagator) ϕ̃n0

(n, z) conserves probability
or note. When there are fully or partially absorbing sites, one
may proceed in two ways. (i) In the first approach one account
for the absorbing dynamics by finding the propagator ϕ̃n0

(n, z)
that satisfies appropriate boundary conditions, before adding
inert disorder via Eq. (5). (ii) In the second approach one
would take ϕ̃n0

(n, z) without any absorbing locations, con-
struct �̃n0

(n, z) and then add the absorbing sites using the
standard defect technique in the presence of absorbing sites
[60]. While the choice makes no impact on the final dynam-
ics, depending on the situation one procedure may be more
convenient than the other.

IV. FIRST-PASSAGE PROCESSES

An important quantity derived from the propagators is the
first-passage statistics to a set of targets. It is relevant to
stochastic search in movement ecology [73], swarm robotics
[74] and many other areas [75].

The first-passage probability Fn0 (n, t ) that is the probabil-
ity to reach n for the first time at t having started at n0, is
related to the propagator, �n0 (n, t ) by the renewal equation.
When n �= n0, the well-known relation in z domain is given
by F̃n0 (n, z) = �̃n0

(n, z)/�̃n(n, z). Having the first-passage
probability in closed form allows one to substitute the het-
erogeneous first-passage probability Fn0 (n, t ) [or F̃n0 (n, z)] in
place of the homogeneous counterpart in other established
contexts where homogeneous space was previously assumed.

One such context is a first passage in the presence of
multiple targets, where one is interested in the probability
of being absorbed at any of the targets. We use recent
findings [68] to determine the dynamics of a lattice walker
to reach either of two sites, n1, and n2, for the first time
at t in the presence of spatial heterogeneities, given by
Fn0 (n1, n2, t ). The generating function of this probability,
given by F̃n0 (n1, n2, z) = {F̃n0 (n1, z)[1 − F̃n1 (n2, z)] +
F̃n0 (n2, z)[1 − F̃n2 (n1, z)]} × [1 − F̃n1 (n2, z)F̃n1 (n2, z)]−1

{taken from Eq. (38) in Ref. [68]}, is expressed in terms of
the first-passage probabilities to single targets.

In Fig. 7 plot the time-dependent probability for the het-
erogeneity examples shown in Fig. 1. The first nonzero
probability corresponds to the length of the shortest path to
either of the targets, which in the absence of heterogeneities
and for the examples in Figs. 1(a), 1(b), and 1(d) is 6, whereas
for the Fig. 1(c) one can reach the target n1 from n0 in
4 steps as a result of the nearest long-range connection. It
is clearly visible in the earlier rise of the curve related to
Fig. 1(c). Interestingly, the first-passage probability curves
corresponding with excluded regions, shown in Fig. 1(b), and
the homogeneous case are almost indistinguishable from each
other for two decades. While excluding parts of the lattice
increases the lengths of some paths to the targets, it also
reduces the overall space that can be explored. For the setup
chosen, these two effects counteract each other at short and
intermediate timescales. One mode of providing a mathemat-
ical basis for this effect would be to study the eigenvalues of
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FIG. 7. Time-dependent first-passage probability to either of two targets in the presence of heterogeneities. The location of the targets
n1 = (4, 2) and n2 = (10, 7) in relation to the initial condition n0 = (6, 6) and visualization of the heterogeneities present can be seen in
the schematic diagram in Fig. 1. We use a homogeneous propagator ϕ̃n0

(n, z) with a reflecting domain of size N = (10, 10) and a diffusion
parameter of value q = (0.2, 0.2). The explicit form of ϕ̃n0

(n, z) is given by Eq. (23) of Ref. [68]. The lines are obtained through numerical
inversion of the generating function of the first-passage probability to either of two targets (see text), while the corresponding marks—shown
only in panel (a)—are obtained through 1.5 × 106 stochastic simulations.

two systems, one homogenous and one with a reflecting point,
i.e., excluded area. Since the eigenvalues of the first-passage
probability distributions are known to be interlaced [76], one
would expect to see that the interlacing is only marginally
affected.

Among all the curves, the case with open partitions related
to Fig. 1(a), results in a first-passage probability, which is the
slowest to rise and with the broadest tail in the distribution.
The reasons for such characteristics compared to all other
curves is due to the location of the initial site relative to the
targets. As the latter ones are partially behind partitions, the
more directed paths take more time to reach the targets and
the walker remains confined in the region around the initial
site for much longer.

The sticky sites in Fig. 1(d) have limited effect on the more
directed paths connecting the starting site and the targets. This
is why Fn0 (n1, n2, t ) in Fig. 7(b) is identical to the homoge-
neous case at short times. However, sticky sites can be both
a hindrance or a benefit to the searcher. While it can partially
trap the walker and stop it from reaching the target site, it can
also stop the walker from exploring regions away from the
targets. Since there are sticky sites close to the targets, these
two effects counteract one another and we observe marginal
difference in the tail of the distribution when compared with
the homogeneous curve.

A. Explicit mean first-passage quantities

The first moment of Fn0 (n, t ), that is the mean first-passage
time (MFPT), Fn0→n = d

dz F̃n0 (n, z)|z=1, is given by

Fn0→n = Fn0→n|H − 1/Fn0→nH(1)|
|H − H(2)| , (8)

where Fn0→n is the homogeneous MFPT from n0 to n and
the elements of the matrices H, H(1), and H(2) are defined
in terms of homogeneous MFPTs. They are given, respec-
tively, in Eqs. (A3)–(A5) for general heterogeneities. In the

coming sections we use the mathfrak notation, e.g., F,R, and
E, for statistics involving the heterogeneous dynamics, while
the mathcal notation, e.g., F ,R, and E , is reserved for the
homogeneous counterpart. The dependence on the target at n
is only present in the matrices H(1) and H(2); the dependence
on the initial condition n0 is only present in H(1); and the
dependence on the location of the heterogeneities is in all
three matrices.

The probability distribution of the first-return time is re-
lated to the propagator via R̃(n, z) = 1 − �̃−1

n (n, z), with a
mean return time (MRT) given by

Rn = Rn|H|
|H − H(2)| , (9)

where Rn is the homogeneous mean return time.
When the heterogeneities preserve the symmetric prop-

erties of the homogeneous lattice, i.e., the disorder does
not add any bias to a diffusive system or remove any bias
present in a system with drift, then the ratio Au,v/Av,u =
(Au,v − λu,v )/(Av,u − λv ,u ) is satisfied, for all {u, v} ∈ S, and
the heterogeneous system maintains the steady state of the
homogeneous system. In this case, H(2) = 0, the MFPT given
by Eq. (8), can be simplified to Fn0→n = Fn0→n − 1 + |H −
H(1)|/|H|, while the MRT remains the same as the homo-
geneous MRT, Rn = Rn as expected from Kac’s lemma [77]
(see Appendix A 1).

In the presence of multiple targets at the outer boundary
of the domain, we relate the first-passage probability to any
of the targets to a propagator with the appropriate absorbing
boundaries. In this case, the first passage is referred to as
the first exit, and its probability generating function is re-
lated to the propagator through the relation Ẽn0 (z) = 1 − (1 −
z )̃Sn0 (z), where S̃n0 (z) is the survival probability. Taking the
mean of the distribution (see Appendix A 2) gives

En0
= S̃n0 (z = 1) = En0

|H − 1/En0
S(n0)|

|H|
∣∣∣∣
z=1

(10)
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FIG. 8. The ratio of the heterogeneous mean exit time En0
to the

homogeneous mean exit time En0
for randomly distributed barriers

and antibarriers. We use a homogeneous propagator with a domain
of size N = (51, 51) with absorbing boundary conditions, an initial
condition at the center of the domain n0 = (26, 26) and a diffusion
parameter of q = (0.8, 0.8). The explicit form of ϕ̃n0

(n, z) is given
by the z transform of Eq. (23) of Ref. [68]. Each curve is obtained
using Eq. (10) and performing an ensemble average with 102 sample
realizations of locations of barriers (λ > 0) or antibarriers (λ > 0)
for each λ.

where En0
is the mean exit time starting at n0 without any

heterogeneities, and the matrix S(n0) is given explicitly in
Eq. (A11). The presence of one or more absorbing boundaries
on the homogeneous propagator ϕ̃r(s, z) allows for a simple
evaluation at z = 1. That is to say ϕ̃r(s, z = 1) is finite for any
r and s in the domain; and therefore H and S(n0) also remains
finite and can be easily evaluated.

In Fig. 8 we show the effect of randomly distributed bar-
riers and antibarriers as a function of the barrier strength in
a 2D domain with absorbing boundaries. The M neighboring
defective site pairs are uniformly distributed on the lattice with
λ = λv ,u = λu,v for all {u, v} ∈ S. One can see that for λ > 0,
En0

increases, as the heterogeneous connections behave as a
partially reflecting barrier slowing down the walker. Further-
more, an increase in the number of heterogeneities results in
larger exit times. Conversely, when λ < 0 the heterogeneous
connections become antibarriers increasing the probability of
jumping across compared to the homogeneous case, which ef-
fectively increases the spread of the walker leading to shorter
exit times. When the barriers are impenetrable, increasing
the number of barriers also increases the likelihood of the
walker being trapped and unable to reach the boundary and
will cause the mean exit time (MET) to diverge. Although we
do not study it here, a similar setup could be used to analyze
percolation in finite multidimensional domains.

B. First-passage processes in 1D with a single barrier and the
phenomenon of disorder indifference of the MFPT

We consider a simple spatial heterogeneity in a 1D do-
main with a partially reflecting barrier between u and u + 1.
To study the dependence of the position and strength of the
barrier (or anti-barrier) on the first-passage dynamics, we first
fix the position of the target and initial sites with n > n0;

assume a reflecting boundary between n = 0 and n = 1; and
take λu,u+1 = λu+1,u = λ with λ ∈ [−(1 − q), q/2]. In this
case, the first-passage probability can be written using the
convenient notation

F̃n0 (n, z) =

⎧⎪⎪⎨⎪⎪⎩
a(n0,z)− 2λ

q b(n0,u,z)

a(n,z)− 2λ
q b(n,u,z)

u < n0

a(n0,z)− 2λ
q a(n0,z)

a(n,z)− 2λ
q b(n,u,z)

u � n0

, (11)

where a(n, z) = cosh [( 1
2 − n)ζ ] cosh [ 1

2ζ ], b(n, u, z) =
cosh [(1 − n)ζ ] + sinh [(n − 2u − 1

2 )ζ ] sinh [ 1
2ζ ], ζ =

acosh[1 − 1
q (1 − 1

z )], and with the probability of moving
given by q ∈ (0, 1]. The homogeneous first-passage
probability F̃n0

(n, z) can be recovered from Eq. (11) by letting
λ → 0. When the barrier is to the left of the initial condition,
the limit λ → q

2 creates an impenetrable barrier, the behavior
is equivalent to shifting both the target and the initial condition
to the left by u giving F̃n0 (n, z) = F̃n0−u(n − u, z). Whereas,
when n0 � u < n, the same limit gives F̃n0 (n, z) = 0 as the
walker becomes blocked by the barrier and can never reach
the target.

