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Universal bounds on the performance of information-thermodynamic engine
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We investigate fundamental limits on the performance of information processing systems from the perspective
of information thermodynamics. We first extend the thermodynamic uncertainty relation (TUR) to a subsystem.
Specifically, for a bipartite composite system consisting of a system of interest X and an auxiliary system Y ,
we show that the relative fluctuation of an arbitrary current for X is lower bounded not only by the entropy
production associated with X but also by the information flow between X and Y . As a direct consequence of this
bipartite TUR, we prove universal tradeoff relations between the output power and efficiency of an information-
thermodynamic engine in the fast relaxation limit of the auxiliary system. In this limit, we further show that
the Gallavotti-Cohen symmetry is satisfied even in the presence of information flow. This symmetry leads to
universal relations between the fluctuations of information flow and entropy production in the linear response
regime. We illustrate these results with simple examples: coupled quantum dots and coupled linear overdamped
Langevin equations. Interestingly, in the latter case, the equality of the bipartite TUR is achieved even far from
equilibrium, which is a very different property from the standard TUR. Our results will be applicable to a wide
range of systems, including biological systems, and thus provide insight into the design principles of biological
systems.
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I. INTRODUCTION

Biological systems maintain their functions by acquiring
or using information about fluctuating environments. For ex-
ample, E. coli regulates its flagellar motors by processing
information about external ligand concentrations to adapt to
the environment [1–6]. A gene network senses a sudden in-
crease in protein concentration and then suppresses mRNA
transcription to maintain protein levels [7–10]. While these
systems rely on a negative feedback mechanism that sup-
presses intrinsic noise by using information about fluctuating
environments, some molecular machines can even convert in-
formation into output work. Such examples include FoF1-ATP
synthase, where F1 motor converts energy and information
provided by Fo motor into the synthesis of ATP molecules
[11–13]. To elucidate the general design principles under-
lying biological systems, it is necessary to investigate the
fundamental limits on the performance of such information
processing systems.

Stochastic thermodynamics has revealed various fun-
damental limits to the thermodynamic aspects of such
fluctuating mesoscale systems [14–17]. For example, the ther-
modynamic uncertainty relation (TUR) states that suppressing
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the relative fluctuations of an arbitrary time-integrated current
ĴT necessarily involves a thermodynamic cost [18–20]:

Var[ĴT ]

〈ĴT 〉2
� 2

�σ
, (1)

where 〈ĴT 〉 and Var[ĴT ] denote the mean and variance of
ĴT , and �σ denotes the total entropy production up to time
T . While the validity of TUR in its original form (1) is
limited to steady-state currents in Markov jump processes
and overdamped Langevin dynamics, TUR-type inequalities
even revealed that there is a fundamental limit to the perfor-
mance of a thermodynamic heat engine. Specifically, a heat
engine with a finite output power cannot achieve the Carnot
efficiency as long as the fluctuation of the output power is
finite [21–24]. Furthermore, for a stationary cross-transport
system with input and output currents, which can be regarded
as fuel (positive entropy) and load (negative entropy), respec-
tively, the input-output fluctuation inequalities hold in the
linear response regime [25,26]. These inequalities state that
the fluctuation of the output current is smaller than that of
the input current, while the relative fluctuation of the output
current is larger than that of the input current.

In this paper, we aim to find similar fundamental lim-
its for information processing systems, in particular for an
information-thermodynamic engine that converts informa-
tion into output work. Information thermodynamics, which
is essentially stochastic thermodynamics for subsystems, is
a thermodynamic framework for information flow between
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two interacting subsystems, either autonomous or nonau-
tonomous [27]. This theory reveals that the information
flow between subsystems can significantly affect the thermo-
dynamic constraints of each subsystem. While information
thermodynamics has its origins in the thought experiment
of Maxwell’s demon, it has recently been applied to infor-
mation processing at the cellular level in biological systems
[5,28–31] and even to fully developed fluid turbulence [32].

Here, we consider a composite system consisting of a
system of interest X and an auxiliary system Y , described
by continuous-time Markov jump processes or diffusion pro-
cesses with only even variables and parameters under time
reversal. Our main results can be summarized as follows.

(i) Bipartite TUR. We first extend the standard TUR (1)
to a subsystem. For arbitrary time-integrated current ĴT
for X with arbitrary observation time T , we prove that
[cf. Eq. (26)]

Var[ĴT ]

〈ĴT 〉2
� 2(1 + δJ )2

�SX
tot − �IX

. (2)

Here, �SX
tot denotes the entropy production associated with X ,

and �IX denotes the time-integrated information flow, which
is the amount of information exchanged with the auxiliary
system Y . The additional term δJ reflects the contribution
of the interaction with Y . This bipartite TUR states that the
relative fluctuation of the current for the subsystem X is lower
bounded not only by the entropy production associated with
X , but also by the information transfer between X and Y . In
particular, if Y evolves much faster than X , we can further
show that δJ → 0 in the steady state. In this case, the bipartite
TUR gives a tighter bound than the standard TUR (1). While
here we derive the bipartite TUR in the steady state, this rela-
tion is valid even for systems under arbitrary time-dependent
driving from arbitrary initial states (see Appendix A).

(ii) Tradeoff relations. As a consequence of the bipartite
TUR, we show that there are fundamental limits on the per-
formance of an information-thermodynamic engine. When
the system of interest X acts as a steady-state information-
thermodynamic engine, its performance can be quantified,
e.g., by the negative entropy production rate |ṠX

env| in the
environment and the information-thermodynamic efficiency
ηX

S := |ṠX
env|/|İX |, which quantifies how efficiently the engine

converts information into the negative entropy production. In
the typical case where the auxiliary system Y evolves much
faster than the engine X , we prove universal tradeoff relations
between |ṠX

env| and ηX
S [cf. Eqs. (74) and (76)]:

∣∣ṠX
env

∣∣ � DS
1 − ηX

S

ηX
S

(3)

and ∣∣ṠX
env

∣∣ � DIη
X
S (1 − ηX

S ), (4)

where DS and DI denote the fluctuation of the
stochastic medium entropy production and the time-
integrated stochastic information flow, respectively. These
inequalities state that an information engine with a finite
negative entropy production rate cannot achieve ηX

S = 1 as
long as the fluctuations DS and DI are finite. In order to

achieve a finite negative entropy production rate with ηX
S = 1,

the fluctuations DS and DI must diverge.
(iii) Gallavotti-Cohen symmetry. In addition to the TURs,

the Gallavotti-Cohen symmetry [33–35] also provides impor-
tant information about fluctuations of currents. For the scaled
cumulant generating function μ(λS, λI ) with the counting
fields λS and λI for the stochastic medium entropy production
and the time-integrated stochastic information flow, we prove
that the following Gallavotti-Cohen symmetry holds in the
fast relaxation limit of Y [cf. Eq. (116)]:

μ(λS, λI ) = μ(−λS − 1,−λI − 1). (5)

(iv) Input-output fluctuation inequalities. As a direct con-
sequence of the Gallavotti-Cohen symmetry, we show that
the input-output fluctuation inequalities hold even in the case
where information flow is regarded as an input or output
current. That is, in the linear response regime where X acts as
a steady-state information-thermodynamic engine, we prove
that [cf. Eqs. (122) and (123)]

DS � DI , (6)

DI

(İX )2
� DS(

ṠX
env

)2 . (7)

These inequalities state that the fluctuation of the output cur-
rent (negative entropy production) is smaller than that of the
input current (information flow), while the relative fluctuation
of the output current is larger than that of the input current.

We illustrate these results with two simple examples: cou-
pled quantum dots and coupled linear overdamped Langevin
equations. Interestingly, the latter provides an example where
the equality of the bipartite TUR is achieved even far from
equilibrium. This is in contrast to the standard TUR (1),
where the equality is guaranteed only in the near-equilibrium
limit [20,36]. While the bipartite TUR is generally not valid
for systems with broken time-reversal symmetry, such as
underdamped Langevin dynamics [37–43], many relevant
biological systems are often described by continuous-time
Markov jump processes or diffusion processes with only even
variables and parameters under time reversal. Therefore, these
results will be applicable to a wide range of systems, including
biological systems, and thus shed new light on our under-
standing of the design principles of biological systems.

This paper is organized as follows. In Sec. II, we introduce
important information-theoretic quantities and briefly review
the framework of information thermodynamics in a general
setup. In Sec. III A, we describe the bipartite TUR, which
is the first main result of this paper. The detailed derivation
of the bipartite TUR is presented in Sec. III B. In Sec. III C,
we show that the bipartite TUR reduces to the form of the
standard TUR if the auxiliary system evolves much faster than
the system of interest. We discuss the equality condition of the
bipartite TUR in Sec. III D. In Sec. IV, we show that the bi-
partite TUR gives universal bounds on the performance of an
information-thermodynamic engine, which is the second main
result of this paper. In Sec. V A, as the third main result of this
paper, we prove that the Gallavotti-Cohen symmetry holds
even in the presence of information flow in the fast relaxation
limit of the auxiliary system. As a corollary to this symmetry,
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we show that the input-output fluctuation inequalities are valid
even in the case where information flow is regarded as an input
or output current in Sec. V B. In Sec. VI, we illustrate our
results with two examples. In Sec. VII, we conclude this paper
with some remarks.

II. SETUP

We consider a composite system that consists of two sub-
systems, X (system of interest) and Y (auxiliary system),
whose time evolution is described by Markov jump processes
or overdamped Langevin equations. Let xt and yt be the states
of X and Y at time t , respectively. We assume that the sys-
tem satisfies the bipartite property: the transition probability
p(xt+dt , yt+dt |xt , yt ) satisfies

p(xt+dt , yt+dt |xt , yt ) = p(xt+dt |xt , yt )p(yt+dt |xt , yt ) (8)

for dt → 0+. This property means that X and Y do not jump
simultaneously in the case of Markov jump processes and
that the noises acting on X and Y are uncorrelated in the
case of diffusion processes. In this paper, we focus mainly
on Markov jump processes, while the extension to the over-
damped Langevin case is straightforward. Let pt (x, y) be the
probability of state (x, y) at time t . The time evolution of
pt (x, y) is described by the master equation

∂t pt (x, y) =
∑

x′
w

y
xx′ pt (x

′, y) +
∑

y′
wyy′

x pt (x, y′), (9)

where w
y
xx′ (wyy′

x ) is the time-independent transition rate
from state (x′, y) to (x, y) [(x, y′) to (x, y)] with w

y
xx =

−∑x′( �=x) w
y
x′x (wyy

x = −∑y′( �=y) w
y′y
x ). The rate matrix is as-

sumed to be irreducible to ensure the uniqueness of the
stationary distribution pss(x, y). Note that X and Y can af-
fect each other’s transition rates, although they cannot jump
simultaneously.

A. Information-theoretic quantities

We introduce important information-theoretic quantities.
The strength of the correlation between X and Y can be
quantified by the mutual information [44]:

I[X : Y ] :=
∑

x

∑
y

pt (x, y) ln
pt (x, y)

pX
t (x)pY

t (y)
, (10)

where pX
t (x) =∑y pt (x, y) and pY

t (y) =∑x pt (x, y) denote
the marginal distributions for X and Y , respectively. The mu-
tual information is non-negative and is equal to zero if and
only if X and Y are independent.

The directional information from one variable to the
other can be quantified by information flow [45], which is
defined as

İX := lim
dt→0+

I[Xt+dt : Yt ] − I[Xt : Yt ]

dt

=
∑

x

∑
x′

∑
y

w
y
xx′ pt (x

′, y) ln
pt (y|x)

pt (y|x′)
, (11)

İY := lim
dt→0+

I[Xt : Yt+dt ] − I[Xt : Yt ]

dt

=
∑

x

∑
y

∑
y′

wyy′
x pt (x, y′) ln

pt (x|y)

pt (x|y′)
, (12)

where pt (y|x) = pt (x, y)/pX
t (x) and pt (x|y) = pt (x, y)/pY

t (y)
denote the conditional probabilities. From the bipartite prop-
erty, the sum of İX and İY gives the time derivative of the
mutual information [46]:

dt I[X : Y ] = İX + İY . (13)

In the steady-state condition, İX and İY have opposite signs
because dt I[X : Y ] = 0. If İX > 0, the correlation between
X and Y increases due to transitions in X . In other words,
X gains information about Y . If İX < 0, in contrast, Xt+dt is
less correlated with Yt than Xt . In this case, the information is
destroyed or exploited by X .

B. Second law of information thermodynamics

Here, we formulate the second law of information thermo-
dynamics. To this end, we impose the local detailed balance
condition to ensure that the system is thermodynamically
consistent [15,17,47]. Then, the entropy change in the envi-
ronment due to transitions in X and Y is identified as

Ṡenv =
∑

x

∑
x′

∑
y

w
y
xx′ pt (x

′, y) ln
w

y
xx′

w
y
x′x

+
∑

x

∑
y

∑
y′

wyy′
x pt (x, y′) ln

w
yy′
x

w
y′y
x

=: ṠX
env + ṠY

env. (14)

The average rate of the system entropy is identified as the
time derivative of the system’s Shannon entropy S[X,Y ] :=
−∑x,y pt (x, y) ln pt (x, y):

dt S[X,Y ] =
∑

x

∑
x′

∑
y

w
y
xx′ pt (x

′, y) ln
pt (x′, y)

pt (x, y)

+
∑

x

∑
y

∑
y′

wyy′
x pt (x, y′) ln

pt (x, y′)
pt (x, y)

. (15)

Then, the total entropy production rate σ̇ is given by

σ̇ = dt S[X,Y ] + Ṡenv � 0, (16)

where the non-negativity is proved by using ln a � a − 1
(a � 0). The non-negativity of the total entropy production
rate is a manifestation of the second law of thermodynamics
and is sometimes called the second law of stochastic thermo-
dynamics [17].

From the bipartite property, σ̇ can be decomposed into two
parts:

σ̇ = σ̇ X + σ̇Y . (17)

Here, σ̇ X and σ̇Y denote the partial entropy production rate
due to transitions in X and Y , respectively [48]:

σ̇ X :=
∑

x

∑
x′

∑
y

w
y
xx′ pt (x

′, y) ln
w

y
xx′ pt (x′, y)

w
y
x′x pt (x, y)

= ṠX
tot − İX , (18)

σ̇Y :=
∑

x

∑
y

∑
y′

wyy′
x pt (x, y′) ln

w
yy′
x pt (x, y′)

w
y′y
x pt (x, y)

= ṠY
tot − İY , (19)
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FIG. 1. Schematic of the second law of information thermo-
dynamics. In the case where X (blue) acts as a steady-state
information-thermodynamic engine, X converts information (İX <

0) into negative entropy production (ṠX
env < 0), while Y (green) gains

information about X (İY = −İX > 0) with the thermodynamic cost
ṠY

env > 0. Although only a single thermal bath is depicted here, our
results hold even in the presence of multiple thermal baths.

where ṠZ
tot (Z = X,Y ) can be interpreted as the en-

tropy production rate associated with Z , which consists
of the time derivative of Z’s Shannon entropy S[Z] :=
−∑z pZ

t (z) ln pZ
t (z) and the entropy change in the environ-

ment due to transitions in Z:

ṠX
tot :=

∑
x

∑
x′

∑
y

w
y
xx′ pt (x

′, y) ln
w

y
xx′ pX

t (x′)
w

y
x′x pX

t (x)

= dt S[X ] + ṠX
env, (20)

ṠY
tot :=

∑
x

∑
y

∑
y′

wyy′
x pt (x, y′) ln

w
yy′
x pY

t (y′)

w
y′y
x pY

t (y)

= dt S[Y ] + ṠY
env. (21)

From the definition of the partial entropy production rates
(18) and (19), it immediately follows that σ̇ X and σ̇Y are
individually non-negative:

σ̇ X = ṠX
tot − İX � 0, (22)

σ̇Y = ṠY
tot − İY � 0. (23)

This is the so-called second law of information thermodynam-
ics (see also Fig. 1). The important point here is that ṠX

tot (ṠY
tot)

can be negative if İX (İY ) is negative. This apparent violation
of the second law of thermodynamics caused by information
flow lies at the heart of the mechanism of Maxwell’s demon
[27]. In this case, X acts as an information-thermodynamic
engine that converts information into output work or negative
entropy production.

III. THERMODYNAMIC UNCERTAINTY RELATION
FOR BIPARTITE SYSTEMS

In this section, we explain our first main result, which can
be regarded as an extension of the standard TUR (1) to bipar-
tite systems. Hereafter, we assume that the whole system is in

the steady state. See Appendixes A and B for time-dependent
cases.

A. Bipartite TUR

Let ĴT be a generalized time-integrated current for
the subsystem X with an arbitrary antisymmetric weight
dy

xx′ = −dy
x′x:

ĴT :=
∑

x

∑
x′( �=x)

∑
y

n̂y
xx′d

y
xx′ , (24)

where n̂y
xx′ denotes the number of transitions from the state

(x′, y) to (x, y) during the time interval [0, T ]. For example,
the choice of dy

xx′ = ln w
y
xx′/w

y
x′x yields the stochastic entropy

change in the environment due to transitions in X during
[0, T ]. In the steady state, the time-integrated stochastic in-
formation flow can also be expressed in this form [see (81)].
We remark that when there are multiple environments with
the label ν = 1, 2, . . . , the weight dy

xx′ can depend on ν. The
ensemble average of ĴT reads as

〈ĴT 〉 =
∫ T

0
dt
∑

x

∑
x′( �=x)

∑
y

w
y
xx′ pss(x

′, y)dy
xx′ . (25)

Our first main result is the following inequality: for arbitrary
observation time T ,

Var[ĴT ]

〈ĴT 〉2
� 2(1 + δJ )2

�SX
tot − �IX

, (26)

where �SX
tot := ∫ T

0 dt ṠX
tot and �IX := ∫ T

0 dt İX denote the
entropy production and time-integrated information flow as-
sociated with X , respectively. Here, δJ := 〈ĴT 〉q/〈ĴT 〉, and
〈ĴT 〉q is defined as

〈ĴT 〉q :=
∫ T

0
dt
∑

x

∑
x′( �=x)

∑
y

w
y
xx′qt (x

′, y)dy
xx′ , (27)

where qt satisfies the following equation with q0 = 0:

∂t qt (x, y) =
⎡⎣∑

x′
w

y
xx′qt (x

′, y) +
∑

y′
wyy′

x qt (x, y′)

⎤⎦
+
∑

x′
w

y
xx′ pss(x

′, y). (28)

This additional current term 〈ĴT 〉q reflects the contribution
of the interaction with Y . Indeed, if the transition rate for X
and the weight are independent of Y , i.e., w

y
xx′ = wxx′ and

dy
xx′ = dxx′ , we can prove that 〈ĴT 〉q = 0. For the derivation,

see Appendix B, where we consider the bipartite TUR in
a more general case, applicable to a transient state. If, in
addition, X and Y are independent and thus �IX = 0, then the
bipartite TUR (26) reduces to the standard TUR (1), where the
relative fluctuation of the current for X is lower bounded by
the entropy production associated with X . In the general case
where X and Y are correlated, the bipartite TUR (26) states
that the relative fluctuation of the current for the subsystem X
is lower bounded not only by the entropy production associ-
ated with X , but also by the information transfer between X
and Y .
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There are two important cases where the additional cur-
rent term 〈ĴT 〉q can be ignored and thus δJ → 0. The first
case occurs in the short-time limit T → 0. Since q0 = 0, it
immediately follows that 〈ĴT 〉q → 0 as T → 0, while the
information flow �IX remains finite in general. The second
case occurs in the long-time limit T → ∞ where there is a
separation of timescales between X and Y . That is, the case
where the observation time is long and Y evolves much faster
than X . The proof of δJ → 0 in this case will be described in
detail in Sec. III C. Since this case is typically realized when X
acts as an information-thermodynamic engine, we will mainly
focus on this case in the following sections.

B. Derivation of the bipartite TUR

Here, we prove the bipartite TUR (26) by using the gener-
alized Cramér-Rao inequality [20,36,44,49]. We remark that
the bipartite TUR can also be proved more directly from the
master equation or Langevin equation [50] (see also Ap-
pendix A for the direct derivation for overdamped Langevin

equations). We consider the following auxiliary dynamics
parametrized by θ with pθ

0 = pss:

∂t pθ
t (x, y) =

∑
x′

w
y
xx′ (θ )pθ

t (x′, y) +
∑

y′
wyy′

x pθ
t (x, y′). (29)

Here, w
y
xx′ (θ ) denotes the parametrized transition rate

w
y
xx′ (θ ) := w

y
xx′eθZy

xx′ for x �= x′,

wy
xx(θ ) := −

∑
x′( �=x)

w
y
x′xeθZy

x′x , (30)

where

Zy
xx′ := w

y
xx′ pss(x′, y) − w

y
x′x pss(x, y)

w
y
xx′ pss(x′, y) + w

y
x′x pss(x, y)

. (31)

Let Pθ (
) be the parametrized path probability for the trajec-
tory 
 = {xt , yt }Tt=0,

Pθ (
) = pss(x0, y0) exp

⎡⎣−
∑

x

∑
y

⎛⎝∑
x′( �=x)

w
y
x′x(θ ) +

∑
y′( �=y)

wy′y
x

⎞⎠τ̂ y
x +

∑
x

∑
y

⎛⎝∑
x′( �=x)

n̂y
xx′ ln w

y
xx′ (θ ) +

∑
y′( �=y)

n̂yy′
x ln wyy′

x

⎞⎠⎤⎦,

(32)

where n̂yy′
x denotes the number of transitions from the state (x, y′) to (x, y) during the time interval [0, T ], and τ̂

y
x denotes the

empirical dwell time in state (x, y), defined as the total amount of time spent in state (x, y) along the trajectory 
:

τ̂ y
x :=

∫ T

0
dt δxxt δ

yyt , (33)

where δxxt (δyyt ) denotes the Kronecker delta, which is 1 if x = xt (y = yt ), and zero otherwise. We denote by I(θ ) :=
−〈∂2

θ lnPθ (
)〉θ the corresponding Fisher information [44], where 〈·〉θ denotes the average with respect to Pθ . The generalized
Cramér-Rao inequality then yields [20,36,44,49]

Var[ĴT ](
∂θ 〈ĴT 〉θ |θ=0

)2 � 1

I(0)
. (34)

Here, I(0) can be expressed as

I(0) =
〈∑

x

∑
y

∑
x′( �=x)

∂2

∂θ2
w

y
x′x(θ )τ̂ y

x −
∑

x

∑
y

∑
x′( �=x)

∂2

∂θ2
ln w

y
xx′ (θ )n̂y

xx′

〉
θ

∣∣∣∣∣∣
θ=0

=
∫ T

0
dt
∑

x

∑
x′( �=x)

∑
y

w
y
xx′ pss(x

′, y)
(
Zy

xx′
)2

= 1

2

∫ T

0
dt
∑

x

∑
x′( �=x)

∑
y

[
w

y
xx′ pss(x′, y) − w

y
x′x pss(x, y)

]2
w

y
xx′ pss(x′, y) + w

y
x′x pss(x, y)

� 1

2

∫ T

0
dt
∑

x

∑
x′( �=x)

∑
y

w
y
xx′ pss(x

′, y) ln
w

y
xx′ pss(x′, y)

w
y
x′x pss(x, y)

= �SX
tot − �IX

2
, (35)

where we have used the inequality 2(a − b)2/(a + b) � (a − b) ln a/b. To calculate ∂θ 〈ĴT 〉θ |θ=0, we expand pθ
t (x, y) in terms

of θ as pθ
t (x, y) = pss(x, y) + θqt (x, y) + O(θ2). By substituting this expression into (29), we find that

∂t qt (x, y) =
⎡⎣∑

x′
w

y
xx′qt (x

′, y) +
∑

y′
wyy′

x qt (x, y′)

⎤⎦+
∑

x′
w

y
xx′ pss(x

′, y). (36)
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Then, ∂θ 〈ĴT 〉θ |θ=0 can be calculated as

∂θ 〈ĴT 〉θ |θ=0

= ∂θ

∫ T

0
dt
∑

x

∑
x′( �=x)

∑
y

w
y
xx′ (θ )pθ

t (x′, y)dy
xx′

∣∣∣∣∣∣
θ=0

= 〈ĴT 〉 + 〈ĴT 〉q. (37)

We thus arrive at the inequality (26).

C. Fast relaxation limit of Y

Here, we show that 〈ĴT 〉q � 〈ĴT 〉 in the long-time limit
T → ∞ if Y relaxes much faster than X . Let τX and τY be the
timescale of X and Y , respectively. We assume a separation
of timescales: τY � τX , i.e., the auxiliary system Y evolves
much faster than the system of interest X . This situation is
typically realized when Y acts as a Maxwell’s demon, i.e.,
when Y measures the state of X and performs feedback con-
trol [45]. We introduce a dimensionless slow time τ := t/τX

and a small parameter ε := τY /τX � 1. Correspondingly, we
nondimensionalize the transition rates as w̃

y
xx′ := τX w

y
xx′ and

w̃
yy′
x := τY w

yy′
x .