In Fig. 9, we plot the time dependence of Eq. (11) for
the two different scenarios u < n0 and u � n0 represented,
respectively, by panels (a) and (b). With u < n0 and λ < q/2,
that is the barrier to the left of the initial condition, as one
increases u from u = 1 one observes an increase in the modal
peak. When the walker is reflected by the permeable barrier,
it stops the walker from straying further left and effectively
reduces the space that can be explored, increasing the prob-
ability of reaching the target at an earlier time. However, if
the walker passes through the barrier, the partial reflection
dynamics becomes a hindrance: the walker is kept in the
range [1, u], causing the probability of reaching the target at
long times to increase also. As probability in the tail and the
mode increases, the probability conserving Fn0 (n, t ) demands
a reduction at intermediate times, which is clearly visible from
the figure. This permeability induced mode-tail enhancement
can also be witnessed by fixing u and changing λ ∈ [0, q/2),
and we have also observed the inverse effect, mode-tail com-
pression by having anti-barrier with λ ∈ [q − 1, 0]. We have
chosen not to display these latter cases for want of space.
Similar features have been observed in a diffusing-diffusivity
model in Ref. [42], where increases in the probability at short
and long timescales were attributed to the dynamic diffusivity.
Our findings point to the fact that such richness can also
emerge from a static disorder at a single location.

Differently from the case when the barrier is to the left of
the initial condition, is the case when u � n0. In this scenario,
the barrier is always acting to slow the search process down,
reducing the probability of reaching the target at early times
and increasing the probability at long times as seen by the
flattening of the mode and the broadening of the tail, as shown
in Fig. 9(b).

Computing the mean via either Eq. (11) or from simplify-
ing Eq. (8) yields the compact expression

Fn0→n = Fn0→n + 2

q

λ
q
2 − λ

{
0, u < n0,

u, u � n0,
(12)
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FIG. 9. The time-dependent first-passage probability distribution
is given through the numerical inversion of Eq. (11). Panel (a) rep-
resents the scenario u < n0 < n, while panel (b) is the case when
n0 � u < n. The values of the other parameters are: λ = 0.975 × q

2 ;
a diffusion parameter of value q = 2

3 ; the initial condition n0 = 8; the
target site n = 15; and a reflecting boundary between n = 0 and n =
1. The arrows indicate the MFPTs: in panel (a) all of the curves have
the same MFPT of Fn0→n = 231 (disorder indifference), whereas
in panel (b) the two arrows indicate the minimum and maximum
MFPTs of the curves, which are Fn0→n = 1167 and Fn0→n = 1869,
and obtained, respectively, when u = 8 and u = 14

where Fn0→n = (n − n0)(n + n0 − 1)/q is the 1D homoge-
neous MFPT for n0 � n {given by Eq. (12) of Ref. [68]}.
Astonishingly, the mode-tail enhancement present in the time-
dependent probability when u < n0 has no effect on the
mean. This is what we have termed the disorder indifference
phenomenon.

To explain why there is such an effect of disorder indiffer-
ence, we split the first-passage trajectories into two mutually
exclusive subsets: the trajectories that never return to the ini-
tial condition before reaching the target site on the right and
those that return at least once before reaching the target site.
Clearly, the former trajectories are unaffected by the presence
of a barrier. The latter trajectories can be affected by the
barrier; however, in computing the mean one deals with mean
return times, which are unaffected from the homogeneous

case when λu,u+1 = λu+1,u as stated in the previous section
(see Appendix B 1 for the mathematical details).

An analog of this indifference phenomenon was observed
in Ref. [50], where the MFPT in a quasi-1D domain in contin-
uous space with two layers of different diffusivity was studied.
When the initial condition was in between the interface of
the layers and the target, they observed that the MFPT was
indifferent to the diffusivity of the media beyond the interface.
In that study, the first-passage probability was not considered
and the cause of this indifference could not be quantified.
However, one can relate the location of the interface of their
system with the position of the barrier in ours. Through this
relation, we believe that the behavior observed in Ref. [50], is
closely related to the dynamics presented in Fig. 9.

Given a barrier between the initial condition n0 and the
target n, the effect on the MFPT increases linearly as the
displacement from the boundary increases. While the effect,
which can be to speed up (λ < 0) or to slow down (λ > 0), is
due to the disorder, the linear dependence is not. This linear
dependence is present in all 1D situations and is proportional
to the distance between the initial condition and the reflecting
boundary (see Appendix B 2).

To explore the effects of asymmetry in the heterogeneities
we consider the MRT with λu+1,u �= λu,u+1 . In this case, the
steady state is no longer homogeneous. To illustrate this point,
we consider the MRT of a 1D walker within a segment of
length N with reflecting boundaries and with a barrier between
u and u + 1, (λu+1,u �= λu,u+1). In this case, Eq. (9) simplifies
to

Rn =

⎧⎪⎪⎨⎪⎪⎩
N
[

q/2−λu+1 ,u

q/2−λu ,u+1

]
− u
[

λu ,u+1 −λu+1 ,u

q/2−λu ,u+1

]
, n < u + 1,

N − u
[

λu ,u+1 −λu+1 ,u

q/2−λu+1 ,u

]
, n � u + 1,

.

(13)
One can see that when λu+1,u = λu,u+1 , the MRT reduces to
N regardless of whether n � u or n > u. In the extreme case,
where the barrier is impenetrable in both directions, λu+1,u =
λu,u+1 = q/2, one can recover the appropriate MRTs when
n � u and n > u, which are, respectively, u and N − u.

V. COMPUTATIONAL ADVANTAGE OVER EXISTING
METHODS WHEN COMPUTING FIRST-PASSAGE

STATISTICS

It is possible to gain a significant computational advan-
tage when calculating first-passage statistics using the explicit
expressions given in Eqs. (8)–(10), instead of employing nu-
merical or Monte Carlo approaches. To illustrate this aspect,
consider for the sake of simplicity, a d lattice with a width of
N sites and periodic or reflecting boundary conditions. In this
case the computation to determine the MFPT to a single target
via Eq. (8) has a time complexity of M2Nd � N2.373d using a
naive implementation as the one given in Appendix H.

For alternative procedures that is in the absence of explicit
knowledge of the first-passage statistics expressions, one can
approach the search problem in one of two ways: either via the
numerical scheme described in Ref. [78] or via Monte Carlo
agent-based simulations. The first procedure requires one to
compute first the time-dependent first-passage dynamics via

043281-8



PARTICLE-ENVIRONMENT INTERACTIONS IN … PHYSICAL REVIEW RESEARCH 5, 043281 (2023)

the iteration of the Master equation, giving a time complexity
of N2dt , where t is determined by an appropriate criterion,
e.g., after when the first-passage probability is below some
threshold. While this is already computationally more expen-
sive than the naive implementation of Eq. (8), one has to also
consider the nontrivial task of defining a stopping criterion,
which in general varies depending on the specific scenario
due to the richness of first-passage dynamics, e.g., bimodality
[69], and multiple timescales [79].

While Monte Carlo simulations may appear not to suf-
fer from the challenges of the numerical scheme described
above, they have two fundamental drawbacks. The first is that
stochastic spatiotemporal simulations, having large trajectory-
to-trajectory fluctuations, require a very large ensemble size
leading to long simulation times. The second and more perti-
nent issue is that one cannot systematically reduce the error
between the true observable and the ensemble estimate. It
is thus difficult to define a priori the size of the ensem-
ble required to get a prescribed minimum accuracy. Since
this problem is already present when the space is homoge-
nous [80], it is exacerbated when different heterogeneities are
present, making it difficult to explore the entire parameter
space.

Faster computational procedure can also be exploited to
evaluate (5), (8) and (9), i.e., the homogeneous propagator
and mean first-passage times, by casting them as an inverse
cosine transform problems [81]. This allows one to expedite
the computation of the matrix elements using the inverse fast
Fourier transform [82], reducing drastically the complexity to
Nd log2 Ndt for the propagator and Nd log2 Nd for the first-
passage statistics.

Thus far we have focused on technical development and
theoretical insights. As we move forward, the remainder of
the article is devoted to practical examples and is used to
demonstrate the applicability of the framework. For practical
convenience, the details of the modeling set-up are given in
the Appendixes and only the results are discussed.

VI. TRANSDERMAL DRUG DELIVERY

In the first application we consider the problem of opti-
mizing transdermal drug delivery, that is the transfer of drugs
through the skin. One of the challenges of transdermal drug
delivery is traversal of the outermost layer of the epidermis
called the stratum corneum (SC) by hydrophilic molecules
[83]. This layer is made up of dead cells called corneocytes,
which are arranged in a dense “brick-and-mortar” like pattern
[84]. Inspired by some of the recent strategies proposed to
enhance drug absorption [85], we consider the use of mi-
croneedles to pierce first the SC before applying a drug patch.
We study the effectiveness of this method by using our mod-
eling framework to represent the SC as heterogeneities on a
lattice and modeling the movement of drug molecules as a
random walk.

We use a homogeneous 2D nearest-neighbor random
walker subject to mixed boundary conditions: an absorbing
boundary located at n1 = 1 and a reflecting boundary located
at n1 = N1, for the first dimension and a periodic boundary
condition on the second dimension. The heterogeneities are
impenetrable barriers representing the lipid matrix. These are

FIG. 10. Representation of the “brick-and-mortar” arrangement
of the corneocytes in the stratum corneum (SC). The red square
depicts the starting location of the random walker. The geometry is
given by an an absorbing boundary at n1 = 1, a reflecting boundary at
n2 = N1, shown as a thick solid black line, and a periodic boundary
in the second dimension, depicted as dashed black lines. By using
a number of paired defects, one is able to cordon off sites (shaded
grey), creating the “brick-and-mortar” pattern of the SC. The dashed
blue rectangle with width w and height h models the destruction of
the SC structure via a microneedle puncture, with h and w repre-
senting, respectively, the puncture height and width. This destruction
may open up some of the “bricks”, allowing the walker to easily
travel inside. The initial position of the walker is at the center-top
of the puncture, n0 = (N1, N2/2).

arranged in a manner to create excluded regions that form the
brick-and-mortar pattern of the SC, see Fig. 10. The pattern
is partially destroyed to represent the needle piercing in a
rectangle with height h and width w resulting in an area absent
of barriers as shown by the blue dashed rectangle in Fig. 10.

The quantity of interest is the MET with an initial condition
starting at the reflecting end of the domain. We plot the MET
as a function of the puncture depth and width in Fig. 11. The
overarching qualitative changes in the MET can be explained
by two competing effects. The first is the breaking of enclosed
bricks to create open partitions. The additional sites available
for exploration make the paths to reach the absorbing bound-
ary longer.

The second effect is that the puncture allows the walker
more direct movement towards the bottom layers leading to
smaller MET. The removal of some of the impenetrable bar-
riers allows for more direct paths to the absorbing boundary,
which leads to smaller mean exit times. The strength of this
effect is dependent on the size of the puncture hw. For small
values of h, the first effect has greater influence leading to
an increase in the METs. As h is increased the second effect
becomes more prominent and drives down the METs resulting
in a global maximum. The interplay between the two effects
also gives rise to the oscillations. The puncturing of a brick
layer opens it up, leading to larger exit times as the walker
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FIG. 11. Mean exit time as a function of the puncture height h
for different values of puncture width w (see Fig. 10 for description
of the setup). We use a rectangular domain of size N = (37, 36), a
diffusion parameter of q = (0.8, 0.8), “bricks” of size (3, 5) result-
ing in nine layers with six bricks per layer, an initial condition of
n0 = (1, 19). The main panel depicts the scenario where the barri-
ers encapsulating the “bricks” are impenetrable, i.e., αv = αv = 1
leading to λv ,u = λu,v = 0.2 for all u, v, while the inset shows the
scenario where the barriers are partially permeable with αv = αv = 1
giving λv ,u = λu,v = 0.18.

becomes temporarily confined inside a brick. Increasing the
puncture height further destroys the brick structure of a layer
and allows the walker to traverse the latter via a direct route
thereby decreasing the exit times.