We first take the long-time limit T → ∞, i.e., T 	 τX ,
and assume that qt (x, y) reaches a stationary solution qss(x, y).
Then, pss and qss satisfy the following equations:∑

x′
w̃

y
xx′ pss(x

′, y) + 1

ε

∑
y′

w̃yy′
x pss(x, y′) = 0, (38)⎡⎣∑

x′
w̃

y
xx′qss(x

′, y) + 1

ε

∑
y′

w̃yy′
x qss(x, y′)

⎤⎦
+
∑

x′
w̃

y
xx′ pss(x

′, y) = 0. (39)

We now assume that pss and qss have asymptotic expansions
in terms of the asymptotic sequences {εn}∞n=0 as ε → 0:

pss = p(0)
ss + εp(1)

ss + · · · , (40)

qss = q(0)
ss + εq(1)

ss + · · · . (41)

Here, we impose the normalization condition∑
y

p(0)
ss (x, y) = pX

ss(x), (42)∑
y

q(0)
ss (x, y) = qX

ss(x), (43)

where we have introduced qX
ss(x) :=∑y qss(x, y). Note that

qX
ss satisfies the normalization condition

∑
x qX

ss(x) = 0.
By substituting these expansions into (38) and (39), we find

that the leading order yields∑
y′

w̃yy′
x p(0)

ss (x, y′) = 0, (44)∑
y′

w̃yy′
x q(0)

ss (x, y′) = 0. (45)

Let πss(y|x) be the normalized zero eigenvector that satisfies∑
y′ w̃

yy′
x πss(y′|x) = 0. Due to the irreducibility of the rate

matrix, this normalized zero eigenvector is unique for each x.
Then, from the normalization condition, p(0)

ss and q(0)
ss should

have the form

p(0)
ss (x, y) = pX

ss(x)πss(y|x), (46)

q(0)
ss (x, y) = qX

ss(x)πss(y|x). (47)

The subleading order of (38) and (39) yields∑
x′

w̃
y
xx′ p(0)

ss (x′, y) +
∑

y′
w̃yy′

x p(1)
ss (x, y′) = 0, (48)⎡⎣∑

x′
w̃

y
xx′q(0)

ss (x′, y) +
∑

y′
w̃yy′

x q(1)
ss (x, y′)

⎤⎦
+
∑

x′
w̃

y
xx′ p(0)

ss (x′, y) = 0. (49)

Note that (48) and (49) are linear equations for p(1)
ss and q(1)

ss

with the matrix w̃
yy′
x , which has the left zero eigenvector 1

because
∑

y w̃
yy′
x = 0. This property guarantees that the solu-

tions p(1)
ss and q(1)

ss exist only under the solvability conditions∑
x′

wxx′ pX
ss(x

′) = 0, (50)∑
x′

wxx′qX
ss(x

′) = 0, (51)

which correspond to (48) and (49) summed over y, respec-
tively. Here, we have introduced the effective transition rate
wxx′ :=∑y w̃

y
xx′πss(y|x′). Then, from the Perron-Frobenius

theorem, qX
ss can be expressed as qX

ss = N pX
ss, where N de-

notes the normalization constant. Because qX
ss satisfies the

normalization condition
∑

x qX
ss(x) = 0, we obtain N = 0.

Thus, in the fast relaxation limit of Y , we have

pss(x, y) = pX
ss(x)πss(y|x) + O(ε), (52)

qss(x, y) = O(ε). (53)

Therefore, the additional current term 〈ĴT 〉q appearing in the
bipartite TUR (26) is much smaller than 〈ĴT 〉 in the long-time
limit T → ∞:

δJ := 〈ĴT 〉q

〈ĴT 〉 → 0. (54)

To summarize, in the fast relaxation limit of Y , the bipartite
TUR (26) reduces to the form similar to the standard TUR (1)
in the long-time limit:

DJ
J2

� 1

ṠX
tot − İX

, (55)

where DJ := limT →∞ Var[ĴT ]/2T denotes the fluctuation
of ĴT , and J := limT →∞〈ĴT 〉/T denotes the mean current.
Note that (55) gives a tighter lower bound on the fluctuation of
a current than the standard TUR because ṠX

tot − İX is smaller
than or equal to the total entropy production σ̇ . If the partial
entropy production of Y is zero, then (55) can also be obtained
from the standard TUR.
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D. Equality condition

The equality of the bipartite TUR in the fast relaxation
limit of Y (55) can be achieved even far from equilibrium.
This nontrivial fact will be shown later with a simple example
in Sec. VI B. This property is a stark difference from the
standard TUR, where the equality is guaranteed only in the
near-equilibrium limit [20,36]. Here, before showing the ex-
ample in Sec. VI B, we discuss a possible scenario to achieve
the equality of the bipartite TUR (26) in a somewhat abstract
manner.

We first consider the equality condition of the generalized
Cramér-Rao inequality at θ = 0 (34). Because the generalized
Cramér-Rao inequality is based on the Cauchy-Schwarz in-
equality, the equality condition is satisfied if and only if the
following relation holds [36]:

ĴT − 〈ĴT 〉 = C
∂

∂θ
lnPθ (
)

∣∣∣∣
θ=0

, (56)

where C is a constant. The right-hand side of (56) is given by

C
∂

∂θ
lnPθ (
)

∣∣∣∣
θ=0

= C
∑

x

∑
x′( �=x)

∑
y

Zy
xx′
(
n̂y

xx′ − w
y
xx′ τ̂

y
x′
)
.

(57)

The left-hand side of (56) reads as

ĴT − 〈ĴT 〉 = Ĵ I
T + Ĵ II

T − 〈ĴT 〉, (58)

where we have decomposed the current ĴT into two
parts [50]:

Ĵ I
T :=

∑
x

∑
x′( �=x)

∑
y

dy
xx′
(
n̂y

xx′ − w
y
xx′ τ̂

y
x′
)
, (59)

Ĵ II
T :=

∑
x

∑
x′( �=x)

∑
y

dy
xx′w

y
xx′ τ̂

y
x′ . (60)

Note that 〈Ĵ I
T 〉 = 0 and 〈Ĵ II

T 〉 = 〈ĴT 〉. By comparing (57)
and (58), we expect that dy

xx′ = CZy
xx′ to be the optimal choice.

However, due to the presence of Ĵ II
T − 〈ĴT 〉, the equality

condition is generally not satisfied.
In the standard TUR, it is known that the equality can be

achieved by including the generalized time-integrated static
observable in addition to the current ĴT [20,50,51]. Here,
we consider the following generalized time-integrated static
observable:

ÔT :=
∑

x

∑
y

ρy
x τ̂

y
x , (61)

where ρ
y
x is an arbitrary weight that depends on a state (x, y).

Even for the observable ĴT + ÔT instead of ĴT , by follow-
ing the same argument described in Sec. III B, we can derive
the following bipartite-correlation TUR:

Var[ĴT + ÔT ][〈ĴT 〉 + 〈ĴT 〉q + 〈ÔT 〉q
]2 � I(0) (62)

� 2

�SX
tot − �IX

, (63)

where 〈ÔT 〉q is defined as

〈ÔT 〉q :=
∫ T

0
dt
∑

x

∑
y

qt (x, y)ρy
x . (64)

In this case, the equality condition of the inequality (62) is
given by

ĴT + ÔT − 〈ĴT + ÔT 〉 = C
∂

∂θ
lnPθ (
)

∣∣∣∣
θ=0

. (65)

Then, we find that the choice

dy
xx′ = CZy

xx′ , (66)

ρy
x = −

∑
x′( �=x)

dy
x′xw

y
x′x (67)

yields

ĴT + ÔT − 〈ĴT + ÔT 〉 = Ĵ I
T = C

∂

∂θ
lnPθ (
)

∣∣∣∣
θ=0

, (68)

where we have used the fact that ÔT = −Ĵ II
T for this choice.

Thus, the equality of (62) is achieved for this choice of ĴT and
ÔT . However, even if we can achieve the equality of (62), the
equality condition of the second inequality (63) is not satis-
fied in general. Still, in the overdamped Langevin case, the
inequality I(0) � 2/(�SX

tot − �IX ) becomes an equality (see
[52] for the detailed discussion). Therefore, the equality of
the bipartite-correlation TUR is achieved in the overdamped
Langevin case even far from equilibrium for the choice (66)
and (67):

Var
[
Ĵ I
T
]

〈ĴT 〉2
= 2

�SX
tot − �IX

, (69)

where we have used 〈ÔT 〉q = −〈ĴT 〉q. In the long-time limit
T → ∞, (69) can be rewritten as

DI
J

J2
= 1

ṠX
tot − İX

, (70)

where DI
J := limT →∞ Var[Ĵ I

T ]/2T denotes the fluctuation
of Ĵ I

T . Note that DI
J is generally different from DJ , and

thus the equality (70) does generally not correspond to the
equality of the bipartite TUR in the fast relaxation limit of Y
(55). To put it another way, if DI

J = DJ in the fast relaxation
limit, then the equality of (55) is achieved. Since 〈Ĵ I

T 〉 = 0,
the covariance between Ĵ I

T and Ĵ II
T reads as

Cov
[
Ĵ I
T , Ĵ II

T
] = 〈Ĵ I

T Ĵ II
T
〉

= C

〈
∂

∂θ
lnPθ (
)

∣∣∣∣
θ=0

Ĵ II
T

〉
= C〈ĴT 〉q. (71)

Therefore, the difference between DI
J and DJ is given by

DJ − DI
J = lim

T →∞
1

2T Var
[
Ĵ I
T + Ĵ II

T
]− lim

T →∞
1

2T Var
[
Ĵ I
T
]

= DII
J + lim

T →∞
C

T 〈ĴT 〉q

= DII
J , (72)
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in the fast relaxation limit of Y . Thus, DII
J = 0 is a sufficient

condition for (55) to hold with equality. In Sec. VI B, we give
an example that satisfies this sufficient condition.

IV. TRADEOFF RELATIONS

In this section, we focus on the regime where Y evolves
much faster than X and show that the bipartite TUR in this
regime (55) provides tradeoff relations for the performance
of information processing systems. In Sec. IV A, we con-
sider the situation where the subsystem X can be regarded as
a steady-state information-thermodynamic engine, while the
external system Y plays the role of a memory of Maxwell’s
demon. From the second law of information thermodynamics
(22), this situation corresponds to the case where 0 < −ṠX

env �
−İX . While this situation may be typical in the regime of
the fast relaxation limit of Y , we can also consider the case
where the slow system X plays the role of a memory and mea-
sures the state of the fast system Y , i.e., 0 < İX � ṠX

env. Even
for this case, we can show that the bipartite TUR (55) provides
tradeoff relations on the performance of the memory, which
will be described in Sec. IV B.

A. Information-thermodynamic engine: 0 < −ṠX
env � −İX

Here, we show that the bipartite TUR gives several univer-
sal bounds on the performance of information-thermodynamic
engines. In this case, both the entropy production and the
information flow associated with X are negative and satisfy
the relation 0 < −ṠX

env � −İX . Then, the performance of an
information-thermodynamic engine can be quantified by, e.g.,
the information-thermodynamic efficiency [45]:

ηX
S :=

∣∣ṠX
env

∣∣
|İX | , (73)

which satisfies 0 � ηX
S � 1 as a direct consequence of the

second law of information thermodynamics. This efficiency
quantifies how efficiently the engine X converts informa-
tion into negative entropy production. In addition to this
information-thermodynamic efficiency, the negative entropy
production rate itself is an important indicator characterizing
the performance of an information-thermodynamic engine.
Here, we show that there is the following tradeoff relation
between ηX

S and |ṠX
env|:∣∣ṠX

env

∣∣ � DS
1 − ηX

S

ηX
S

, (74)

where DS denotes the fluctuation of the stochastic medium
entropy production �ŜX

env,

DS := lim
T →∞

1

2T Var
[
�ŜX

env

]
. (75)

This inequality states that an information engine with a finite
negative entropy production rate cannot achieve ηX

S = 1 as
long as the fluctuation DS is finite. In order to achieve a finite
negative entropy production rate with ηX

S = 1, the fluctuation
DS must diverge. We can also prove a similar tradeoff relation
where the negative entropy production rate is bounded by the
fluctuation of the time-integrated stochastic information flow
�ÎX instead of DS:∣∣ṠX

env

∣∣ � DIη
X
S

(
1 − ηX

S

)
, (76)

where

DI := lim
T →∞

1

2T Var[�ÎX ]. (77)

The inequalities (74) and (76) are the second main results of
this paper.

In Sec. IV A 1, we provide detailed proof of these inequal-
ities. In Sec. IV A 2, we briefly discuss which of the two
inequalities (74) and (76) gives a tighter bound on the negative
entropy production rate. In Sec. IV A 3, we derive a tradeoff
relation in terms of power, i.e., output work produced per unit
of time, instead of the negative entropy production. This rela-
tion can be regarded as a direct extension of the tradeoffs for
heat engines [21,22] to information-thermodynamic engines.

1. Derivation of (74) and (76)

Here, we derive the tradeoff relations (74) and (76) by
using the bipartite TUR in the fast relaxation limit of Y (55),
which can be rewritten as follows:

|J| � DJ
ṠX

env − İX

|J| . (78)

Let us choose stochastic medium entropy production associ-
ated with X as current ĴT in (78):

ĴT = �ŜX
env

:=
∑

x

∑
x′( �=x)

∑
y

n̂y
xx′ ln

w
y
xx′

w
y
x′x

, (79)

which satisfies 〈�ŜX
env〉 = �SX

env. Then, we immediately
obtain the tradeoff between entropy production and
efficiency (74).

Another type of the tradeoff relation (76) can be de-
rived by choosing the time-integrated stochastic informa-
tion flow as current ĴT in (78). Here, the instantaneous
stochastic information flow is defined as the partial rate
of change of the stochastic mutual information Î (xt : yt ) :=
ln[pt (xt , yt )/pX

t (xt )pY
t (yt )]:

ˆ̇IX :=
∑

n

δ(t − tn) ln
ptn (ytn |xt+

n
)

ptn (ytn |xt−
n

)

+ 1

pt (x, y)

∑
x′

w
y
xx′ pt (x

′, y)

∣∣∣∣∣
(x,y)=(xt ,yt )

− 1

pX
t (x)

∑
x′

wxx′ pX
t (x′)

∣∣∣∣∣
x=xt

, (80)

where tn denotes the time at which X jumps from xt−
n

to xt+
n

,
and wxx′ :=∑y w

y
xx′ pt (y|x′) denotes the effective transition

rate. In the steady state, the last two terms vanish so that the
time-integrated stochastic information flow reads as

�ÎX =
∑

x

∑
x′( �=x)

∑
y

n̂y
xx′ ln

πss(y|x)

πss(y|x′)
, (81)

which satisfies 〈�ÎX 〉 = �IX . Substituting ĴT = �ÎX in the
bipartite TUR (78), we obtain the inequality (76). Note that
we can also obtain a tradeoff relation between the information
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flow and efficiency:

|İX | � DI
(
1 − ηX

S

)
. (82)

2. Tightness of the bounds

Here, we consider which of the two inequalities (74) and
(76) gives a tighter bound on the negative entropy production
rate. The difference between the two upper bounds reads as

DS
1 − ηX

S

ηX
S

− DIη
X
S

(
1 − ηX

S

) = 1 − ηX
S

ηX
S

DI

[
DS

DI
− (ηX

S

)2]
.

(83)

Therefore, the bound (74) is tighter than (76) when√
DS/DI < ηX

S � 1, while (76) becomes tighter than (74)
when 0 � ηX

S <
√

DS/DI . Note that DS/DI may depend
on ηX

S .
In the linear response regime with ṠX

env � 0 and İX � 0,
we can prove the input-output fluctuation inequality DS � DI

(for the derivation, see Sec. V B). Beyond the linear response
regime, however, the input-output fluctuation inequality can
be violated, i.e., DS can become larger than DI [26].

3. Tradeoff between power and efficiency

While we have focused on the negative entropy production
rate to characterize the performance of an information-
thermodynamic engine, we can also derive a tradeoff relation
in terms of power, i.e., output work produced per unit of time.
To define power, we assume that the transition rates satisfy the
local detailed balance condition of the following form [17]:

ln
w

y
xx′

w
y
x′x

= β
(
εx′y − εxy + �

y
xx′
)
, (84)

where β = (kBT )−1 denotes the inverse temperature, εxy de-
notes the energy of the state (x, y), and �

y
xx′ denotes the

energy provided by an external agent during the transition
(x′, y) → (x, y). Then, the average rate of heat absorbed by
X from the environment is identified as

Q̇X = −kBT
∑

x

∑
x′( �=x)

∑
y

w
y
xx′ pt (x

′, y) ln
w

y
xx′

w
y
x′x

. (85)

Similarly, the average rate of work done by the external agent
to X is identified as

Ẇ X :=
∑

x

∑
x′( �=x)

∑
y

w
y
xx′ pt (x

′, y)�y
xx′ . (86)

Finally, the average rate of change of internal energy reads as

ĖX :=
∑

x

∑
x′( �=x)

∑
y

w
y
xx′ pt (x

′, y)(εxy − εx′y). (87)

If we regard x as an externally manipulated control parameter
driving Y , then ĖX can also be identified as the power deliv-
ered from X to Y [12,53]:

ĖX = Ẇ X→Y . (88)

Similarly, we can define Ẇ Y , Q̇Y , and Ẇ Y →X . Then, the first
law of stochastic thermodynamics for each subsystem can be

expressed as follows (in an averaged form):

Ẇ X→Y = Ẇ X + Q̇X , (89)

Ẇ Y →X = Ẇ Y + Q̇Y . (90)

By using these relations, we can rewrite the second law of
information thermodynamics in the steady state as

βẆ X − βẆ X→Y − İX � 0, (91)

βẆ Y − βẆ Y →X − İY � 0. (92)

Here, we have assumed that both X and Y are each in contact
with a thermal bath at temperature T , while the extension to
the case of different temperatures is straightforward [13]. Note
that Ẇ X→Y = −Ẇ Y →X and İX = −İY in the steady state.
Therefore, Ẇ X and Ẇ Y cannot both be negative.

Now, suppose that X operates as an information-
thermodynamic engine, i.e., Ẇ Y > 0 and Ẇ X < 0. In this
case, we can introduce the following efficiency:

ηX
W := |βẆ X |

βẆ Y →X + İY
, (93)

which satisfies 0 � ηX
W � 1, as can be seen from the sec-

ond law of information thermodynamics. The denominator
βẆ Y →X + İY = −βẆ X→Y − İX � 0 is called the transduced
capacity [11,53] because it constraints the conversion of the
input power Ẇ Y into the output power |Ẇ X | as βẆ Y �
βẆ Y →X + İY � |βẆ X |. The efficiency ηX

W quantifies how ef-
ficiently X converts the transduced capacity into the output
power |Ẇ X |.

Now we derive a tradeoff relation between the output
power and the efficiency ηX

W by using the bipartite TUR (78).
Let us choose the stochastic work as current ĴT in (78):

ĴT = �Ŵ X

:=
∑

x

∑
x′( �=x)

∑
y

n̂y
xx′�

y
xx′ . (94)

Then, the bipartite TUR gives

|Ẇ X | � DW

kBT

1 − ηX
W

ηX
W

, (95)

where DW denotes the fluctuation of the output work
defined by

DW := lim
T →∞

1

2T Var[�Ŵ X ]. (96)

The inequality (95) states that an information engine with
a finite output power cannot achieve ηX

W = 1 as long as the
fluctuation DW is finite.

B. Memory: 0 < İX � ṠX
env

Although we have assumed that X evolves much slower
than Y , there may be a situation where X measures the state
of Y , i.e., İX > 0. Even in this case, we can also prove similar
tradeoff relations concerning the performance of the memory
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X . We first note that both the entropy production and the
information flow associated with X are positive and satisfy the
relation 0 < İX � ṠX

env. Then, we can introduce the following
information-thermodynamic efficiency:

ηX
I := İX

ṠX
env

, (97)

which satisfies 0 � ηX
I � 1. In contrast to ηX

S , this efficiency
quantifies how efficiently X gains information about Y relative
to the energy dissipation or thermodynamic cost. Now we
choose the time-integrated stochastic information flow as cur-
rent ĴT in the bipartite TUR (78). By noting the positivity of
ṠX

env and İX , the bipartite TUR gives the following inequality:

İX � DI
1 − ηX

I

ηX
I

. (98)

This inequality states that a memory with a finite information
flow can never attain ηX

I = 1 as long as DI is finite.
If we choose the stochastic entropy production as current,

ĴT = �ŜX
env, then we can obtain a similar tradeoff relation

where the information flow is bounded by the fluctuation of
the stochastic entropy production DS instead of DI :

İX � DSη
X
I

(
1 − ηX

I

)
. (99)

V. GALLAVOTTI-COHEN SYMMETRY AND
INPUT-OUTPUT FLUCTUATION INEQUALITIES

In this section, we prove that the Gallavotti-Cohen sym-
metry [33–35] is satisfied in the fast relaxation limit of Y .
As a consequence of this symmetry, we can further show
that the input-output fluctuation inequalities hold in the linear
response regime even in the presence of an information flow.

A. Gallavotti-Cohen symmetry

Let μ(λS, λI ) be the scaled cumulant generating function
of the time-integrated currents �ŜX

env and �ÎX defined by

μ(λS, λI ) := lim
T →∞

1

T ln
〈
eλS�ŜX

env−λI �ÎX 〉
, (100)

where λS and λI are the counting fields for �ŜX
env and �ÎX , re-

spectively. In this section, we prove that μ(λS, λI ) satisfies the
following Gallavotti-Cohen symmetry in the fast relaxation
limit of Y :

μ(λS, λI ) = μ(−λS − 1,−λI − 1). (101)

To prove this, we first note that μ(λS, λI ) can be rewritten as

μ(λS, λI ) = lim
T →∞

1

T ln
∑

x

∑
y

GT (x, y), (102)

where GT (x, y) denotes the generating function conditioned
to a final state (x, y):

GT (x, y) :=
∫

d� SX
envd� IX pT

(
x, y,�SX

env,�IX
)

× eλS�SX
env−λI �IX

, (103)

where pT (x, y,�SX
env,�IX ) denotes the joint probability den-

sity such that the state of the system at time T is (x, y) and the
entropy production and information flow generated up to that
time are �SX

env and �IX , respectively. Therefore, the property
of the scaled cumulant generating function μ(λS, λI ) is en-
coded in the property of the time-evolution equation of the
generating function GT (x, y). The time-evolution equation of
GT (x, y) can be obtained by noting that the time-evolution
equation of pT (x, y,�SX

env,�IX ) reads as

∂τ pτ

(
x, y,�SX

env,�IX
) =

∑
x′( �=x)

[
w̃

y
xx′ pτ

(
x′, y,�SX

env − ln
w̃

y
xx′

w̃
y
x′x

,�IX − ln
πss(y|x)

πss(y|x′)

)
− w̃

y
x′x pτ

(
x, y,�SX

env,�IX
)]

+ 1

ε

∑
y′( �=y)

[
w̃yy′

x pτ

(
x, y′,�SX

env,�IX
)− w̃y′y

x pτ

(
x, y,�SX

env,�IX
)]

, (104)

where we have used the dimensionless slow time τ := T /τX and dimensionless transition rates w̃
y
xx′ := τX w

y
xx′ and w̃

yy′
x :=

τY w
yy′
x . Then, we find that the time evolution of Gτ (x, y) is described by the following tilted dynamics:

∂τ Gτ (x, y) =
∑

x′

[
LX

λS ,λI

]y
xx′Gτ (x′, y) + 1

ε

∑
y′

[
LY

λS ,λI

]yy′

x
Gτ (x, y′), (105)

where LX
λS ,λI

and LY
λS,λI

denote the tilted generators given by

[
LX

λS,λI

]y
xx′ :=

⎧⎨⎩w̃
y
xx′ exp

(
λS ln

w̃
y
xx′

w̃
y
x′x

− λI ln πss (y|x)
πss (y|x′ )

)
(x �= x′),

−∑x′( �=x) w̃
y
x′x (x = x′),

(106)

[
LY

λS,λI

]yy′

x
:=
{

w̃
yy′
x (y �= y′),

−∑y′( �=y) w̃
y′y
x (y = y′).

(107)
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We now assume that Gτ has asymptotic expansions in terms
of the asymptotic sequences {εn}∞n=0 as ε → 0:

Gτ = G(0)
τ + εG(1)

τ + · · · . (108)

Here, we impose the normalization condition∑
y

G(0)
τ (x, y) =

∑
y

Gτ (x, y)

=: GX
τ (x). (109)

By substituting this expansion into (105), we find that the
leading order gives∑

y′

[
LY

λS,λI

]yy′

x
G(0)

τ (x, y′) = 0. (110)

From the Perron-Frobenius theorem and the normalization
condition, we find that G(0)

τ has the form

G(0)
τ (x, y) = GX

τ (x)πss(y|x). (111)

The subleading order of (105) yields

∂τ G(0)
τ (x, y) =

∑
x′

[
LX

λS,λI

]y
xx′G

(0)
τ (x′, y)

+
∑

y′

[
LY

λS,λI

]yy′

x
G(1)

τ (x, y′). (112)

From the solvability condition for G(1)
τ , we obtain the effective

dynamics for GX
τ (x):

∂τ GX
τ (x) =

∑
x′

[
LX

λS,λI

]
xx′

GX
τ (x′), (113)

where LX
λS,λI

denotes the effective tilted generator given by

[
LX

λS,λI

]
xx′

:=
∑

y

[
LX

λS ,λI

]y
xx′πss(y|x′)

=
⎧⎨⎩
∑

y

[
w̃

y
xx′ exp

(
λS ln

w̃
y
xx′

w̃
y
x′x

− λI ln πss (y|x)
πss (y|x′ )

)
πss(y|x′)

]
(x �= x′),

−∑x′( �=x)

[∑
y w̃

y
x′xπss(y|x)

]
(x = x′).