The global maximum and the oscillations are only present
when the barriers are highly reflecting or impenetrable, i.e.,
0 � λv ,uλu,v � q/2 for all {u, v} ∈ S. The maximum is lost
when the permeability gets larger as the random walker is
only partially confined by the barriers, leading to a monotonic
decrease in the MET as seen in the inset of Fig. 11. With
permeable barriers all the sites are always accessible indepen-
dently of h and w, puncturing only creates more direct routes
to the absorbing boundary leading to smaller exit times.

VII. THIGMOTAXIS

For the second application, we look at thigmotaxis, which
broadly speaking, is the movement of an organism due to a
touch stimulus. We are interested specifically in the tendency
of animals to remain close to the walls of an environment,
a behavior that is observed in many species from insects to
mammals [86,87]. We quantify the thigomotactic tendency
by appropriately selecting defects location and λ to represent
regions, which are more easily accessible when moving in one
direction (approaching boundaries) versus another (moving
away from boundaries).

Since we are able to construct arbitrary shapes with the
formalism, we consider two concentric circles within a square
domain. The first is used to restrict the walker to a circular
reflecting domain of radius R. The second has a radius r,

FIG. 12. The propagator �n0 (n, t ) at different moments in time,
t = 500, 750, 1000, ∞ where the walker is initially at the center of
the domain, n0 = (51, 51). When inside the inner region the walker
can freely enter the outer region without any resistance, that is λv ,u =
0 and when in the outer region the probability to move inward is
modified via λu,v = αiAv,u. Other parameters used are the diffusivity
of value q = (0.8, 0.8) and a square domain of size N = (101, 101),
(see Appendix C 1 for details on the placement of defects)

with r < R, and is used to partition the domain into two
regions: an inner region; and an outer region, which is the
annulus between r and R, representing the preferred area of
occupation. By placing one-way partially reflecting barriers
along the radius r, we allow the walker to leave the inner
region to enter the outer region without any resistance, while
the tendency of remaining in the outer region is controlled
by the parameter αi ∈ [0, 1]. With αi = 1 the walker never
leaves the outer region once it gets there, whereas with αi = 0,
the partially reflecting barriers are removed and all areas of
the circular domain become easily accessible. For the details
on the placement of the defects and the construction of the
circular domain see Appendix C 1.

Given these constraints, we study the dynamics as a func-
tion of the αi. In Fig. 12, we plot the probability �n0 (n, t )
for different values of t = 500, 750, 1000, and ∞. The walker
is initially at the center of the domain n0 = (51, 51) and can
freely move inside the inner region and is able to enter into
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FIG. 13. Saturated mean-squared displacement for a thigmotaxis
process for different values of the ratios of r/R. We study the dy-
namics as a function of the normalized parameter αi ∈ [0, 1], which
represents the tendency of the walker to remain close to the boundary.
When αi = 0, there are no outer or inner regions, while with αi = 1,
the walkers never leave the outer region once they get there. The
saturation MSD is normalized by M, which is the saturation value
when αi = 0. Other parameters used are described in the caption of
Fig. 12.

the outer region without any resistance. However, once inside
the outer region there is a greater tendency not to leave,
due to the high value of αi = 0.95. We observe this effect
when going from panel (a) to (d). Initially, the separation
between the inner and outer regions is barely visible but as
time progresses this separation becomes increasingly clear,
culminating with a sharp step at the steady state. In panel (e)
we plot a cross section of the probability at n2 = 51 for the
times corresponding with panels (a)–(d).

To examine the system further, we plot in Fig. 13 the mean-
squared displacement (MSD) at steady state M as a function
of αi, for four different ratios of inner and outer regions. The
MSD at steady state is given by M =∑n[(n1 − n01 )2 + (n2 −
n02 )2]R−1

n . With the curves normalized to the case where there
are no internal barriers M, i.e., when αi = 0. We find that as
we increase αi from zero, for small values of αi, M initially
increases logarithmically, while further increases of αi causes
M to saturate. The value of saturation is dependent on the ratio
of r/R: with a high ratio the outer region is thinner keeping the
walker closer to the boundary and yielding greater saturation
value, whereas a smaller ratio results in a thicker outer region
allowing the walker to remain closer to the initial condition
leading to a smaller value of M. Note that the reason for the
r/R = 0.92 curve not being on top of the others is due to the
discretization of space when the outer region is very thin.

VIII. TWO-PARTICLE COALESCING PROCESS

In this final example, we demonstrate the use of our frame
to model certain inert interactions between particles. The
interactions we consider are partial mutual exclusion and

reversible binding, both of which play an important role in
coalescing dynamics.

Coalescing processes are ubiquitous in biology and chem-
istry; they consist of two or more entities that interact to bind
and form a new one with different movement characteristics.
An example of a coalescing process is the search of a promoter
region on DNA by transcription factors. These movement
dynamics alternate between periods of 3D search in the cy-
toplasm and periods of restricted search along the 1D DNA
[88]. Indeed, the reduction of dimensionality as a vehicle for
accelerating up target search has been put forward before as
a general concept in biology [89], and later investigated in
the context of DNA dynamics [90–93]. While such studies
focus on the difference between 3D diffusion of transcription
factors in solution compared with reduction that occurs when
diffusion along a 1D DNA strand, dimensionality reduction
can also occur when one considers multiple interacting parti-
cles. We use our framework to study a system of relevance to
the latter scenario: a first-passage process of two interacting
particles in 1D.

We consider two particles labeled A and B that move inde-
pendently on a 1D lattice with reflecting boundary conditions
(see Fig. 14 for a schematic representation of the process).
Their combined dynamics is described by a two-dimensional
next-nearest propagator ϕn0 (n, t ), with n0 = (n01 , n02 ) and
n = (n1 , n2 ). It represents the probability that the particle A
and B are located, respectively, on the site n1 and n2 at time
t given that they started, respectively, on n01 , and n02 . Two
particles instantaneously form the complex C, namely when
they encounter each other, that is when n = (m, m) for 1 �
m � N .

The interactions between particles is modelled through
the placement of heterogeneities on the combined 2D lattice,
yielding three control parameters, αe ∈ [0, 1], αu ∈ [0, 1], and
αc ∈ [0, 1] (see Appendix C 2 for details regarding the place-
ment of the defects). These parameters are used to constrain,
respectively, the binding events via mutual exclusion of A
and B, the unbinding events of C and the mobility of C.
The parameter αu is proportional to the unbinding prob-
abilities, while αe is proportional to the mutual exclusion
probability. When αu = 1 and αe = 0, there is no interac-
tion between the two particles. The other extreme represents
strong interaction: when αe = 1 there is mutual exclusion,
whereas αu = 0 results in a binding that is irreversible. The
parameter αc ∈ [0, 1] represents the fraction of the move-
ment probability of complex C relative to the movement
probability of the constituent particles A and B. When αc =
1 there is no slowing down, while αc = 0 results in an
immobile C.

In Fig. 15 we plot the log ratios of the MFPT, Fn0→n for
both particles to reach a site at the same time, compared
with the 2D homogeneous next-nearest-neighbor analogue
Fn0→n. The latter corresponds with the case when αe = 0 and
αu = αc = 1. The panels (a)–(d) depict Fn0→n for increasing
values of αe. The smallest ratios are observed in the upper
left quadrant, which corresponds with high cohesiveness of
the complex C and with only a slight reduction to its mobility,
given respectively by, low values of αu and high values of αc.
Within this parameter region, once the two particles bind they
rarely separate, consequently the search in 2D reduces to a
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FIG. 14. Schematic representation of a two-particle coalescing process, modelled as one-dimensional interacting random walkers. Panel
(a) depicts the dynamics of particles A and B where q ∈ (0, 1] is the probability of moving at each time step. The combined dynamics of
A and B can be represented via one next-nearest random walker in a 2D domain. This abstract domain is depicted in panel (b). The red
circles represent locations where the two particles are on different sites, while the blue circles along the right diagonal are locations where
they are colocated. In this space, the interaction of A and B is modelled with partially reflecting barriers. The placement of these barriers is
illustrated by the solid, dashed, and blue-dashed lines, the precise locations and permeability are given in the Appendix C 2. The solid black
lines are heterogeneities used to model the binding interactions, while the dashed black lines are used to control the unbinding interactions.
The movement of C is represented by the 2D random walker moving along the diagonal. Its movement is slowed down, relative to A and B,
through the placement of partially reflecting barriers along the diagonal depicted by the dashed blue lines. The resulting movement dynamics
of the complex C is shown in panel (c), where αc ∈ [0, 1] represents the degree with which the movement of the complex C is slowed down.

search in 1D with fewer sites to explore leading to smaller
Fn0→n.

When there is no exclusion interaction, i.e., panel (a), the
dynamics of a similar model was explored in Ref. [67]. In
their analysis using asymptotics and simulations, equivalent
features were observed. The most prominent feature of those
and our observations is the minimization of the MFPT for a
slow moving C. In this regime, it is more favorable to have an
intermediate unbinding probability, allowing the two particles
to travel independently towards the target before recombining
and hitting the target.

The ability to explore easily the parameter space of the
model allows us to analyze the MFPT for different values
of αe. By comparing the four panels we observe that as αe

increases, the overall magnitude of the MFPT ratio decreases.
This is explained by the fact that for small and intermediate
values of αe the 2D walker is partially restricted to the upper
or lower triangular regions of the domain, thereby reducing
the overall exploratory space resulting in shorter search times.
However, if αe is increased further, i.e., when 0 � αe < 1,
the particles will rarely coalesce, and the MFPT increases. In
other words, shorter MFPTs can be achieved by having parti-
cles that mutually exclude one another with some probability.

IX. CONCLUSIONS

We have introduced an analytical framework to model
explicitly any inert particle-environment interactions. The
framework represents a significant advance in random walk
theory. The defect technique for lattice random walks has so
far only been used for locations with absorbing properties
[94–96], whereas our generalization of the technique to in-
clude probability conserving, i.e., nonabsorbing defects, has
facilitated new explicit expressions for propagators and vari-
ous observables.

More specifically, we have constructed the discrete Master
equation that describes the spatiotemporal dynamics of diffus-
ing particles in disordered environments by representing the
interactions as perturbed transition dynamics between lattice
sites. To solve this Master equation we have generalized the
defect technique to yield the generating function of the prop-
agator in closed form. Using the propagator, we have derived
useful quantities in the context of transport processes, namely,
first-passage, return, and exit probabilities and their respective
means. We have also uncovered the temporal dynamics that
lead to the disorder indifference phenomenon of the mean
first-passage time in quasi-1D systems.