(114)

Importantly, this effective tilted generator satisfies the follow-
ing property: (

LX
λS,λI

)� = LX
−λS−1,−λI −1, (115)

where � denotes the matrix transpose. Because the scaled
cumulant generating function is equal to the largest eigenvalue
of this effective tilted generator, the Gallavotti-Cohen symme-
try follows from this property:

μ(λS, λI ) = μ(−λS − 1,−λI − 1). (116)

B. Input-output fluctuation inequalities

In the linear response regime, where the scaled cumu-
lant generating function can be approximated by a quadratic
form [17], the Gallavotti-Cohen symmetry (116) constrains its
form as

μ(λS, λI ) = a

(
λS + 1

2

)2

+ b

(
λS + 1

2

)(
λI + 1

2

)
+ c

(
λI + 1

2

)2

− 1

4
(a + b + c), (117)

where a, b, c are constants. From the convexity of μ(λS, λI ),
these coefficients satisfy a � 0, c � 0, and ac − b2/4 � 0. By
noting that

ṠX
env = ∂

∂λS
μ(λS, λI )

∣∣∣∣
λS,λI =0

= a + b

2
, (118)

İX = − ∂

∂λI
μ(λS, λI )

∣∣∣∣
λS,λI =0

= −c − b

2
, (119)

these coefficients are further constrained by the second law of
information thermodynamics to satisfy a + b + c � 0.

1. Information-thermodynamic engine: 0 < −ṠX
env � −İX

We consider the case of −İX � ṠX
env, i.e., c � a, which

includes the case where X acts as an information-
thermodynamic engine with 0 < −ṠX

env � −İX . Since we
have

DS = 1

2

∂2

∂λ2
S

μ(λS, λI )

∣∣∣∣
λS,λI =0

= a, (120)

DI = 1

2

∂2

∂λ2
I

μ(λS, λI )

∣∣∣∣
λS,λI =0

= c, (121)

these relations between the coefficients a, b, c lead to the
following input-output fluctuation inequalities:

DS � DI , (122)

DI

(İX )2
� DS(

ṠX
env

)2 . (123)

These inequalities state that the fluctuation of the output
current (negative entropy production) is smaller than that of
the input current (information flow), while the relative fluc-
tuation of the output current is larger than that of the input
current.

2. Memory: 0 < İX � ṠX
env

We can also derive input-output fluctuation inequalities
when −İX � ṠX

env, i.e., c � a, which includes the case where
X plays the role of a memory with 0 < İX � ṠX

env. In this
case, the information flow İX corresponds to the output current
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while the entropy production rate ṠX
env corresponds to the input

current. Obviously, we have the following relations:

DS � DI , (124)

DI

(İX )2
� DS

(ṠX
env)2

. (125)

VI. EXAMPLES

In this section, we illustrate our results, the tradeoffs
for information-thermodynamic engines and the input-output
fluctuation inequalities, using two simple examples. The first
example is coupled quantum dots, which is one of the simplest
models of autonomous Maxwell’s demon [45,54]. As a second
example, we consider coupled linear overdamped Langevin
equations, which ubiquitously appear in biological contexts
with the linear noise approximation [5,55–57]. Interestingly,
the equality condition of the tradeoffs (74) and (76) is satisfied
even far from equilibrium in this case.

A. Coupled quantum dots

1. Model

We consider the system composed of two single-level
quantum dots X and Y . Let x ∈ {0, 1} and y ∈ {0, 1} be occu-
pation variables on each particle site, where x = 1 and y = 1
(x = 0 and y = 0) represent that the site of X and Y is filled
(empty), respectively. The energy of X is εX when it is filled
with a particle and zero when it is empty. A single-particle site
of X exchanges particles with two particle reservoirs ν = L, R
at temperature T and chemical potential μν . We assume that
�μ := μL − μR > 0. Let pt (x, y) be the probability of state
(x, y) at time t . The time evolution of pt (x, y) is described by
the master equation

∂t pt (x, y) =
∑

ν

[
w

(ν)y
xx′ pt (x

′, y) − w
(ν)y
x′x pt (x, y)

]
+ wyy′

x pt (x, y′) − wy′y
x pt (x, y), (126)

where x′ := 1 − x and y′ := 1 − y. Here, w
(ν)y
xx′ denotes the

time-independent transition rate from x′ to x induced by
the reservoir ν, which satisfies the local detailed balance
condition

w
(ν)y
10

w
(ν)y
01

= exp[−β(εX − μν )]. (127)

We suppose that the transition rates have the form

w
(L)0
10 = 
̃X fL, w

(R)0
10 = 
X fR, (128)

w
(L)1
10 = 
X fL, w

(R)1
10 = 
̃X fR, (129)

w
(L)0
01 = 
̃X (1 − fL ), w

(R)0
01 = 
X (1 − fR), (130)

w
(L)1
01 = 
X (1 − fL ), w

(R)1
01 = 
̃X (1 − fR), (131)

where fν := {exp[β(εX − μν )] + 1}−1 is the Fermi distri-
bution function, and 
X (
̃X ) denotes a positive coupling
strength. Below, we focus on the case where 
̃X � 
X .
The above form of transition rates implies that the coupling

FIG. 2. Schematic of the coupled quantum dots. The single-
particle site of X exchanges particles (green dot) with the two
particle reservoirs at a chemical potential μL and μR. The position
of the wall represents the state of Y : the wall is inserted on the left
side when y = 0, while it is inserted on the right side when y = 1.
The red and blue arrows represent the transition rates w

(L)y
xx′ and w

(R)y
xx′ ,

respectively. The gray arrows represent the transition rates associated
with Y , wyy′

x . The thickness of these arrows indicates the magnitude
of each transition rate.

strength of the R (L) reservoir changes from 
X to 
̃X when Y
is filled (empty) with a particle. The transition rates associated
with Y are given as follows:

wyy′
x =

{

Y ε (y, y′) = (1 − x, x),

Y (1 − ε) (y, y′) = (x, 1 − x), (132)

where 
Y is a coupling strength, and ε can be interpreted as
an error probability with 0 � ε � 1.

In this model, the subsystem Y acts as Maxwell’s demon
when ε is sufficiently small. To understand this point in-
tuitively, let us consider the state of Y as representing the
position of the wall, which is inserted between the single site
of X and the reservoir. In other words, when y = 0 (y = 1), the
wall is inserted between the site of X and the L (R) reservoir
and prohibits the transition due to the L (R) reservoir by
changing the coupling strength from 
X to 
̃X (see Fig. 2).
As a result, particles are transferred from the R to L reservoirs
against the chemical potential difference.

2. Fast relaxation limit of Y

Hereafter, we focus on the case where Y is faster than
X , i.e., 
Y 	 
X 	 
̃X . By performing a perturbation ex-
pansion following Sec. III C, we can show that pt (x, y) 
pX

t (x)πss(y|x) with

πss(y = x|x) = 1 − ε, (133)

πss(y = 1 − x|x) = ε. (134)

The effective dynamics for X is then given by

∂t pX
t (x) 

∑
ν

[
w

(ν)
xx′ pX

t (x′) − w
(ν)
x′x pX

t (x)
]
, (135)
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where w
(ν)
xx′ :=∑y w

(ν)y
xx′ πss(y|x′) denotes the effective transi-

tion rates:

w
(L)
10 = [ε
X + (1 − ε)
̃X ] fL, (136)

w
(L)
01 = [(1 − ε)
X + ε
̃X ](1 − fL ), (137)

w
(R)
10 = [(1 − ε)
X + ε
̃X ] fR, (138)

w
(R)
01 = [ε
X + (1 − ε)
̃X ](1 − fR). (139)

Thus, in the fast relaxation limit of Y , the system X can
be considered as an autonomous system where the coupling
strength of the reservoirs changes autonomously. More specif-
ically, when x = 1, the coupling strength of the R reservoir
changes from the original strength 
X to a smaller value 
̃X ,
while that of the L reservoir remains unchanged. In contrast,
when x = 0, the coupling strength of the L reservoir becomes
small while that of the R reservoir remains at the original
strength 
X . This autonomous control is probabilistic and has
the error probability ε.

3. Tradeoff between power and efficiency

We first consider the tradeoff between the negative entropy
production rate and information-thermodynamic efficiency
(74). Note that (74) corresponds to the tradeoff between power
and efficiency (95) because ṠX

env = βẆ X in this model.
We first calculate the average rate of chemical work Ẇ X .

By defining bxx′ (x′ = 1 − x) as

bxx′ :=
{

1 (x = 1, x′ = 0),
−1 (x = 0, x′ = 1), (140)

we note that bxx′μν corresponds to the energy provided by
the particle reservoir ν during the transition (x′, y) → (x, y).
Then, the average rate of chemical work reads as

Ẇ X =
∑

ν

∑
x

∑
y

w
(ν)y
xx′ pss(x

′, y)bxx′μν


∑

ν

∑
x

∑
y

w
(ν)y
xx′ πss(y|x′)pX

ss(x
′)bxx′μν

=
∑

ν

∑
x

w
(ν)
xx′ pX

ss(x
′)bxx′μν

= JX �μ, (141)

where, in the second line, we have used pss(x′, y) 
πss(y|x′)pX

ss(x
′) in the fast relaxation limit of Y . In the last

line, JX denotes the net particle current from L to R, which
is conjugate with the chemical potential difference �μ:

JX = w
(L)
10 pX

ss(0) − w
(L)
01 pX

ss(1)

= 
X
ε2 fL(1 − fR) − (1 − ε)2(1 − fL ) fR

1 + (2ε − 1)( fL − fR)
+ O(
̃X ).

(142)

The net particle current JX becomes negative when ε is smaller
than the critical value ε∗, which can be evaluated as

ε∗ = (1 − fL ) fR

fL − fR

⎡⎣−1 +
√

1 + fL − fR

(1 − fL ) fR

⎤⎦+ O

(

̃X


X

)
.

(143)

Note that ε∗ < 1
2 because fL(1 − fR) > fR(1 − fL ), which

follows from the condition �μ = μL − μR > 0.
Similarly, the information flow can be expressed as

İX =
∑

ν

∑
x

∑
y

w
(ν)y
xx′ pss(x

′, y) ln
pss(y|x)

pss(y|x′)


∑

ν

∑
x

∑
y

w
(ν)y
xx′ πss(y|x′)pX

ss(x
′) ln

πss(y|x)

πss(y|x′)

= JI FI , (144)

where in the second line we have used pss(x′, y) 
πss(y|x′)pX

ss(x
′) in the fast relaxation limit of Y . In the last line,

FI denotes the information affinity defined as

FI := ln
πss(0|0)πss(1|1)

πss(0|1)πss(1|0)

= 2 ln
1 − ε

ε
, (145)

and JI denotes the probability current that is conjugate
with FI :

JI =
∑

ν

[
w

(ν)0
01 πss(0|1)pX

ss(1) − w
(ν)0
10 πss(0|0)pX

ss(0)
]

= JX + O(
̃X ). (146)

Thus, the tight-coupling condition is satisfied in the limit

̃X /
X � 1. Since ε∗ < 1

2 , the information flow İX also be-
comes negative when ε < ε∗.

The fluctuation of the chemical work can be calculated by
considering the tilted dynamics (see Appendix C). The result
reads as

DW = Dn�μ2, (147)

where Dn denotes the fluctuation of the net particle current:

Dn = 
X

2

{
(1 − ε)2(1 − fL ) fR + ε2 fL(1 − fR)

1 + (2ε − 1)( fL − fR)

−2
[
(1 − ε)2(1 − fL ) fR − ε2 fL(1 − fR)

]2
[1 + (2ε − 1)( fL − fR)]3

}
+ O(
̃X ).

(148)

We now focus on the case of ε < ε∗, where the system X acts
as an information-thermodynamic engine with Ẇ X < 0. The
corresponding information-thermodynamic efficiency reads
as

ηX
W = ηX

S = |JX |FX

|JI |FI
 FX

FI
� 1, (149)

where FX := β�μ denotes the thermodynamic affinity conju-
gate with JX . The ε dependence of the efficiency ηX

W and the
output power |Ẇ X | is shown in Figs. 3(a) and 3(b), respec-
tively. From this figure, we can see that the output power does
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FIG. 3. (a) ε dependence of information-thermodynamic effi-
ciency ηX

W . (b) ε dependence of the power |Ẇ X | with 
̃X = 10−5
X .
The dotted line denotes the upper bound of (95). (c) ε dependence
of the information flow |İX | with 
̃X = 10−5
X . The dotted line
denotes the upper bound of (82). In all panels, the parameter values
are εX = 1, μL = 1.1, μR = 0.9, and kBT = 1.

not remain finite as ηX
W → 1. This result is consistent with

the tradeoff between power and information-thermodynamic
efficiency (95) as illustrated in Fig. 3(b).

We next consider the tradeoff relation where the negative
entropy production is bounded by the fluctuation of the time-
integrated stochastic information flow DI (76). In terms of the
power Ẇ X , it can be expressed as

|Ẇ X | � DI kBT ηX
W

(
1 − ηX

W

)
. (150)

The fluctuation of the information flow DI can also be calcu-
lated by using the tilted dynamics as

DI = DnF 2
I , (151)

which satisfies β
√

DW /DI = FX /FI  ηX
W . Therefore, from

(83), it follows that the upper bound of (150) is exactly the
same as that of (95) for ε < ε∗.