Our framework is relevant to many empirical scenarios
as one can represent in, great generality, environmental fea-
tures that impede or promote movements. The presence of
many such features are now readily observed at all scales,
e.g., permeable boundaries at the interface for two different
tissue, or the boundaries between neighboring territories of
animals. In order to apply our framework to such scenarios,
the modeling challenge is not in the discretization of spa-
tiotemporal observations where the former naturally emerges
from the resolution of the measuring apparatus, but in the
appropriate choice of transition probabilities that define how
an agent moves and interacts with the environmental fea-
tures. However, this is only a minor inconvenience as one
can proceed by defining the movement changes due to spatial
heterogeneities relative to a diffusion coefficient in a homoge-
neous environment. Given that such a diffusion coefficient has
been measured in a wide variety of scenarios, our framework
allows testing of various properties of spatial heterogeneities
and their impact on transport statistics.

In order to demonstrate such versatility, we have chosen
three examples. In the first example, we consider transder-
mal drug delivery, an intercelluar transport process, where
we represent the “brick-and-mortar” structure of the stratum
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FIG. 15. The ratio of the MFPT (Fn0→n) of the coalescing
system compared to the MFPT (Fn0→n) of a homogeneous 2D next-
nearest-neighbor walker as a function of the heterogeneity strength
parameters (see Fig. 14 for detailed a description of the parameters
involved). The reactive site is located at n = (100, 100) and the two
particles are initially maximal distance away from each other, i.e.,
n0 = (1, 100) and a target location n = (100, 100), on combined 2D
domain of size N = (100, 100) with diffusion parameter q = 2/3.
From panel (a) to (d) we have, respectively, the parameters αe = 0,
0.5, 0.75, and 0.875.

corneum with the placement of reflecting and partially reflect-
ing barriers. This representation allows us to study the effect
that piercing has on the traversal time of a drug molecule.
In the second example, we have examined the effect that an
animal’s thigomotactic response has on the mean-squared dis-
placement at log times. Lastly, in our third example, we have
highlighted the ability of our formalism to study inert inter-
actions between particles. We transformed these interactions
and the ensuing dynamics into a single particle moving and
interacting with quenched disorder in a higher-dimensional
space. The setup allows us to model analytically the search
statistics in a two-particle coalescing process, akin to the
search of binding sites on the DNA by multiple transcription
factors.

The strength of our result is in deriving the propagator in
the presence of spatial heterogeneities �̃n0

(n, z), as a function
of the homogeneous propagator, i.e., the propagator in the
absence of heterogeneities ϕ̃n0

(n, z). This modularity allows
one to change the movement dynamics by selecting different
forms of ϕ̃n0

(n, z). In place of the diffusive propagator one
may employ a biased lattice random walk [69], or a walk in

different topologies such as triangular lattices [96,97], Bethe
lattices [98,99], or more generally a network [100].

The modularity carries through to the heterogeneous prop-
agator. This means that in situations where homogeneous
space is assumed, one can relax this assumption and replace
the homogeneous propagator ϕ̃n0

(n, z) with the heterogeneous
counterpart �̃n0

(n, z). We have demonstrated this aspect by
studying the first-passage probability to either of two targets
using results previously derived considering a homogeneous
lattice. Further theoretical exploration could include the anal-
ysis of cover time statistics [101,102], transmission dynamics
[103,104], resetting walks [105–107], mortal walks [108], or
random walks with internal degrees of freedom [109].

Directions for future applications span across spatial and
temporal scales: the role of a building geometry or floor plan
on infection dynamics in hospital wards and supermarkets
[79,110,111]; the prediction of search pattern behavior of
animals in different types of vegetation cover [112,113]; the
heat transfer through layers of skin with differing thermal
properties [114]; and the influence of topological defects on
the diffusive properties in crystals [115,116] and territorial
systems [117–119].

We conclude by drawing the reader’s attention to the
following. As experimental technologies continue to evolve,
observations of the dynamics of particle-environment interac-
tions are increasing in number and resolution. The detailed
description of the environment that these technologies bring
presents a unique opportunity to rethink modeling techniques,
moving away from macroscopic paradigms to a more mi-
croscopic prescription. We believe that the mathematical
framework we have introduced to quantify the particle-
environment interactions will play a crucial role in connecting
the microscopic dynamics to the macroscopic patterns ob-
served across a vast array of systems.
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APPENDIX A: MEAN FIRST-PASSAGE STATISTICS

Using the renewal equation the first-passage probability to
a target is given by the well-known relation

F̃n0 (n, z) = �̃n0 (n, z)

�̃n(n, z)

= (̃ϕn0 (n, z) − 1)|H| + |H (n, n0)|
(̃ϕn(n, z) − 1)|H| + |H (n, n)| , (A1)
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where H and H (n, n0) are given by, respectively, Eqs. (6) and
(7) with the initial condition being n. The mean of the dis-
tribution Fn0→n = d

dz F̃n0 (n, z)|z=1 (see Appendix E), reported
also in Eq. (8), is given by

Fn0→n = Fn0→n

∣∣H − 1/Fn0→nH(1)
∣∣∣∣H − H(2)

∣∣ , (A2)

where

Hi, j = λvi,ui

Rui

F〈u j−v j〉→ui − λui,vi

Rvi

F〈u j−v j〉→vi + δi, j, (A3)

H(1)
i, j =

(
λvi,ui

Rui

F〈n0−n〉→ui − λui,vi

Rvi

F〈n0−n〉→vi

)
× F〈u j−v j〉→n, (A4)

H(2)
i, j =

(
λvi,ui

Rui

− λui,vi

Rvi

)
F〈u j−v j〉→n. (A5)

If the homogeneous propagator is diffusive with no bias and if
the heterogeneity parameters are symmetric, i.e., λv ,u = λu,v ,
H(2) = 0 and Eq. (8) can be simplified further

Fn0→n = Fn0→n − 1 +
∣∣H − H(1)

∣∣
|H| . (A6)

On the other hand, when one is only dealing with only
sticky or slippery heterogeneities the elements of the matrices
H, H(1), and H(2) are given by Eqs. (E56) to (E58) and
Eq. (E59).

1. Mean return time

Through the renewal equation, we also have the return
probability relation

R̃(n, z) = 1 − 1

�̃n(n, z)

= (̃ϕn(n, z) − 2)|H| + |H (n, n)|
(̃ϕn(n, z) − 1)|H| + |H (n, n)| . (A7)

By noticing the identical structures of Eqs. (A1) and (E60),
one can use a similar procedure to the one used to derive
the MFPT (see Appendix E 3) to show the mean return time
(MRT) to be

Rn = Rn|H|∣∣H − H(2)
∣∣ . (A8)

2. Mean exit times

The first-exit probability is given by Ẽn0 (z) = 1 − (1 −
z )̃Sn0 (z), where S̃n0 (z) is the survival probability given by

S̃n0 (z) =
∑

n

�̃n0
(n, z). (A9)

Substituting Eq. (5) into Eq. (A9) and evaluating the sum in n
and simplifying the summation over k one finds

S̃n0 (z) = S̃n0 (z) − 1 + |H − S(n0)|
|H| (A10)

where S̃n0 (z) =∑n ϕ̃n0
(n, z) is the homogeneous survival

probability, and where the elements of H are given in Eq. (6)

FIG. 16. A schematic representation of a one-dimensional het-
erogeneous lattice with a reflecting boundary to the left (vertical
line) and with a permeable barrier between the sites u and u + 1
represented by the shaded rectangle. The first-passage event can be
split into mutually exclusive events represented by arrows of differ-
ent colors. The blue arrows represent trajectories that never return to
the initial site, while the black ones represent trajectories that return
m times before reaching n. The green arrow represents first-passage
trajectories that reach n0 having starting at n. The solid arrows rep-
resent trajectories that are unaffected by the presence of the partially
reflecting barrier between u and u + 1, while the trajectories that are
affected are represented by dashed arrows. Note that this schematic
depicts the case when 1 � u � n0 − 1.

and

S(n0)i, j = S̃〈u j−v j 〉(z)
[
λvi,ui ϕ̃n0

(ui, z) − λui,vi ϕ̃n0
(vi, z)

]
.

(A11)
By taking the mean of the first-exit distribution, i.e.,
d
dz Ẽn0 (z)|z=1 gives Eq. (10). Simple expressions of the 1D
problem are given in Appendix G.

APPENDIX B: FIRST-PASSAGE QUANTITIES
IN 1D SYSTEMS

1. The MFPT disorder indifference phenomenon

We start with a heterogeneous lattice reflecting boundary
between n = 0 and n = 1, and a partially reflecting barrier
between u and u + 1, with u < n0 < n as depicted in Fig. 16.
The trajectories that contribute to the first-passage probability
can be split into mutually exclusive sets based on the number
of return visits m to the initial site n0.

We now formally represent the first-passage probability in
terms of a set of mutually exclusive independent events. Let
us define Fn0 (n, t ; m = 0) as the first-passage probability to
reach n for the first time at t having started at n0 and having
never returned to the initial site. Clearly, the trajectories that
make up Fn0 (n, t ; m = 0) (colored blue in Fig. 16), can never
be affected by the presence of the barrier as they never move
towards the barrier. The trajectories that could be affected
by the presence of the barrier are those that return at-least
once to the initial site before reaching n. The first-passage
probability to visit n and having visited the initial site m times
is constructed through the convolution (dashed trajectories in
Fig. 16)

Fn0 (n, t ; m) =
t∑

t1=0

· · ·
tm−1∑
tm=0

Fn0 (n, t − t1; m = 0)

× hn0 (n, tm−1 − tm) · · · hn0 (n, tm), (B1)
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with tm � tm−1 � · · · � t1 � t , and where

hn0 (n, t ) = R(n0, t ) −
t∑

t ′=0

Fn0 (n, t ′; m = 0)Fn(n0, t − t ′).

(B2)
The function hn0 (n, t ) represents the probability of returning
without visiting the target and is constructed by considering
the probability of returning to n0 and subtracting those that
reach n without returning to n0 at some prior time and subse-
quently reaching n0 from n. In z domain the relation can be
written more conveniently as

F̃n0 (n, z; m) = F̃n0 (n, z; m = 0)[R̃(n0, z)

− F̃n0 (n, z; m = 0)F̃n(n0, z)]m. (B3)

Notice that the only term with the dependence on the barrier
on the right-hand side (RHS) of Eq. (B3) is R̃(n0, z), and in
the absence of the barrier R̃(n0, z) reduces to R̃(n0, z). The
full first-passage probability for the system with the barrier,
which can be written as the sum of the mutually exclusive
probabilities giving

F̃n0 (n, z) = F̃n0 (n, z; m = 0)
∞∑

m=0

[R̃(n0, z)

− F̃n0 (n, z; m = 0)F̃n(n0, z)]m. (B4)

The relation given by Eq. (B4) is an alternative method of
constructing the first-passage probability, i.e., it is not one
of the standard approaches, which are through the survival
probability or the ratio of propagators in z domain.

To confirm the normalization of the RHS of Eq. (B4)
consider the following. By definition Fn0 (n, t ; m = 0) is not
normalized over t , hence, F̃n0 (n, z = 1; m = 0) = p where
0 < p < 1. Since all other terms in the RHS of Eq. (B4),
namely, F̃n(n0, z) and R̃(n0, z) are normalized over time, we
find that at z = 1 the RHS becomes

∑∞
m=0 p(1 − p)m = 1.

Differentiating Eq. (B4) with respect to z and taking the limit
z → 1, we obtain the mean first-passage time

Fn0→n = Rn − pFn→n0

p
. (B5)

When the barrier is such that λu,u+1 = λu+1,u = λ, the mean
return time is equal to the reciprocal of the steady-state value,
and Rn0 becomes Rn0 , i.e., the mean return time in the absence
of the barrier.