For comparison, we also plot the information flow and its
upper bound (82) in Fig. 3(c). As in the case of the output
power, the information flow also vanishes as the efficiency

ηX
S (= ηX

W ) approaches 1. We note that |İX | → ∞ as ε → 0
because the information affinity FI diverges.

4. Input-output fluctuation inequalities

We now consider the input-output fluctuation inequali-
ties for ε < ε∗, where the entropy production (ṠX

env = βẆ X )
and the information flow correspond to the output and in-
put currents, respectively. Since FX /FI � 1, we can easily
confirm that DS � DI and DI/(İX )2 = DS/(ṠX

env)2. Thus, the
input-output fluctuation inequalities are satisfied even beyond
the linear response regime in this model. Furthermore, the
equality is achieved for the inequality regarding the relative
fluctuations.

B. Coupled linear overdamped Langevin equations

1. Model

We consider the following coupled linear overdamped
Langevin equations:

ẋt = −ωX xt + ωXY yt +
√

2DX ξX
t , (152)

ẏt = ωY X xt − ωY yt +
√

2DY ξY
t , (153)

where ξZ
t (Z = X,Y ) is a zero-mean white Gaussian noise

that satisfies 〈ξZ
t ξZ ′

t ′ 〉 = δZZ ′δ(t − t ′), and DZ > 0 denotes the
noise intensity. Here, xt relaxes exponentially with decay rate
ωX > 0 and is affected by yt with rate ωXY , while yt also
relaxes exponentially with decay rate ωY > 0 and detects xt

with the differential gain ωY X . We assume that

ωX ωY − ωXY ωY X > 0 (154)

to ensure that the system reaches a steady state [58]. The
corresponding Fokker-Planck equation reads as

∂t pt (x, y) = −∂xJX
t (x, y) − ∂yJY

t (x, y), (155)

where JX
t (x, y) and JY

t (x, y) denote the probability currents:

JX
t (x, y) := (−ωX x + ωXY y)pt (x, y) − DX ∂x pt (x, y), (156)

JY
t (x, y) := (ωY X x − ωY y)pt (x, y) − DY ∂y pt (x, y). (157)

While this model is exactly solvable, it is widely used to
describe biological systems such as signal transduction net-
works and gene regulatory networks [5,55–57]. In the context
of heat engines, this model includes a Brownian gyrator [59]
and can be experimentally realized in, e.g., electronic and
colloidal systems [60,61]. Note that the system can be far
from equilibrium due to the nonreciprocal interactions (when
ωXY �= ωY X ) or the heat flow (when DX �= DY ).

2. Fast relaxation limit of Y

Hereafter, we focus on the case where Y relaxes much
faster than X . We introduce a dimensionless slow time τ :=
ωX t and a small parameter ε := ωX /ωY � 1. Correspond-
ingly, we introduce dimensionless rates ω̄XY := ωXY /ωX and
ω̄Y X := ωY X /ωY and dimensionless noise intensities D̄X :=
DX /ωX and D̄Y := DY /ωY . From the condition (154) and the
positivity of ωX and ωY , we note that ω̄XY ω̄Y X < 1. Then, the
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time-evolution equations (152) and (153) can be rewritten as

ẋτ = [−xτ + ω̄XY yτ ] +
√

2D̄X ξX
τ , (158)

ẏτ = 1

ε
[ω̄Y X xτ − yτ ] +

√
2D̄Y

ε
ξY
τ . (159)

In the fast relaxation limit ε → 0, the joint probability density
pτ (x, y) can be approximated as pτ (x, y)  pX

τ (x)πss(y|x),
where

πss(y|x) = 1√
2πD̄Y

exp

[
− 1

2D̄Y
(y − ω̄Y X x)2

]
. (160)

The resulting effective dynamics for X reads as

ẋτ = −(1 − ω̄XY ω̄Y X )xτ +
√

2D̄X ξX
τ . (161)

3. Tradeoff between negative entropy production and efficiency

We first consider the tradeoff between the negative entropy
production and efficiency (74). Note that, unlike the previous
example, this tradeoff is not the same as the tradeoff between
power and efficiency (95) because there is no externally ap-
plied work in this system. In the steady state with the fast
relaxation limit of Y , the entropy production rate associated
with X reads as

ṠX
env = 1

DX
〈(−ωX xt + ωXY yt ) ◦ ẋt 〉

= ωX ω̄XY ω̄Y X

(
ω̄XY D̄Y

ω̄Y X D̄X
− 1

)
, (162)

where the symbol ◦ denotes the Stratonovich product. We note
that ṠX

env is induced by the fast variable yt , which does not
appear in the effective dynamics for X (161). In other words,
ṠX

env is an entropy production invisible from the effective dy-
namics, which is called hidden entropy [62,63]. Similarly, the
information flow can be calculated as

İX =
∫

dx dy JX
ss (x, y)∂x ln

pss(x, y)

pX
ss(x)pY

ss(y)

= ω̄Y X D̄X

ω̄XY D̄Y
ṠX

env. (163)

In the context of the Brownian gyrator, we can show that there
is a torque, which remains finite even in the fast relaxation
limit of Y . Both the medium entropy production rate ṠX

env
and the information flow İX are proportional to this “hidden”
torque. The fluctuation of the entropy production can be cal-
culated by considering the tilted dynamics. The result reads as
(see Appendix D for the derivation)

DS = ωX D̄Y

D̄X
(ω̄XY )2. (164)

We now focus on the case where ωXY ωY X > 0 and
ωXY DY < ωY X DX . In this case, both the entropy production
rate and information flow become negative, i.e., X acts as an
information-thermodynamic engine. Then, the corresponding
information-thermodynamic efficiency is given by

ηX
S =

∣∣ṠX
env

∣∣
|İX | = ωXY DY

ωY X DX
� 1. (165)

Combining (165) and (164), we find that the upper bound on
the negative entropy production rate (74) is

DS
1 − ηX

S

ηX
S

= ωX D̄Y

D̄X
(ω̄XY )2 1 − ω̄XY D̄Y

ω̄Y X D̄X

ω̄XY D̄Y

ω̄Y X D̄X

= ∣∣ṠX
env

∣∣. (166)

Thus, the equality condition is satisfied even far from equilib-
rium in this case. This is in contrast to the standard long-time
TUR, where the equality is guaranteed only in the near-
equilibrium limit.

We next consider the tradeoff relation where the negative
entropy production is bounded by the fluctuation of the time-
integrated stochastic information flow DI (76). The fluctuation
of the information flow DI can also be calculated by using the
tilted dynamics as

DI = ωX D̄X

D̄Y
(ω̄Y X )2, (167)

which satisfies
√

DS/DI = ηX
S . Therefore, from (83), it fol-

lows that the upper bound of (76) is exactly the same as that
of (74). This implies that the tradeoff between the information
flow and efficiency (82) also achieves the equality in this case:

DI
(
1 − ηX

S

) = ωX D̄X

D̄Y
(ω̄Y X )2

(
1 − ω̄XY D̄Y

ω̄Y X D̄X

)
= |İX |. (168)

We now consider the possibility of achieving finite negative
entropy production even when ηX

S → 1. We first note that
the negative entropy production can be expressed in terms
of ηX

S as ∣∣ṠX
env

∣∣ = ωX ω̄XY ω̄Y X
(
1 − ηX

S

)
. (169)

Since 0 < ω̄XY ω̄Y X < 1, we find that |ṠX
env| → 0 as ηX

S → 1
as long as ωX is finite. In contrast, if ωX is scaled as ωX =
ω0/(1 − ηX

S ), the negative entropy production can remain fi-
nite even in the limit ηX

S → 1:∣∣ṠX
env

∣∣ = ω0ω̄
XY ω̄Y X . (170)

As can be seen from the tradeoff relation (166), the fluctuation
of entropy production blows up as ηX

S → 1 in this case [see
Fig. 4(a)]:

DS = ωX D̄Y

D̄X
(ω̄XY )2

= ω0
ηX

S

1 − ηX
S

ω̄XY ω̄Y X . (171)

Similarly, the information flow can also remain finite in the
limit ηX

S → 1:

|İX | = ω0ω̄
XY ω̄Y X 1

ηX
S

, (172)
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FIG. 4. ηX
S dependence of the entropy production rate (a) and

information flow (b) with the scaling ωX = ω0/(1 − ηX
S ). Here, we

assume that ω0 is constant. The gray shaded region represents the
fluctuations of the entropy production and information flow quanti-
fied by

√
DS/ω0 and

√
DI/ω0, respectively. The parameter values are

ω̄XY = ω̄XY = 0.5.

at the expense of the blowup of the fluctuation of information
flow as ηX

S → 1 [see Fig. 4(b)]:

DI = ωX D̄X

D̄Y
(ω̄Y X )2

= ω0
1

ηX
S

(
1 − ηX

S

) ω̄XY ω̄Y X . (173)

4. Equality condition of bipartite TUR for this model

Here, we discuss the reason why the equality of the trade-
offs (166) and (168) is achieved in this model. We first recall
that these tradeoffs are special cases of the bipartite TUR in
the fast relaxation limit of Y (55). In this model, the time-
integrated generalized current ĴT for the subsystem X can be
expressed as

ĴT =
∫ t=T

t=0
g(xt , yt ) ◦ dxt (174)

with an arbitrary weight function g(x, y). As in Sec. III D, the
current can be decomposed as ĴT = Ĵ I

T + Ĵ II
T with

Ĵ I
T :=

∫ t=T

t=0
g(xt , yt ) ·

√
2DX dW X

t , (175)

Ĵ II
T :=

∫ T

0
f (xt , yt )dt, (176)

where the center dot denotes the Ito product, W X
t denotes the

Wiener process, and

f (x, y) := g(x, y)(−ωX x + ωXY y) + DX ∂xg(x, y). (177)

We now show that this model satisfies the sufficient condition
for the bipartite TUR in the fast relaxation limit of Y (55) to
hold with equality, described in Sec. III D. First, the weight of
the current should be proportional to that of the partial entropy
production:

g(x, y) = C
1

2DX

JX
ss (xt , yt )

pss(xt , yt )

= C
1

2DX
ωX ω̄XY

(
1 − ω̄Y X D̄X

ω̄XY D̄Y

)
(y − ω̄Y X x). (178)

The time-integrated stochastic information flow �ÎX in the
steady state with the fast relaxation limit of Y is an example
that satisfies this condition:

�ÎX =
∫ t=T

t=0
∂x ln

pss(xt , yt )

pX
ss(xt )pY

ss(yt )
◦ dxt


∫ t=T

t=0
∂x ln πss(yt |xt ) ◦ dxt

=
∫ t=T

t=0

ω̄Y X

D̄Y
(yt − ω̄Y X xt ) ◦ dxt . (179)

Second, for this choice of the current, the fluctuation of Ĵ II
T

must go to zero in the fast relaxation limit of Y :

DII
J := lim

T →∞
1

2T Var
[
Ĵ II
T
] = 0. (180)

In this model, we can confirm that this condition is indeed
satisfied by explicitly calculating DII

J (see Appendix D 2). As
a result, the equality of (55) is achieved for a current that
satisfies the condition (178) in the fast relaxation limit of Y :

DJ
J2

= 1

ṠX
tot − İX

. (181)

Note that the condition described above is only a sufficient
condition. In fact, the equality (181) holds for more diverse
types of currents that do not even satisfy the condition (178)
in this model. To see this, note that the current ĴT that satisfies
the condition (178) can be expressed as

ĴT = C
∫ t=T

t=0
(yt − ω̄Y X xt ) ◦ dxt

= C

[∫ t=T

t=0
yt ◦ dxt − 1

2
ω̄Y X x2

t

∣∣∣∣t=T

t=0

]
. (182)

The important point here is that the second term is a bound-
ary term and can be ignored when considering the long-time
statistical properties of ĴT . (For the effect of such a boundary
term on the large deviation, see [64].) Therefore, any current
ĴT that has the same long-time statistical properties as (182)
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satisfies the equality (181). The example includes the stochas-
tic medium entropy production �ŜX

env:

�ŜX
env =

∫ t=T

t=0

1

DX
(−ωX xt + ωXY yt ) ◦ dxt

= ω̄XY

D̄X

∫ t=T

t=0
yt ◦ dxt − 1

2D̄X
x2

t

∣∣∣∣t=T

t=0

. (183)

Hence, the choice ĴT = �ŜX
env also satisfies the equality

(181), although it does not satisfy the condition (178). Indeed,
we can show that the following relation holds:

DI
S(

ṠX
env

)2 >
DS(

ṠX
env

)2 = 1

ṠX
tot − İX

. (184)

Here, DI
S := limT →∞ Var[Ĵ I

T ]/2T denotes the fluctuation of
Ĵ I
T with ĴT = �ŜX

env, which is given by

DI
S = ωX

[
D̄Y

D̄X
(ω̄XY )2 + (1 − ω̄XY ω̄Y X )

]
. (185)

5. Input-output fluctuation inequalities

We finally consider the input-output fluctuation inequal-
ities for the case of ωXY ωY X > 0 and ωXY DY < ωY X DX ,
where the entropy production and the information flow
correspond to the output and input currents, respectively.
From the relation

√
DS/DI = ηX

S , it immediately follows that
DS � DI and DI/(İX )2 = DS/(ṠX

env)2. Thus, as in the previous
example, the input-output fluctuation inequalities are satisfied
even beyond the linear response regime in this model, and the
equality is achieved for the inequality regarding the relative
fluctuations.