To find p in Eq. (B5) explicitly, we first construct
F̃n0 (n, z; m = 0) in terms of known quantities using the ap-
proach presented in Ref. [68] to construct time-dependent
splitting probabilities. We write the two relations by consid-
ering the two splitting separately: the first-passage probability
of reaching the target n and never returning to the initial
condition Fn0 (n, t ; m = 0); and the first-return probability to
n0 and having never reached the target site n. In time domain
they are written via a convolution and are, respectively,

Fn0 (n, t ; m = 0) = Fn0 (n, t ) −
t∑

t ′=0

R(n0, t ′; n)Fn0 (n, t − t ′)

(B6)

and

R(n0, t ; n) = R(n0, t ) −
t∑

t ′=0

Fn0 (n, t ′; m = 0)Fn(n0, t − t ′),

(B7)

where R(n0, t ; n) is the probability of returning to the site
n0 at t and having never visited the target n. One can take
the z transform and solve for Fn0 (n, z; m = 0) and R(n0, t ; n)
giving, respectively,

F̃n0 (n, z; m = 0) = F̃n0
(n, z) − R̃(n0, z)F̃n0

(n, z)

1 − F̃n0
(n, z)F̃n(n0, z)

(B8)

and

R̃(n0, z; n) = R̃(n0, z) − F̃n0
(n, z)F̃n(n0, z)

1 − F̃n0
(n, z)F̃n(n0, z)

. (B9)

Evaluating Eqs. (B8) and (B9) at z = 1 gives, respectively, the
fraction of all the first-passage trajectories that reach the target
without returning to n0 and the fraction of all trajectories that
return to n0 without ever reaching n. Using de L’Hôpital’s rule
once in Eq. (B8) we find

p = Rn0

Fn0→n + Fn→n0

. (B10)

Inserting Eq. (B10) in Eq. (B5) one finds that Fn0→n = Fn0→n.

2. MFPT linear dependence on disorder location

To understand the linear dependence in u, with n0 � u <

n, present in Eq. (12), we consider building up first-passage
probability by convolution in time to go from n0 to u first,
then from u to u + 1 and then from u + 1 to n. In z domain
one has

F̃n0 (n, z) = F̃n0
(u, z)F̃u(u + 1, z)F̃u+1(n, z), (B11)

where the first term on the RHS has no dependence on the
barrier as it is after the absorbing site u, while the other two
terms are dependent on the barrier. Computing the mean of
Eq. (B11), we obtain

Fn0→n = Fn0→u + Fu→u+1 + Fu+1→n, (B12)

where we have substituted Fu+1→n = Fu+1→n using the jus-
tification presented in the previous section. By using the
relation Fn0→n = Fn0→s + Fs→n with n0 < s < n, one can
rewrite Eq. (B12) to give

Fn0→n = Fn0→n + Fu→u+1 − Fu→u+1. (B13)

In the diffusive case, the MFPT to a neighboring site, Fu→u+1,
is always proportional to twice the distance between u and the
reflecting boundary to the left, i.e.,

Fu→u+1 = 2
q (u − s + 1), (B14)

with s � u being the position of the reflecting boundary. By
simplifying the general MFPT given in Eq. (8), we find

Fu→u+1 = 2

q − 2λ
(u − s + 1), (B15)

which is analogous to Eq. (B14) but with the multiplicative
(time rescale) factor increased to 2(q − 2λ)−1. Letting s = 1
we obtain Eq. (12).
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APPENDIX C: PLACEMENT OF DEFECTS AND
PARAMETER CHOICE OF THE MODELLING

APPLICATIONS

1. Thigmotaxis

Two sets of defects must be placed, one set along a cir-
cle radius R to create a (circular) reflecting domain, while
the second is used to divide this domain into two different
regions (see Sec. VII) and is placed along a circle of radius
r. To place defects on either circle one must first know which
sites are within which circle. To determine this we use the
Euclidean distance as a heuristic, with the site n = (n1, n2)
being part of the circular domain if and only if h(n1, n2) �
R, where h(n1, n2) = [(n1 − R − 1)2 + (n2 − R − 1)]1/2 with
the size of the bounding square domain given by N = (2R +
1, 2R + 1). Similarly, a site is part of the inner region if
and only if h(n1, n2) � r, while the outer region is given by
r < h(n1, n2) � R. Given these site partitions, one can define
two sets of defects, Sd and Si describing, respectively, the
impenetrable barriers to restrict the walker to a circular do-
main, and partially-reflecting inner barriers. In both cases u
represents sites inside the circle of defects while v represents
sites outside. For all {u, v} ∈ Si we have λv ,u = Av,u and λu,v

is irrelevant as the walker initially starts inside the circular
domain. For all {u, v} ∈ Sd , we let λv ,u = 0 providing no
resistance for the walker to enter the outer-region and λu,v =
αiAu,v with αi ∈ [0, 1].

2. Two-particle coalescing process

The interactions that need to modelled are binding and un-
binding. Binding can occur via two distinct events. The first is
when two particles are located on neighboring sites with n =
(m + 1, m) and at the following time step, one of the particles
remains at the same site while the second particle jumps onto
the site occupied by the first resulting in n = (m + 1, m + 1)
or n = (m, m). The second possible event occurs when the
two particles are located two sites apart, i.e., n = (m − 1, m +
1) and at the following time step they both jump towards each
other landing on n = (m, m). The reverse of these two events
gives rise to unbinding of the complex C. These transitions
can be modified by placing paired defects of the forms: u =
(m, m), v = (m + 1, m), and u = (m, m), v = (m, m + 1) for
1 � m � N − 1 with λv ,u = q

2 (1 − q)(1 − αu), λu,v = q
2 (1 −

q)αe; u = (m, m), v = (m, m − 1) and u = (m, m), v = (m −
1, m) for 2 � m � N with λv ,u = q

2 (1 − q)(1 − αu), λu,v =
q
2 (1 − q)αe; u = (m, m), v = (m ∓ 1, m ± 1) for 2 � m �
N − 1 with λv ,u = q2

4 (1 − αu), λu,v = q2

4 αe.
Intuitively, the movement of the coalesced is slowed as

it is more massive. To encode this detail we interpret jumps
along the leading diagonal n = (m, m) for all 1 � m � N
as the jumps made by the coalesced particle C, and we
slow its movement by placing paired defects of the form
u = (m, m), v = (m + 1, m + 1) for all 1 � m � N − 1 with
λv ,u = λu,v = q2

4 (1 − αc).

APPENDIX D: DERIVATION OF THE HETEROGENEOUS
PROPAGATOR

We consider a collection of heterogeneous connections as
described in Sec. III, given by a set of M paired defects,

S = {{u1, v1}, . . . , {uM, vM}}. When not on a defective site,
that is when n �= uk, vk for any k, the dynamics are given by

�(n, t + 1) =
∑

m

An,m �(m, t ), n �= u, v, ∀{u, v} ∈ S,

(D1)
with An,m representing the transition probability from site m
to site n. When, instead, on any of the paired defective sites
the dynamics are given by

�(u, t + 1)=
∑

m

Au,m �(m, t ) + λv ,u�(u, t ) − λu,v�(v, t ),

(D2)

and

�(v, t + 1) =
∑

m

Av,m�(m, t ) − λv ,u�(u, t ) + λu,v�(v, t ),

(D3)

where the bounds on λv ,u and λu,v are given by Eqs. (2) and
(3). Combining Eqs. (D1)–(D3) into a single equation and
summing over all pairs in S gives the Master equation with
defects

�(n, t + 1)=
∑

m

An,m �(n, t )

+
M∑

k=1

δ〈uk−vk〉,n
[
λvk ,uk �(uk, t )−λuk ,vk �(vk, t )

]
,

(D4)

where δ〈u−v〉,n = δu,n − δv,n. Taking the z transform of
Eq. (D4) we find

�̃(n, z) − �(n, 0) =
∑

m

An,m �̃(n, z)

+ z
M∑

k=1

δ〈uk−vk〉,n
[
λvk ,uk �̃(uk, z) − λuk ,vk �̃(vk, z)

]
. (D5)

Solving first the homogeneous difference equation, i.e.,
Eq. (D1) to get (in the absence of defects)

�̃(n, z) =
∑

m

ϕ̃m(n, z)�(m, 0) (D6)

where ϕ̃m(n, z) is the propagator of the homogeneous problem
{e.g., see Eq. (23) of Ref. [68] or Eq. (33) of Ref. [69]},
followed by a convolution (in time and space) with the in-
homogeneous term in Eq. (D5) yields the formal solution

�̃(n, z) =
∑

m

ϕ̃m(n, z)�(m, 0)

+ z
M∑

k=1

ϕ̃〈uk−vk〉(n, z)
[
λvk ,uk �̃(uk, z) − λuk ,vk �̃(vk, z)

]
.

(D7)

When the initial condition is localized, i.e., �(n, 0) = δn,n0 ,
we have the formal propagator

�̃n0
(n, z) = ϕ̃n0 (n, z) + z

M∑
k=1

ϕ̃〈uk−vk〉(n, z)

× [
λvk ,uk �̃n0 (uk, z) − λuk ,vk �̃n0 (vk, z)

]
. (D8)

In order to find �̃n0 (n, z) in terms of the known propaga-
tor ϕ̃n0 (n, z) we first create simultaneous equations for each
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FIG. 17. A schematic representation showing the modified tran-
sition probabilities of a sticky (or slippery) heterogeneity. We
highlight only the dynamics in the sth dimension, but the same is
present for the other dimensions.

pair of defects in terms of the differences λvk ,uk �̃n0 (uk, z) −
λuk ,vk �̃n0 (vk, z) giving

λvk ,uk �̃n0 (uk, z) − λuk ,vk �̃n0 (vk, z)

= λvk ,uk ϕ̃n0
(uk, z) − λuk ,vk ϕ̃n0

(vk, z)

+ z
M∑

	=1

[
λvk ,uk ϕ̃〈u	−v	〉(uk, z) − λuk ,vk ϕ̃〈u	−v	〉(vk, z)

]
× [λv	,u	

�̃n0 (u	, z) − λu	,v	
�̃n0 (v	, z)

]
, (D9)

whose solution via Cramer’s rule, is given by

λvk ,uk �̃n0 (uk, z) − λuk ,vk �̃n0 (vkz) = −1

z

|Y |
|H| , (D10)

with H defined in Eq. (6) and where Y is the same as H , but
with the kth column replaced by[

λv1,u1 ϕ̃n0
(u1, z) − λu1,v1 ϕ̃n0

(v1, z), . . . , λvM ,uM ϕ̃n0
(uM, z)

− λuM ,vM ϕ̃n0
(vM, z)

]T
. (D11)

Using Eq. (D10), Eq. (D8) becomes

�̃n0 (n, z) = ϕ̃n0 (n, z) −
M∑

k=1

ϕ̃〈uk−vk〉(n, z)
|Y |
|H| . (D12)

The summation in Eq. (D12) can be carried out explicitly
giving

�̃n0
(n, z) = ϕ̃n0

(n, z) − 1 + |H − G(n, n0)|
|H| . (D13)

where

G(n, n0)i, j = ϕ̃〈ui−vi〉(n, z)

× [λvi,ui ϕ̃n0
(ui, z) − λui,vi ϕ̃n0

(vi, z)
]

(D14)

and calling H (n, n0) = H − G(n, n0) gives the solution pre-
sented in Eq. (5).