VII. CONCLUDING REMARKS

In this paper, we have obtained several fundamental lim-
its for information processing systems. Specifically, we have
derived a TUR-type inequality for bipartite systems that pro-
vides a universal lower bound on the relative fluctuation of an
arbitrary current for a system of interest by the associated par-
tial entropy production, which includes the information flow.
This bipartite TUR includes the standard TUR as a special
case and incorporates the effect of the interaction with ex-
ternal auxiliary systems. As a corollary to this inequality, we
have derived universal tradeoff relations between the negative
entropy production rate and the information-thermodynamic
efficiency, which can be regarded as an extension of the trade-
offs for heat engines [21,22] to information-thermodynamic
engines. Furthermore, in the fast relaxation limit of the
auxiliary system, we have shown that the Gallavotti-Cohen
symmetry holds even in the presence of information flow.
From this symmetry, we can show that the input-output fluc-
tuation inequalities are also valid for information processing
systems. We have illustrated our results with two simple ex-
amples: coupled quantum dots and coupled linear overdamped
Langevin equations. In particular, we have seen that the latter
provides an example where the equality of the bipartite TUR
is achieved even far from equilibrium.

Here, we provide some remarks on previous studies related
to our results. We first note that the bipartite TUR in the
short-time limit T → 0 is already proved in [52] using the

Cauchy-Schwarz inequality. Our first main result (26) can
be regarded as an extension of the short-time bipartite TUR
to an arbitrary observation time T . TUR-type inequalities
including measurement and feedback are also derived from
fluctuation theorems in [65,66]. While these relations include
a contribution of information induced by measurement and
feedback processes, this contribution appears in the form of
total entropy production rather than partial entropy produc-
tion. Therefore, our bipartite TUR can provide more stringent
bounds on the precision of currents under measurement and
feedback control. The standard TUR has also been discussed
as a tool for inferring entropy production [52,67–71]. In
this context, the bipartite TUR proved here may provide a
promising approach to estimating a partial entropy produc-
tion, especially an information flow.

Next, we remark on the range of validity of the bipartite
TUR. While here we have presented the bipartite TUR in
the steady state, this relation is valid even for systems under
arbitrary time-dependent driving from arbitrary initial states.
In Appendix A, we provide a proof of the bipartite TUR in a
general form for the case of overdamped Langevin equations.
It should also be noted that the bipartite TUR is generally
not valid for systems with broken time-reversal symmetry,
such as underdamped Langevin dynamics [37–43], as in the
standard TUR. However, many relevant biological systems are
often described by continuous-time Markov jump processes or
diffusion processes with only even variables and parameters
under time reversal. Therefore, the results described in this
paper will be applicable to a wide range of systems, including
biological systems.

In this study, we have focused mainly on the case where
an auxiliary system evolves much faster than the system of
interest. Such a separation of timescales allows the dynamics
of a composite system to be reduced to the effective dynamics
of the system of interest, and thus various universal relations
similar to those found for a single system hold. While we
expect such a separation of timescales to be ubiquitous in
biological systems, extending our results to cases where there
is no clear timescale separation would be important for eluci-
dating the design principles of biological systems.
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APPENDIX A: BIPARTITE TUR FOR OVERDAMPED
LANGEVIN EQUATIONS

In this Appendix, we derive the bipartite TUR for over-
damped Langevin equations. While the derivation based on
the generalized Cramér-Rao inequality described in Sec. III B
is also valid for this case, here we prove the bipartite
TUR more directly from the Langevin equations, following
Ref. [50]. We provide a proof of the bipartite TUR in a general
form that is valid not only for a steady state, but also for
systems under arbitrary time-dependent driving from arbitrary
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initial states. We note that this direct approach is valid even for
Markov jump processes [50].

We consider the following coupled overdamped Langevin
equations:

ẋt = F X
t (xt , yt ) +

√
2DX ξX

t , (A1)

ẏt = FY
t (xt , yt ) +

√
2DY ξY

t , (A2)

where F Z
t (x, y) (Z = X,Y ) denotes the time-dependent drift

term, DZ denotes the noise intensity, and ξZ
t is a zero-mean

white Gaussian noise that satisfies 〈ξZ
t ξZ ′

t ′ 〉 = δZZ ′δ(t − t ′).
The independence of the noises ξX

t and ξY
t ensures that the

system satisfies the bipartite property. The corresponding
Fokker-Planck equation reads as

∂t pt (x, y) = −∂xJX
t (x, y) − ∂yJY

t (x, y), (A3)

where JZ
t denotes the probability current:

JX
t (x, y) := F X

t (x, y)pt (x, y) − DX ∂x pt (x, y), (A4)

JY
t (x, y) := FY

t (x, y)pt (x, y) − DY ∂y pt (x, y). (A5)

Let ĴT be the time-integrated generalized current for the sub-
system X with an arbitrary time-dependent weight function
gt (x, y):

ĴT :=
∫ t=T

t=0
gt (xt , yt ) ◦ dxt . (A6)

Converting from the Stratonovich to the Ito product, the cur-
rent can be decomposed into two parts ĴT = Ĵ I

T + Ĵ II
T with

Ĵ I
T :=

∫ t=T

t=0
gt (xt , yt ) ·

√
2DX dW X

t , (A7)

Ĵ II
T :=

∫ T

0
ft (xt , yt )dt, (A8)

where W X
t denotes the Wiener process, and

ft (x, y) := gt (x, y)F X
t (x, y) + DX ∂xgt (x, y). (A9)

We introduce the following quantity:

ÂT :=
∫ t=T

t=0

1

2DX

JX
t (xt , yt )

pt (xt , yt )
·
√

2DX dW X
t . (A10)

The second moment of this quantity gives the partial entropy
production for X :

〈Â2
T 〉 =

∫ T

0
dt
∫

dx dy
1

2DX

[JX
t (x, y)]2

pt (x, y)

= 1

2
�σ X = 1

2

(
�SX

tot − �IX
)
. (A11)

Furthermore, we can easily confirm that 〈ÂT 〉 = 0 and
〈ÂT Ĵ I

T 〉 = 〈ĴT 〉. Therefore, we find that

〈ÂT (ĴT − 〈ĴT 〉)〉 = 〈ĴT 〉 + 〈ÂT Ĵ II
T
〉
. (A12)

By using the Cauchy-Schwarz inequality, we obtain

[〈ĴT 〉 + 〈ÂT Ĵ II
T 〉]2 = 〈ÂT (ĴT − 〈ĴT 〉)〉2

�
〈
Â2
T
〉
Var[ĴT ]

= 1

2

(
�SX

tot − �IX
)
Var[ĴT ], (A13)

which has a form similar to that of the bipartite TUR (26). In
fact, we can show that the additional current term 〈ÂT Ĵ II

T 〉 in
(A13) exactly equal to 〈ĴT 〉q in the bipartite TUR (26). To see
this, we first rewrite 〈ÂT Ĵ II

T 〉 as follows [50]:

〈AT J II
T 〉 =

〈∫ t ′=T

t ′=0

1

2DX

JX
t ′ (xt ′ , yt ′ )

pt ′ (xt ′ , yt ′ )
·
√

2DX dW X
t ′

∫ T

0
ft (xt , yt )dt

〉

= −
∫ T

0
dt
∫

dx dy ft (x, y)
∫ t

0
dt ′
∫

dx′dy′ p(x, y, t |x′, y′, t ′)∂x′JX
t ′ (x′, y′)

=
∫ T

0
dt
∫

dx dy gt (x, y)
[
F X

t (x, y) − DX ∂x
]
q̃t (x, y), (A14)

where

q̃t (x, y) := −
∫ t

0
dt ′
∫

dx′dy′ p(x, y, t |x′, y′, t ′)∂x′JX
t ′ (x′, y′). (A15)

In the second line of (A14), we have used the Doob transform [72–76], which maps a stochastic process conditioned on a future
event [in this case, (xt , yt ) = (x, y)] to an unconditioned stochastic process with an additional drift term. By differentiating (A15)
with respect to t , we obtain the time-evolution equation of q̃t (x, y):

∂t q̃t (x, y) = −
∫

dx′dy′δ(x − x′)δ(y − y′)∂x′JX
t (x′, y′) −

∫ t

0
dt ′
∫

dx′dy′∂t p(x, y, t |x′, y′, t ′)∂x′JX
t ′ (x′, y′)

= −∂xJX
t (x, y) + Lt [q̃](x, y), (A16)
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with q̃0 = 0, where Lt denotes the Fokker-Planck operator.
Thus, 〈AT J II

T 〉 is exactly equal to 〈ĴT 〉q. We remark that this
conclusion is also confirmed by noting that ÂT corresponds to
the θ derivative of the path probability ∂θ lnPθ (
)|θ=0 used in
the generalized Cramér-Rao inequality.

Note that 〈ĴT 〉q generally reflects not only the contribution
of interaction with Y , but also the effect of nonstationarity.
This point will be clarified in the next Appendix.

APPENDIX B: RELATION TO THE CONVENTIONAL
TRANSIENT TUR

In this Appendix, we consider the bipartite TUR in a gen-
eral form that is applicable to a transient state, derived in the
previous section. Here, we prove that 〈ĴT 〉q = T ∂T 〈ĴT 〉 −
〈ĴT 〉, if the system is time homogeneous and the transition
rate for X and the weight are independent of Y as w

y
xx′ = wxx′

and dy
xx′ = dxx′ . In this case, the bipartite TUR becomes

Var[ĴT ]

[T ∂T 〈ĴT 〉]2
� 2

�SX
tot − �IX

, (B1)

which has a form similar to the conventional transient TUR
[50,77]. From this result, we can also confirm that 〈ĴT 〉q = 0
when the system is in the steady state. While we focus on the
Markov jump processes in the following, the same result can
be obtained for diffusion processes.

By noting that the transition rate w
y
xx′ = wxx′ and the

weight of the current dy
xx′ = dxx′ do not depend on Y , we obtain

〈ĴT 〉q =
∫ T

0
dt
∑

x

∑
x′( �=x)

∑
y

wxx′qt (x
′, y)dxx′

=
∫ T

0
dt
∑

x

∑
x′( �=x)

wxx′qX
t (x′)dxx′ . (B2)

As in (A15), we can easily show that qX
t (x′) =∑y qt (x, y) has

the form

qX
t (x) =

∫ t

0
dt ′∑

x′
p(x, t |x′, t ′)

∑
x′′

wx′x′′ pX
t ′ (x′′)

=
∫ t

0
dt ′∑

x′
p(x, t |x′, t ′)∂t ′ pX

t ′ (x′). (B3)

By substituting (B3) into (B2) and integrating by parts, we
obtain

〈ĴT 〉q =
∫ T

0
dt
∑

x

∑
x′( �=x)

wxx′dxx′

×
∫ t

0
dt ′∑

x′
p(x, t |x′, t ′)∂t ′ pX

t ′ (x′)

= −
∫ T

0
dt
∑

x

∑
x′( �=x)

wxx′dxx′

×
∫ t

0
dt ′∑

x′
∂t ′ p(x, t |x′, t ′)pX

t ′ (x′). (B4)

Since the system is time homogeneous, we have
∂t ′ p(x, t |x′, t ′) = −∂t p(x, t |x′, t ′), and thus∫ t

0
dt ′∑

x′
∂t ′ p(x, t |x′, t ′)pX

t ′ (x′)

= −
∫ t

0
dt ′∂t

∑
x′

p(x, t |x′, t ′)pX
t ′ (x′)

= −t∂t pX
t (x). (B5)

Hence, by integrating by parts, we obtain

〈ĴT 〉q =
∫ T

0
dt
∑

x

∑
x′( �=x)

wxx′dxx′t∂t pX
t (x)

= T ∂T 〈ĴT 〉 − 〈ĴT 〉. (B6)

APPENDIX C: COUPLED QUANTUM DOTS

In this Appendix, we provide a detailed calculation of
the fluctuation of the chemical work DW in the fast relax-
ation limit of Y for the coupled quantum dots introduced in
Sec. VI A. The fluctuation of the information flow DI can be
calculated in a similar way. The stochastic chemical work is
defined as

�Ŵ X :=
∑

ν

∑
x

∑
x′( �=x)

∑
y

n̂(ν)y
xx′ bxx′μν, (C1)

where

bxx′ :=
{

1 (x = 1, x′ = 0),
−1 (x = 0, x′ = 1). (C2)

Then, the fluctuation of the stochastic chemical work is de-
fined as

DW := lim
T →∞

1

2T Var[�Ŵ X ]. (C3)

The fluctuation DW can be obtained from the scaled cumulant
generating function defined by

μ(λ) = lim
T →∞

1

T ln
〈
eλ�Ŵ X 〉

. (C4)

As described in Sec. V A, the scaled cumulant generating
function can be calculated by considering the generating func-
tion conditioned to a final state (x, y):

GT (x, y) :=
∫

d�W X pT (x, y,�W X )eλ�W X
. (C5)

The time evolution of GT (x, y) reads as

∂τ Gτ (x, y) =
∑

ν

∑
x′

[
LX

λ

](ν)y

xx′ Gτ (x′, y)

+ 1

ε

∑
y′

[
LY

λ

]yy′

x Gτ (x, y′), (C6)

where LX
λ and LY

λ denote the tilted generators given by[
LX

λ

](ν)y

xx′ :=
{

w̃
(ν)y
xx′ eλbxx′ μν (x �= x′),

−∑x′( �=x) w̃
(ν)y
x′x (x = x′),

(C7)
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[
LY

λ

]yy′

x
:=
{

w̃
yy′
x (y �= y′),

−∑y′( �=y) w̃
y′y
x (y = y′),

(C8)

where we have used the dimensionless slow time τ := 
XT
and dimensionless transition rates w̃

(ν)y
xx′ := w

(ν)y
xx′ /
X and

w̃
yy′
x := w

yy′
x /
Y with a small parameter ε := 
X /
Y � 1 (do

not confuse ε with the error probability ε).
Since we are interested in the fast relaxation limit of Y , we

can consider the effective tilted dynamics for GX
τ :=∑y Gτ .