1. Sticky and slippery heterogeneities

We start with set of defective sites S′ = {w1, . . . ,wL} and
use the notation w

(ls )
i and w

(rs )
i representing, respectively, the

left and right neighbors of wi in the sth dimension, given w =
(w1, . . . ,wd ), w(rs ) = (w1, . . . ws + 1, . . . ,wd ) and w(ls ) =
(w1, . . . ws − 1, . . . ,wd ), with d the lattice dimension. A

schematic representation of the jump probabilities on a de-
fective site, w is given in Fig. 17, from which it is clear that to
ensure positive probabilities one must have λw(rs ) ,w � Aw(rs ),w

and λw(ls ) ,w � Aw(ls ),w for all s = 1, . . . , d , and 0 � Aw,w +∑d
s=1 λw(rs ) ,w + λw(ls ) ,w for all w ∈ S′. These conditions are a

recast of the one given by Eqs. (2) and (3).
The full dynamics is described by the Master equation

�(n, t + 1)

=
∑

m

An,m�(m, t ) +
L∑

k=1

�(wk, t )

×
{

d∑
s=1

λw
(rs )
k ,wk

δ〈
wk−w

(rs )
k

〉
,n

+ λ
w

(ls )
k ,wk

δ〈
wk−w

(ls )
k

〉
,n

}
.

(D15)

Using a localized initial condition �(n, 0) = δn,n0 and pro-
ceeding as before by solving the homogeneous dynamics and
convolution (in time and space) with the nonhomogeneous
part of Eq. (D15) gives the formal solution

�̃n0
(n, z) = ϕ̃n0

(n, z) + z
M∑

k=1

�̃n0
(wk, z)Q̃wk

(n, z), (D16)

where

Q̃w(n, z) =
d∑

s=1

λw(rs ) ,w ϕ̃〈w−w(rs )〉(n, z)

+ λw(ls ) ,w ϕ̃〈w−w(ls )〉(n, z). (D17)

This formal solution is as special case of Eq. (D8) where
M = 2Ld where each of the sites in S′ bears two paired de-
fects for each of d dimensions. However, by noticing that the
incoming connections of the sticky sites are left unmodified,
i.e., λw ,w(ls ) = λw ,w(rs ) = 0 one can to simplify Eq. (D8) to
Eq. (D16) thereby reducing the number unknowns by a factor
of 2d .

To find the full solution we let n = wk and solve the simul-
taneous equations

�̃n0
(wk, z) = ϕ̃n0

(n, z) + z
M∑

	=1

�̃n0
(w	, z)Q̃w	

(wk, z),

(D18)
with k = 1, . . . , M to get

�̃n0
(wk, z) = −1

z

|Y |
|H| (D19)

where, in this case, the matrix H is simplified to

H i, j = Q̃w j
(wi, z) − 1

z
δi, j (D20)

and Y is the same as H but with the kth column replaced
by [̃ϕn0

(w1, z), . . . , ϕ̃n0
(wM, z)]T. Substituting Eq. (D19) into

Eq. (D16) and summing over k gives the full solution in
Eq. (5) where

H (n, n0)i, j = H i, j − Q̃w j
(n, z )̃ϕn0

(wi, z). (D21)
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APPENDIX E: DERIVATIONS OF FIRST-PASSAGE STATISTICS IN THE PRESENCE OF HETEROGENEITIES

1. Mean first-passage time with arbitrary type and number of heterogeneities

From the renewal equation, the generating function of the first-passage probability from n0 to n (n �= n0) is given by

F̃n0 (n, z) = �̃n0 (n, z)

�̃n(n, z)
= (̃ϕn0 (n, z) − 1)|H| + |H − G(n, n0)|

(̃ϕn(n, z) − 1)|H| + |H − G(n, n)| , (E1)

where we have called H (n, n0) = H − G(n, n0) with H and H (n, n0) defined, respectively, in Eqs. (6) and (7). Note that the ma-
trix G(n, m) can be written in the form abT, where a and b are column vectors with elements ai = λvi,ui ϕ̃m(ui, z) − λui,vi ϕ̃m(vi, z)
and bi = ϕ̃〈ui−vi〉(n, z). We will exploit this property in the coming steps. Dividing both the numerator and denominator of
Eq. (E1) by ϕ̃n(n, z) gives

F̃n0 (n, z) = (F̃n0
(n, z) − 1/ϕ̃n(n, z))|H| + 1/ϕ̃n(n, z)|H − G(n, n0)|
(1 − 1/ϕ̃n(n, z))|H| + 1/ϕ̃n(n, z)|H − G(n, n)|

. (E2)

Using the property

α|A − B| = |A − αB| − (1 − α)|A| (E3)

when α is a scalar and B = abT with a and b column vectors of appropriate size, we rewrite

F̃n0 (n, z) = (F̃n0
(n, z) − 1)|H| + |H − 1/ϕ̃n(n, z)G(n, n0)|

|H − 1/ϕ̃n(n, z)G(n, n)| . (E4)

Dividing through by
∏M

k=1 ϕ̃uk (uk, z )̃ϕvk (vk, z), where M is the total number of paired defects one finds

F̃n0 (n, z) =
(
F̃n0

(n, z) − 1
)|J| + |J(n, n0)|

|J(n, n)| . (E5)

where the elements of the matrices J, J(n, n0) and J(n, n) are given in terms of first-passage and return probabilities

Ji, j = λvi,ui [1 − R̃(vi, z)]F̃〈u j−v j〉(ui, z) − λui,vi [1 − R̃(ui, z)]F̃〈u j−v j〉(vi, z) − δi, j z
−1[1 − R̃(vi, z)][1 − R̃(ui, z)], (E6)

J(n, n0)i, j = Ji, j − F̃〈u j−v j〉(n, z)
{
λvi,ui [1 − R̃(vi, z)]F̃n0

(ui, z) − λui,vi [1 − R̃(ui, z)]F̃n0
(vi, z)

}
, (E7)

J(n, n)i, j = Ji, j − F̃〈u j−v j〉(n, z)
{
λvi,ui [1 − R̃(vi, z)]F̃n(ui, z) − λui,vi [1 − R̃(ui, z)]F̃n(vi, z)

}
. (E8)

The mean first-passage time is then given by

Dz · F̃n0 (n, z)|z=1 = (Dz · N )D − (Dz · D)N

D2

∣∣∣∣
z→1

, (E9)

where Dk
z · f is the kth derivative of f with respect to z, N = (F̃n0

(n, z) − 1)|J| + |J(n, n0)| and D = |J(n, n)|. When z → 1,
|J|, |J(n, n0)| and |J(n, n)| all reduce to zero and it becomes necessary to use de L’Hôpital’s rule. In order to proceed, it helps
to consider the kth derivative of a determinant of a matrix with size M × M given by

Dk
z · |A| =

∑
k1+···+kM=k

k!

k1! · · · kM!

∣∣∣∣∣∣∣∣∣∣∣

Dk1
z · A1,1 Dk2

z · A1,2 · · · DkM
z · A1,M

Dk1
z · A1,2 Dk2

z · A2,2 · · · DkM
z · A2,M

...
...

. . .
...

Dk1
z · AM,1 Dk2

z · Ai, j · · · DkM
z · AM,M

∣∣∣∣∣∣∣∣∣∣∣
. (E10)

From Eq. (E10) and the expressions in Eqs. (E6)–(E8) it becomes clear that each of the columns in the matrices must be
differentiated at-least twice to give a nonzero determinant when z → 1. The determinant must therefore be differentiated 2M
times leading to de L’Hôpital’s rule being used 4M-times in Eq. (E9). Expanding the denominator using Leibniz general rule
gives

D4M
z · D2 =

4M∑
k=0

(
4M
k

)(
Dk

z · D)(D4M−k
z · D) =

(
4M
2M

)(
D2M

z · D)2, (E11)

043281-18



PARTICLE-ENVIRONMENT INTERACTIONS IN … PHYSICAL REVIEW RESEARCH 5, 043281 (2023)

where the only nonzero term is when k = 2M, expanding the first term in the numerator in Eq. (E9) yields

D4M
z · [(Dz · N )D]=

4M∑
k=0

(
4M
k

)(
Dk+1

z · N)(D4M−k
z · D)=( 4M

2M − 1

)(
D2M

z · N)(D2M+1
z · D)+

(
4M
2M

)(
D2M+1

z · N)(D2M
z · D),

(E12)

where the only surviving terms of the above summation are when k = 2M − 1, and k = 2M. Similarly for the second term in
the numerator in Eq. (E9) the surviving terms are obtained when k = 2M and k = 2M + 1, giving

D4M
z · [(Dz · D)N]=

4M∑
k=0

(
4M
k

)(
Dk

z · N)(D4M−k+1
z · D) =

(
4M
2M

)(
D2M

z · N)(D2M+1
z · D)+

(
4M

2M + 1

)(
D2M+1

z · N)(D2M
z · D).

(E13)

Putting it all together gives

Dz · F̃n0 (n, z)|z=1 =
(
D2M+1

z · N)(D2M
z · D)− (D2M

z · N)(D2M+1
z · D)

(2M + 1)
[
D2M

z · D]2
∣∣∣∣∣
z→1

. (E14)

Considering the term D2M
z · N we find that

D2M
z · N|z→1 = D2M

z · [(F̃n0
(n, z) − 1

)|J|]|z→1 + D2M
z · |J(n, n0)||z→1 (E15)

= D2M
z · |J(n, n0)||z→1, (E16)

since [F̃n0
(n, z) − 1] must be differentiated at least once and |J| must be differentiated at least 2M times to give a nonzero

contribution. From Eqs. (E7) and (E8) we observe that a nonzero contribution from J(n, n0)i, j , J(n, n)i, j occurs when one
differentiates the difference of first-passage probability F̃〈u j−v j〉(n, z), and the return probability terms [1 − R̃(ui, z)] and [1 −
R̃(vi, z)] at least once. As F̃n0 (ui, z = 1) = F̃n0 (vi, z = 1) = F̃n(ui, z = 1) = F̃n(vi, z = 1) = 1, we have

D2M
z · N|z→1 = D2M

z · J(n, n0)|z→1 = D2M
z · J(n, n)|z→1 = D2M

z · D|z→1, (E17)

and we can simplify Eq. (E14) to

Dz · F̃n0 (n, z)|z=1 = D2M+1
z · N − D2M+1

z · D
(2M + 1)D2M

z · D

∣∣∣∣∣
z→1

. (E18)

At this stage one can compute the derivatives explicitly, for the case D2M
z · J in Eq. (E10). With all ki = 2, differentiating each

column twice and taking the limit z → 1, gives (after canceling the 2M term),

D2M
z · J|z→1 = (−1)M (2M )!|J |, (E19)

where

J i, j = λvi,uiRviF〈u j−v j〉→ui
− λui,viRuiF〈u j−v j〉→vi

+ δi, jRuiRvi , (E20)

and likewise for the other two matrices we find

D2M
z · J(n, n)|z→1 = D2M

z · J(n, n0)|z→1 = (−1)M (2M )!|J − J (2)|, (E21)

where

J (2)
i, j = (λvi,uiRvi − λui,viRui )F〈u j−v j〉→n. (E22)

Let us now consider the term D2M+1
z · N. We apply Leibniz rule and obtain

D2M+1
z · N =

2M+1∑
	=0

(
2M + 1

	

)[
D	

z · (F̃n0
(n, z) − 1

)][
D2M+1−	

z · |J|]+ D2M+1
z · |J(n, n0)|, (E23)

the only surviving term in the summation is when 	 = 1 resulting in

D2M+1
z · N = (−1)M (2M + 1)!Fn0→n

∣∣J ∣∣+ D2M+1
z · ∣∣J(n, n0)

∣∣. (E24)

Substituting the previous results into Eq. (E14) and simplifying yields

Dz · F̃n0 (n, z)|z=1 = (−1)M (2M + 1)!Fn0→n|J | + D2M+1
z · |J(n, n0)| − D2M+1

z · |J(n, n)|
(−1)M (2M + 1)!|J − J (2)|

∣∣∣∣
z→1

. (E25)
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Consider the term D2M+1
z · |J(n, n0)| and D2M+1

z · |J(n, n)|, using the multinomial expansion of the derivative of a determinant,
i.e., Eq. (E10), one can see that the only surviving terms appear when M − 1 columns are differentiated twice, while one column
is differentiated three times, hence,

D2M+1
z · {|J(n, n0)| − |J(n, n)|} = 1

3

(2M + 1)!

2M

M∑
	=1

∣∣Ĵ (n0,	)∣∣− ∣∣Ĵ (n,	)∣∣, (E26)

where

Ĵ (n0,	)

i, j
= 2(δ j,	 − 1)

{
J i, j − J (2)

i, j

}+ δ j,	
{
D3

z · J(n, n0)i, j |z=1
}
, (E27)

Ĵ (n,	)

i, j
= 2(δ j,	 − 1)

{
J i, j − J (2)

i, j

}+ δ j,	
{
D3

z · J(n, n)i, j |z=1
}
. (E28)

The multilinear property of the determinant allows us to rewrite Eq. (E26) as

D2M+1
z · {|J(n, n0)| − |J(n, n)|} = 1

3

(2M + 1)!

2M

M∑
	=1

∣∣Ĵ (	)∣∣, (E29)

where

Ĵ (	)

i, j
= 2(δ j,	 − 1)

{
J i, j − J (2)

i, j

}+ δ j,	D3
z · {J(n, n0)i, j − J(n, n)i, j}|z=1. (E30)

Since

J(n, n0)i, j − J(n, n)i, j = F̃〈u j−v j〉(n, z)
{
λvi,ui [1 − R̃(vi, z)]F̃〈n0−n〉(ui, z) − λui,vi [1 − R̃(ui, z)]F̃〈n0−n〉(vi, z)

}
, (E31)

each of the first-passage and return probabilities in Eq. (E31) must be differentiated at least once to give a nonzero contribution,
hence,

D3
z · {J(n, n0)i, j − J(n, n)i, j}|z=1 = 6F〈u j−v j〉→n

{
λvi,uiRviF〈n0−n〉→ui − λui,viRuiF〈n0−n〉→vi

}
, (E32)

where the factor 6 comes from repeated application of the product rule. To carry out the summation in Eq. (E29) we employ the
following property of determinants. Given two matrices, A and B of size M × M, where B = abT and where a and b are two
column vectors, the following relation

M∑
	=1

|A(	)| = |A| − |A − B| (E33)

holds when A(	) is the same as A, but with the 	th column replaced by the 	th column of B. Comparing Eqs. (E29) and (E32)
with Eq. (E33), we observe that A → J − J (2),

a → [
λv1,u1Rv1F〈n0−n〉→u1 − λu1,v1Ru1F〈n0−n〉→u1 , · · · , λvM ,uMRvMF〈n0−n〉→uM − λuM ,vMRuMF〈n0−n〉→uM

]T
, (E34)

and

b → 6
[
F〈u1−v1〉→n, · · · ,F〈uM−vM 〉→n

]T
, (E35)

and carrying out the summation we obtain

1

3

(2M + 1)!

2M

M∑
	=1

∣∣Ĵ (	)∣∣ = 1

3

(2M + 1)!

2M

{|−2(J − J (2) )| − | − 2(J − J (2) ) − 6J (1)|}, (E36)

with

J (1)
i, j = (λvi,uiRviF〈n0−n〉→ui − λui,viRuiF〈n0−n〉→vi

)
F〈u j−v j〉→n. (E37)

From Eq. (E36), we can factor out (–2) from the determinants using the property |αA| = αM |A| with A an M × M determinant
to yield

1

3

(2M + 1)!

2M

M∑
	=1

∣∣Ĵ (	)∣∣ = (−1)M (2M + 1)!

3

{|(J − J (2) )| − |(J − J (2) ) + 3J (1)|}. (E38)

The factor 1/3 can be taken into the determinants using the property given in Eq. (E3). For the first determinant on the RHS of
Eq. (E38) we can equate A → J , from Eq. (E22) we can equate

a → [
λv1,u1Rv1 − λu1,v1Ru1 , . . . , λvM ,uMRvM − λu1,v1RuM

]T
, (E39)
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and

b → [
F〈u1−v1〉→n, . . . ,F〈uM−vM 〉→n

]T
, (E40)

to derive the relation
1
3 |J − J (2)| = |J − 1/3J (2)| − 2

3 |J |. (E41)

Similarly, for the second determinant on the RHS of Eq. (E38), we can equate A → J, and using Eq. (E37) we identify

a → [
λv1,u1Rv1

(
1 − 3F〈n0−n〉→u1

)− λu1,v1Ru1

(
1 − 3F〈n0−n〉→v1

)
,

· · · , λvM ,uMRvM

(
1 − 3F〈n0−n〉→uM

)− λu1,v1RuM

(
1 − 3F〈n0−n〉→vM

)]T
, (E42)

and

b → [
F〈u1−v1〉→n, · · · ,F〈uM−vM 〉→n

]T
, (E43)

to obtain the relation
1
3 |J − J (2) + 3J (1)| = |J − 1/3J (2) + J (1)| − 2

3 |J |. (E44)

Using the relations Eqs. (E41) and (E44) to simplify Eq. (E38) yields

1

3

(2M + 1)!

2M

M∑
	=1

∣∣Ĵ (	)∣∣ = (−1)M (2M + 1)!{|J − 1/3J (2)| − |J − 1/3J (2) + J (1)|}. (E45)

Lastly, employing the property

|A − abT| − |A − cbT| = |A − (a − c)bT| − |A| (E46)

with A → J , 3a with Eq. (E39), 3b with Eq. (E40), and 3c with Eq. (E42), we can simplify Eq. (E45) to

1

3

(2M + 1)!

2M

M∑
	=1

∣∣Ĵ (	)∣∣ = (−1)M (2M + 1)!{|J − J (1)| − |J |}. (E47)

Putting it all together gives the final mean first-passage time with M paired defects

Fn0→n =
(
Fn0→n − 1

)|J | + |J − J (1)|
|J − J (2)| . (E48)

If we divide through all the terms by
∏

(u,v)∈S RuRv , we obtain the mean in Eq. (8), also reported in Eq. (A2).

2. Mean first passage in the presence of sticky or slippery sites

To build the first-passage probability with sticky and slippery heterogeneities (see Appendix D 1 and Fig. 17) we use the
propagator given in Eq. (5), where the matrices H and H (n, n0) are given, respectively, by Eqs. (D20) and (D21). As the
procedure is similar to the one used to derive the general MFPT given in Eq. (8), we outline only the key steps.

Starting from

F̃n0 (n, z) = �̃n0 (n, z)

�̃n(n, z)
= (̃ϕn0 (n, z) − 1)|H| + |H − G(n, n0)|

(̃ϕn(n, z) − 1)|H| + |H − G(n, n)| , (E49)

where we have called H (n, n0) = H − G(n, n0), with H and H (n, n0) given, respectively, by Eqs. (D20) and (D21). Since
matrix G(n, m) = abT, where a and b are column vectors with elements ai = ϕ̃m(wi, z) and bi = Q̃wi

(n, z) with Q̃w(n, z) given

by Eq. (D17). Dividing both the numerator and denominator of Eq. (E49) by ϕ̃n0
(n, z)

∏M
i=1 ϕ̃wi

(wi, z) we find

F̃n0 (n, z) =
(
F̃n0

(n, z) − 1
)|J| + |J(n, n0)|

|J(n, n)| , (E50)

where we rewrite the elements of the matrices in terms of first-passage and first-return probabilities giving the definitions

Ji, j = Q̃w j
(wi, z) − z−1δi, j[1 − R̃(wi, z)], (E51)

J(n, n)i, j = Ji, j − F̃n(wi, z)Q̃w j
(n, z), (E52)

J(n, n0)i, j = Ji, j − F̃n0
(wi, z)Q̃w j

(n, z), (E53)
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with

Q̃w j
(n, z) =

d∑
s=1

λw
(rs )
j ,w j

F̃〈w j−w
(rs )
j 〉(n, z) + λ

w
(ls )
j ,w j

F̃〈w j−w
(ls )
j 〉(n, z). (E54)

Note that Eqs. (E6)–(E8) are now different from Eqs. (E51)–(E53).
The derivative with respect to z yields Eq. (E9); however, to evaluate the limit z → 1, one must employ de L’Hôpital’s

rule 2M times on Eq. (E9), where previously the rule was used 4M times. This is because the elements of the matrices given
by Eqs. (E51)–(E53) need only be differentiated once to give nonzero contributions, i.e., the determinants, |H|, |H (n, n)| and
|H (n, n0)| must be differentiated M times. Following through one finds, instead Eq. (E55),

Dz · F̃n0 (n, z)
∣∣
z=1 = DM+1

z · N − DM+1
z · D

(M + 1)DM
z · D

∣∣∣∣∣
z→1

. (E55)

After computing the derivatives explicitly one obtains Eq. (8), but this time

Hi, j = 1

Rwi

Qw j (wi ) + δi, j, (E56)

H(1)
i, j = 1

Rwi

F〈n0−n〉→wiQw j (n), (E57)

H(2)
i, j = 1

Rwi

Qw j (n), (E58)

and with

Qw j (n) =
d∑

s=1

λw
(rs )
j ,w j

F〈w j−w
(rs )
j 〉→n + λ

w
(ls )
j ,w j

F〈w j−w
(ls )
j 〉→n. (E59)

3. Mean first-return time

Through the renewal equation we also have the return probability relation

R̃(n, z) = 1 − 1

�̃n(n, z)
= (̃ϕn(n, z) − 2)|H| + |H (n, n)|

(̃ϕn(n, z) − 1)|H| + |H (n, n)| . (E60)

Dividing both the numerator and denominator of Eq. (E60) by ϕ̃n(n, z)
∏M

i=1 ϕ̃wi
(wi, z) and simplifying gives

R̃(n, z) = (R̃(n, z) − 1)|J| + |J(n, n)|
|J(n, n)| , (E61)

where J, J(n, n0) and J(n, n) are given by Eqs. (E6), (E7), and (E8) in the case of the general paired defect. Whereas for the
sticky-slippery defects one would use Eqs. (E51), (E53), and (E52). In either case Eq. (E61) is structurally identical to Eq. (E5)
and one employs the same procedure as the one employed to derive the MFPT to obtain, also given in Eq. (9),

Rn = Rn|H|∣∣H − H(2)
∣∣ (E62)

where H and H(2) are given, respectively, by Eqs. (A3) and (A5) in the case of paired defects, while for sticky-slippery defects
one would use the definitions in Eqs. (E56) and (E58).