By performing a perturbation expansion as in Sec. V A, we
obtain

∂τ GX
τ (x) =

∑
x′

[
LX

λ

]
xx′

GX
τ (x′), (C9)

where LX
λ denotes the effective tilted generator given by[

LX
λ

]
xx′

:=
∑

ν

∑
y

[
LX

λ

](ν)y

xx′ πss(y|x′), (C10)

which can be expressed as

LX
λ =

( −∑ν w
(ν)
10

∑
ν w

(ν)
01 e−λμν∑

ν w
(ν)
10 eλμν −∑ν w

(ν)
01

)
, (C11)

where we have introduced the effective transition rate w
(ν)
xx′ :=∑

y w̃
(ν)y
xx′ πss(y|x′). The largest eigenvalue θmax(λ) of this

matrix is

θmax(λ) = 1

2

∑
ν

[
w

(ν)
10 + w

(ν)
01

]⎧⎨⎩−1 +
√√√√1 − 4

[
w

(L)
01 w

(R)
10 (1 − e−λ�μ) + w

(L)
10 w

(R)
01 (1 − eλ�μ)

](∑
ν

[
w

(ν)
10 + w

(ν)
01

])2
⎫⎬⎭. (C12)

Then, the second derivative of θmax gives the fluctuation DW :

DW = 1

2

∂2

∂λ2
μ(λ)

∣∣∣∣
λ=0

= 1

2

X

∂2

∂λ2
θmax(λ)

∣∣∣∣
λ=0

= Dn�μ2, (C13)

where Dn denotes the fluctuation of the net particle current:

Dn = 
X

2

⎧⎨⎩ 1∑
ν

[
w

(ν)
10 + w

(ν)
01

] [w(L)
01 w

(R)
10 + w

(L)
10 w

(R)
01

]− 2(∑
ν

[
w

(ν)
10 + w

(ν)
01

])3 [w(L)
01 w

(R)
10 − w

(L)
10 w

(R)
01

]2⎫⎬⎭
= 
X

2

{
(1 − ε)2(1 − fL ) fR + ε2 fL(1 − fR)

1 + (2ε − 1)( fL − fR)
− 2

[
(1 − ε)2(1 − fL ) fR − ε2 fL(1 − fR)

]2
[1 + (2ε − 1)( fL − fR)]3

}
+ O(
̃X ). (C14)

APPENDIX D: COUPLED LINEAR OVERDAMPED
LANGEVIN EQUATIONS

In this Appendix, we provide a detailed calculation of the
fluctuation of the entropy production DS in the fast relax-
ation limit of Y for the coupled linear overdamped Langevin
equations introduced in Sec. VI B. The fluctuation of the
information flow DI can be calculated in a similar way. We
also prove that DII

J := limT →∞ Var[Ĵ II
T ]/2T → 0 in the fast

relaxation limit of Y for the generalized current ĴT whose
weight function satisfies the condition (178).

1. Calculation of DS

The fluctuation of the stochastic medium entropy produc-
tion is defined as

DS := lim
T →∞

1

2T Var
[
�ŜX

env

]
, (D1)

where �ŜX
env denotes the stochastic medium entropy

production:

�ŜX
env =

∫ τ=ωXT

τ=0
g(xτ , yτ ) ◦ dxτ , (D2)

where we have used the dimensionless slow time τ = ωX t ,
and the weight function is defined as

g(x, y) := 1

D̄X
(−x + ω̄XY y). (D3)

The fluctuation DS can be obtained from the scaled cumulant
generating function defined by

μ(λ) = lim
T →∞

1

T ln
〈
eλ�ŜX

env
〉
. (D4)

To compute the scaled cumulant generating function, we in-
troduce the generating function conditioned to an initial state
(x0, y0) = (x, y), defined by

GT (x, y) := 〈eλ�ŜX
env
∣∣x, y

〉
. (D5)

The time evolution of GT is described by the Feynman-Kac
formula [78]

∂τ Gτ (x, y) = L†
λ[Gτ ](x, y), (D6)

where L†
λ denotes the tilted generator defined by

L†
λ = LX†

λ + 1

ε
LY †

λ (D7)
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with

LX†
λ := F̄ X (x, y)[∂x + λg(x, y)] + D̄X [∂x + λg(x, y)]2,

(D8)

LY †
λ := F̄Y (x, y)∂y + D̄Y ∂2

y , (D9)

where F̄ X (x, y) := −x + ω̄XY y and F̄Y (x, y) := ω̄Y X x − y de-
note the dimensionless drift terms. The largest eigenvalue
of this tilted generator gives the scaled cumulant generating
function.

Since we are interested in the fast relaxation limit of Y , we
can further simplify the problem by considering the effective
tilted generator for X , as follows. We first assume that Gτ have
asymptotic expansions in terms of the asymptotic sequences
{εn}∞n=0 as ε → 0:

Gτ = G(0)
τ + εG(1)

τ + · · · . (D10)

Here, we impose the normalization condition∫
dy πss(y|x)G(0)

τ (x, y) =
∫

dy πss(y|x)Gτ (x, y)

=: GX
τ (x), (D11)

where πss denotes the zero eigenfunction for LY
0 . By substi-

tuting this expansion into (D6), we find that the leading order
gives

LY †
λ

[
G(0)

τ

]
(x, y) = 0. (D12)

Since LY †
λ = LY †

0 , the zero eigenfunction for LY †
λ is 1. From

the Perron-Frobenius theorem and the normalization condi-
tion, we find that G(0)

τ has the form

G(0)
τ (x, y) = GX

τ (x). (D13)

The subleading order of (D6) gives

∂τ G(0)
τ (x, y) = LX†

λ

[
G(0)

τ

]
(x, y) + LY †

λ

[
G(1)

τ

]
(x, y). (D14)

From the solvability condition for G(1)
τ (x, y), we obtain the

effective dynamics for GX
τ (x):

∂τ GX
τ (x) = LX†

λ

[
GX

τ

]
(x). (D15)

Here, LX†
λ denotes the effective tilted generator defined by

LX†
λ :=

∫
dy πss(y|x)LX†

λ

= −(1 − ω̄XY ω̄Y X )x∂x + D̄X ∂2
x

+ λ

[
D̄Y

D̄X
(ω̄XY )2 + 1

D̄X
(1 − ω̄XY ω̄Y X )2x2 − 1 − 2(1 − ω̄XY ω̄Y X )x∂x

]
+ λ2

[
D̄Y

D̄X
(ω̄XY )2 + 1

D̄X
(1 − ω̄XY ω̄Y X )2x2

]
. (D16)

We first note that when λ = 0, the largest eigenvalue is 0 with the corresponding eigenfunction φλ=0(x) = 1. To find the largest
eigenvalue for general λ, we impose the Gaussian ansatz φλ(x) = exp[−K (λ)x2/2]. Then, the largest eigenvalue θmax(λ) should
satisfy

θmax(λ) = L†
λφλ(x)

φλ(x)

= (1 − ω̄XY ω̄Y X )x2K (λ) + D̄X [−K (λ) + K2(λ)x2]

+ λ

[
D̄Y

D̄X
(ω̄XY )2 + 1

D̄X
(1 − ω̄XY ω̄Y X )2x2 − 1 + 2(1 − ω̄XY ω̄Y X )x2K (λ)

]
+ λ2

[
D̄Y

D̄X
(ω̄XY )2 + 1

D̄X
(1 − ω̄XY ω̄Y X )2x2

]
. (D17)

Because this relation holds for arbitrary x, comparing the coefficients of the quadratic form yields

θmax(λ) = −D̄X K (λ) + λ

[
D̄Y

D̄X
(ω̄XY )2 − 1

]
+ λ2 D̄Y

D̄X
(ω̄XY )2 (D18)

and

(1 − ω̄XY ω̄Y X )K (λ) + D̄X K2(λ) + λ

[
1

D̄X
(1 − ω̄XY ω̄Y X )2 + 2(1 − ω̄XY ω̄Y X )K (λ)

]
+ λ2 1

D̄X
(1 − ω̄XY ω̄Y X )2 = 0. (D19)

We now expand K in terms of λ as

K (λ) = λK (1) + λ2K (2) + · · · . (D20)

Here, note that K (λ) should go to zero as λ → 0, because
θmax(λ) is the largest eigenvalue and θmax(λ) → 0 as λ → 0.
Then, by substituting this expansion into (D19), we find that
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the leading order yields

(1 − ω̄XY ω̄Y X )K (1) + 1

D̄X
(1 − ω̄XY ω̄Y X )2 = 0. (D21)

From this equation, we obtain

K (1) = − 1

D̄X
(1 − ω̄XY ω̄Y X ). (D22)

The subleading order of (D19) gives

(1 − ω̄XY ω̄Y X )K (2) + D̄X (K (1) )2 + 2(1 − ω̄XY ω̄Y X )K (1)

+ 1

D̄X
(1 − ω̄XY ω̄Y X )2 = 0. (D23)

Since 1 − ω̄XY ω̄Y X > 0, we find that K (2) = 0. Therefore, the
largest eigenvalue is

θmax(λ) = λ

[
D̄Y

D̄X
(ω̄XY )2 − ω̄XY ω̄Y X

]
+ λ2 D̄Y

D̄X
(ω̄XY )2.

(D24)

From this result, we can calculate DS as

DS = 1

2

∂2

∂λ2
μ(λ)

∣∣∣∣
λ=0

= 1

2
ωX ∂2

∂λ2
θmax(λ)

∣∣∣∣
λ=0

= ωX D̄Y

D̄X
(ω̄XY )2. (D25)

2. Proof of DII
J → 0

Here, we prove that DII
J := limT →∞ Var[Ĵ II

T ]/2T = 0 in
the fast relaxation limit of Y for the generalized current ĴT
whose weight function is given by g(x, y) = C(y − ω̄Y X x).

For this weight function, Ĵ II
T can be expressed as

Ĵ II
T :=

∫ ωXT

0
f (xτ , yτ )dτ, (D26)

where

f (x, y) := C(y − ω̄Y X x)(−x + ω̄XY y)

+ D̄X ∂xC(y − ω̄Y X x). (D27)

The fluctuation DII
J can be obtained from the following scaled

cumulant generating function

μ(λ) = lim
T →∞

1

T ln
〈
eλĴ II

T
〉
, (D28)

which corresponds to the largest eigenvalue of the following
tilted generator [78]:

L†
λ = LX†

λ + 1

ε
LY †

λ (D29)

with

LX†
λ := F̄ X (x, y)∂x + D̄X ∂2

x + λ f (x, y), (D30)

LY †
λ := F̄Y (x, y)∂y + D̄Y ∂2

y . (D31)

The effective tilted generator is then given by

LX†
λ :=

∫
dy πss(y|x)LX†

λ

= −(1 − ω̄XY ω̄Y X )x∂x + D̄X ∂2
x

+ λC(−ω̄Y X D̄X + ω̄XY D̄Y ). (D32)

By performing a similar calculation as in the previous section,
we finally obtain

θmax(λ) = λC
(−ω̄Y X D̄X + ω̄XY D̄Y

)
. (D33)

Thus, we find that DII
J := limT →∞ Var[Ĵ II

T ]/2T = 0.
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