APPENDIX F: STEADY-STATE PROBABILITY

Using the final value theorem, the steady-state probability is given by

(1 − z)�̃n0
(n, z)|z→1 = (1 − z )̃ϕn0

(n, z)|z→1

− (1 − z)|H| − (1 − z)|H − G(n, n0)|
|H|

∣∣∣∣
z→1

,
(F1)

taking the limit requires a similar procedure as the one given for the derivation of the MFPT see Appendix E, and after some
algebra one finds

(1 − z)�̃n0
(n, z)|z→1 = 1

Rn

|H − H(2)|
|H| , (F2)
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which (as expected) is the reciprocal of the MRT and where the elements of H, H(1), and H(2) are defined, respectively, in
Eqs. (A3), (A4), and (A5) for the general case, and Eqs. (E56), (E57), and (E58) when the heterogeneities are only sticky and
slippery.

APPENDIX G: FIRST-PASSAGE STATISTICS IN ONE-DIMENSIONAL DOMAINS

Here we display some explicit miscellaneous expressions for 1D systems that we have omitted from the main text.

1. Mean first-passage time in periodic domains

In a periodic domain when n � u < n0 or n > u � n0 the MFPT can be shown to be equal to

Fn0→n = Fn0→n + λ(n − n0 − sign(n − n0))[N sign(n − n0) + 1 − 2(n − u)]

p
[
N p

2 + λ(1 − N )
] , (G1)

while when both n and n0 are to the right or left of the barrier ones finds

Fn0→n = Fn0→n + λ(n − n0)[N sign(u − n) + 1 − 2(n − u)]

p
[
N p

2 + λ(1 − N )
] , (G2)

where sign(m) = 1 for m � 0 and sign(m) = −1 for m < 0 is the discrete signum function.

2. Mean return time in 1D

Using Eq. (9) one can show that the mean return time in 1D with a single barrier at u with periodic boundary conditions is
given by

Rn =
⎧⎨⎩

q
2 [N2−(N2−N )(λu+λv )]

N (q/2−λv )+λu(n−u)−λv (n−u−1) , n � u,

q
2 [N2−(N2−N )(λu+λv )]

N (q/2−λu )+λu(n−u)−λv (n−u−1) , n � u + 1.

(G3)

When the barrier is impenetrable in both directions, i.e., λu+1,u , λu,u+1 → q
2 , the mean return time with periodic boundary

condition remains Rn = N as we have transformed the periodic boundary condition to a reflecting one. However, to recover the
analog with reflecting boundary condition requires careful consideration of each of the terms in

R(r)
n =

⎧⎨⎩N
[ q/2−λu+1 ,u

q/2−λu ,u+1

]− u
[ λu ,u+1 −λu+1,u

q/2−λu ,u+1

]
n � u

N − u
[ λu ,u+1 −λu+1 ,u

q/2−λu+1 ,u

]
n � u + 1

. (G4)

When n � u, by expanding the first term in Eq. (G4) it is obvious to see that it gives no contribution to R(r)
n ,

N lim
λu+1,u → q

2
λu ,u+1 → q

2

(
q
2 − λu+1,u
q
2 − λu,u+1

)
= Nq

2
lim

λu ,u+1 → q
2

(
1

q
2 − λu,u+1

)
− Nq

2
lim

λu ,u+1 → q
2

(
1

q
2 − λu,u+1

)
= 0, (G5)

while the second term gives

u lim
λu+1,u → q

2
λu ,u+1 → q

2

(
λu,u+1 − λu+1,u

q
2 − λu,u+1

)
= uq

2
lim

λu ,u+1 → q
2

(
1

q
2 − λu,u+1

)
− u lim

λu ,u+1 → q
2

(
λu,u+1

q
2 − λu,u+1

)
= u, (G6)

similar argument can be made for the case when n > u to give R(r)
n = N − u.

3. Mean exit time

In 1D, one find simple expressions for the mean exit times, using known expressions for the defect free exit time En0
=

(N − n0)(n0 − 1)/q [68], and the overall survival probability of the 1D diffusive propagator with absorbing boundaries, given
by

lim
z→1

ϕ̃n0
(n, z) = 1

q

2(N − n>)(n< − 1)

N − 1
, (G7)

where n> = 1
2 [|n − n0| + (n + n0)] and n< = 1

2 [|n − n0| − (n + n0)]. When n0 � u + 1, we find the simple relatively relation

En0
= En0

+ (2u − N )(N − n0)[u(λu − λv) − λu]

q
[
N
( q

2 − λv
)+ λu + λv − u(λu − λv) − q

2

] , (G8)

whereas n0 � u yields

En0
= En0

+ (2u − N )(1 − n0)[(u − N )(λu − λv) − λv]

q
[
N
( q

2 − λv
)+ λu + λv − u(λu − λv) − q

2

] . (G9)
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APPENDIX H: EFFICIENT EVALUATION OF THE
PROPAGATOR IN FINITE DOMAINS: THE BLOCK

IN THE MATRIX CONSTRUCTION

When the number of paired defects is sufficiently small,
e.g., M � 10 it is convenient to compute the elements of
the matrices in Eqs. (5) and (8) directly using, respectively,
the homogeneous propagators and mean first-passage times.
Whereas, for larger values of M it is more efficient to evaluate
the heterogeneous propagator using a block matrix construc-
tion containing eigenvectors and eigenvalues of the transition
matrix. In what follows we describe the procedure for a 1D
system while the extension to higher dimension will be ad-
dressed in the following subsection. We define the matrices
containing the right eigenvectors as

Ri,k = g(γ ,r)(ui, k) and R′
i,k = g(γ ,r)(vi, k), (H1)

where g(γ ,r)(ui, k) and g(γ ,r)(vi, k) are, respectively the uith
and vith component of the kth right eigenvector given by
Eq. (H16), with the type of boundary condition described by
γ . Similarly for the matrices containing the left eigenvectors
we define

Lk,i = g(γ ,	)(ui, k) and L′
k,i = g(γ ,	)(vi, k), (H2)

where g(γ ,	)(ui, k) and g(γ ,	)(vi, k) are, respectively, the uith
and vith component of the kth right eigenvector given by
Eq. (H16), while for the matrices of eigenvalues we define a
diagonal matrix K with elements Kk,k = s(γ )(k) where s(γ )(k)
is the kth eigenvalue of the homogeneous system given by,
e.g., Eq. (4) of Ref. [68] or Eq. (22) of Ref. [69]. For the
dependence on the occupation site n and the initial site n0

we define the row vector rn and the column �n0 containing,
respectively, the nth and n0th components of the right and left
eigenvectors. Finally we define the diagonal matrices

�i,i = λui,vi and �′
i,i = λvi,ui , (H3)

which contain all the heterogeneous parameter values. The
size of these matrices depend on the number of hetero-
geneities, M, the size of the domain N or both: the matrices
R and R′ are of size M × N ; the matrices L and L′ are of size
N × M; the matrices � and �′ are of size M × M; and lastly
K is of size N × N . From these definitions it follows that

H = Y − z−1I and G(n, n0) = os (H4)

where

Y = [�R − �′R′][I − zK]−1[L − L′] (H5)

o = [�R − �′R′][I − zK]−1�n0 (H6)

s = rn[I − zK]−1[L − L′], (H7)

By defining the block matrices

X L = (L − L′ �n0

)
and X R =

(
uR − u′R′

rn

)
(H8)

we find

X R[I − zK]−1X L =
(

Y o
sT ϕ̃n0

(n, z)

)
. (H9)

A similar approach can be used for the matrices involved in
the MFPT given by Eqs. (A3), (A4), and (A5).

1. The block matrix construction in higher dimensions

In higher dimension the transition dynamics of a lattice
random walk are described by a tensor and extending the
block matrix construction hinges on “flattening” the vector
coordinates to a scalar. There are many methods one can
employ to achieve this and we outline a suitable one below.
Given the site n = (n1, . . . , nd ) in a d-dimensional lattice of
size N = N1, . . . Nd , we define

n̂ = 1 +
d∑

i=1

⎛⎝ i−1∏
j=1

Nj

⎞⎠(ni − 1) (H10)

and

k̂ = 1 +
d∑

i=1

⎛⎝ i−1∏
j=1

Nj

⎞⎠(ki − 1), (H11)

where n̂ represents the “flattened” site while k̂ is the “flat-
tened” eigen-index. Using these indices we define

Ri,k̂ =
d∏

j=1

g
(γ j )
r (ui j , kj ) and R′

i,k̂
=

d∏
j=1

g
(γ j )
r (vi j , kj ),

(H12)

where the products ares over jth component of the sites, e.g.,
ui = (ui1 , . . . , uid ). Similarly, the matrices containing the left
eigenvectors are defined as

Lk̂,i =
d∏

j=1

g
(γ j )
	 (ui j , kj ) and L′

k̂,i
=

d∏
j=1

g
(γ j )
	 (vi j , kj ),

(H13)

leaving the matrix of eigenvalues defined as K k̂,k̂ =
1
d

∑d
j=1 s(γ )(kj ). The ith element of the vectors containing

the dependence on n, and n0 is given, respectively, by rni =∏d
j=1 g

(γ j )
r (ni j , kj ) and �n0 i

=∏d
j=1 g

(γ j )
	 (n0i j

, kj ). The remain-
der of the procedure is identical to the 1D case outlined
previously.

2. Eigenvectors and eigenvalues of transition matrix of the
one-dimensional lattice random walk

Since the high-dimensional eigenvectors and eigenvalues
are composed of the 1D case, repeated here the quantities
of interest diffusive case as an example. The Master equa-
tion governing a random walk on a finite lattice with N distinct
sites (1 � n � N ) is written as

ϕ(n, t + t ) =
N∑

m=1

An,mϕ(m, t ), (H14)

where A is the transition matrix. The matricial form allows
one to write easily the propagator as

ϕn0 (n, t ) =
N∑

k=1

g(γ )
r (n, k)g(γ )

	 (n0, k)s(k)(k)t , (H15)

where g(γ )
r (n, k) and g(γ )

	 (n, k) are the nth component of, re-
spectively, the kth right and left eigenvectors of the transition
matrix and s(γ )(k) is the kth eigenvalue. The right eigenvectors
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are given by

g(γ )
r (n, k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ak√
N

cos
[(

n − 1
2

) (k−1)π
N

]
γ = r,

1√
N

exp
[ 2πni(k−1)

N

]
γ = p,√

2
N sin

[(
n−1
N−1

)
kπ
]

γ = a,

2√
2N−1

cos
[(

n − 1
2

)
2k−1
2N−1π

]
γ = m,

(H16)

with ak = 2 for k = 1 and ak = 1 for all other values of k,
while the left eigenvectors g(γ )

	 (n, k) are identical to Eq. (H16)

for all cases except the periodic boundary condition γ = p,
where instead it is given by g(p)

	 (n, k) = 1/g(p)
r (n, k); finally

the eigenvalues can be found in Eq. (4) of Ref. [68]. For peri-
odic (γ = p) and reflecting domains (γ = r) with N distinct
sites we have k ∈ [1, N] eigenvalues and eigenvectors, for
absorbing boundary conditions (γ = a) with absorbing sites
at n = 1 and n = N we have k ∈ [1, N − 2] eigenvalues, lastly
for mixed boundary condition (γ = m) with a reflecting end at
n = 1 and an absorbing one at n = N we have k ∈ [1, N − 1]
eigenvalues.
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