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Thermodynamics of interacting systems: The role of the topology and collective effects
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We study a class of system composed of interacting unicyclic machines placed in contact with a hot and
cold thermal baths subjected to a nonconservative driving worksource. Despite their simplicity, these models
showcase an intricate array of phenomena, including pump and heat engine regimes as well as a discontinuous
phase transition. We look at three distinctive topologies: a minimal and beyond minimal (homogeneous and
heterogeneous interaction structures). The former case is represented by stark different networks (“all-to-all”
interactions and only a central interacting to its neighbors) and present exact solutions, whereas homogeneous
and heterogeneous structures have been analyzed by numerical simulations. We find that the topology plays
a major role on the thermodynamic performance for smaller values of individual energies, in part due to
the presence of first-order phase transitions. Contrariwise, the topology becomes less important as individual
energies increases and results are well described by a system with all-to-all interactions.
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I. INTRODUCTION

The study of thermal engines has always been a central
part of thermodynamics [1,2]. In particular, the last couple of
decades have seen a surge of interest in the thermodynam-
ics of thermal engines due to the emergence of stochastic
thermodynamics [3,4]. One can for example think about the
maximization of power and efficiency [5–19]; and the influ-
ence of studies of system-bath coupling [20,21] and the level
of control [22–25].

One particularly interesting idea is that systems perfor-
mance might be enhanced by collective effects such as phase
transitions [26,27]. These types of collective behavior, e.g.,
order-disorder phase transitions [28] and synchronization
[29,30], have been observed in a broad range of systems such
as complex networks [31–34], biological systems [35–38],
and quantum systems [27,39–48]. This has inspired the de-
velopment of theoretical models of thermodynamic engines,
in which the performance can be boosted via collective
effects. Most of these models, however, focus on either one-
dimensional systems [19,49–51] or mean-field-like models
[52–56]. Little is known about the influence that network
topology might have on system performance.

This paper aims to partially fill this gap, by studying the
influence of topology of a simple class of system, composed
of interacting units, referred to here as a collection of nanoma-
chines, placed in contact with a hot and cold thermal baths
subjected to a nonconservative driving worksource. The ap-
proach considered here is akin to the commonly referred to
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as “lattice-gas” models in the realm of equilibrium statistical
mechanics. They have a longstanding importance in the con-
text of collective effects and serving as the cornerstone for
numerous theoretical, experimental, and technological break-
throughs, encompassing the ferromagnetism, liquid phases,
the topology effect, the fluctuation-driven generation of new
phases and others, highlighting that distinct systems have been
described/characterized via Hamiltonian of the fundamental
models (e.g., the Ising, Potts, XY, and Heisenberg models).
The all-to-all version for our model has been investigated pre-
viously [52,53,57] for finite and infinite number of interacting
units, in which the cooperative effect gives rise to a rich be-
havior, including the enhancement of the power and efficiency
at optimal interactions, the existence of distinct operation
models and a discontinuous phase transition. Furthermore,
systems with all-to-all interaction can be solved analytically,
which makes them easier to analyze. There are, however, also
many systems where systems only interact locally (nearest-
neighbor like).

In this paper, we present a detailed study on the influence of
the topology in aforementioned class of interacting units. We
focus on two distinctive approaches: minimal models, which
can be treated analytically, and more complicated systems,
where we focus on numerical analysis. In the former class,
we focus on systems with all-to-all interaction and a one-to-
all interaction (also known as stargraph), in which a single
central spin is interacting with all other units. After that, we
go beyond the minimal models by considering the influence
of homogeneous and heterogeneous interaction topologies.
We show that, for small values of individual energies βνε of
each occupied unit, the lattice topology can have a significant
influence on the system performance, in which the increase
of interaction V among units can give rise to a discontinuous
phase transition. Conversely, as βνε increases, the phase tran-
sition is absent and the topology plays no crucial role and the
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models seem mutually similar. In this case one can get ap-
proximate expressions for thermodynamic quantities through
a phenomenological two-state model.

The paper is structured as follows: In Sec. II, we introduce
the model and its thermodynamics. Section III describes the
lattice topologies, which is analysed. In Sec. IV, the afore-
mentioned minimal models are studied. In Sec. V, the more
complicated topologies are studied. Conclusions are drawn in
Sec. VI.

II. MODEL AND THERMODYNAMICS

We are assuming a system composed of N interacting
two-state nanomachines. The two states of each individual
machine are denoted as σi = 0(1) according to whether it
occupies the lower(upper) state with energy 0(ε). We will
consider that the system is in contact with two thermal baths
at different temperatures. Furthermore, there will be a noncon-
servative force (described below) that extracts work from the
system, in this way creating a thermal engine. The state of the
full system is then described by σ ≡ (σ1, σ2, ..., σi, ..., σN ),
where σi describes the state of the ith machine. Throughout
this paper, we shall restrict our analysis on transitions between
configurations σ and σ i differ by the state of one machine,
namely that of unit i. In this case, the time evolution of
probability p(σ, t ) satisfies a master equation,

ṗ(σ, t ) =
2∑

ν=1

N∑
i=1

{
ω

(ν)
i (σ i )p(σ i, t ) − ω

(ν)
i (σ )p(σ, t )

}
, (1)

where σ i ≡ (σ1, ..., 1 − σi, ..., σN ) and index ν = 1(2) ac-
counts for transitions induced by the cold(hot) thermal bath.
The transition rate due to the contact with the νth thermal bath
are assumed to be of Arrhenius form

ω
(ν)
i (σ ) = �e− βν

2 {Ea+�Ei (σ )+Fν }, (2)

where �Ei(σ ) is the difference of energy between states σ i

and σ and �e−βνEa/2 accounts to the coupling between the
QD and thermal bath, expressed in terms of the activation
energy Ea and βν = 1/Tν , (hereafter we shall adopt kB = 1).
As stated previously, the interaction among units will depend
on the lattice topology, whose energy of system is given by
the generic expression

E (σ ) = εn +
N∑

i=1

V

〈k〉
ki∑

j=1

(
δσi,1−σi+ j + δ1−σi,σi+ j

)
, (3)

where n = ∑N
i=1 σi denotes the total number of units in the

state of energy ε, V is the interaction strength,provided each
unit i and each of its nearest neighbor i + j occupy distinct
states, and 〈k〉 is the average number of neighbours to which
each unit is connected. The right-hand side of Eq. (3) consists
of two existing possibilities of interaction: the former with
i and i + j occupying the upper and lower states (δσ,1−σi+ j ),
respectively, and the latter is precisely the other way around
(δ1−σi,σi+ j ), where δ is the Kronecker delta. It has been inspired
by earlier studies about interacting systems, in which a simi-
lar type of interaction is consider to describe the interaction
between nanomachines in distinct states [52,53]. Also, this
interaction shares some similarities with recent papers [58,59]

in which the tunneling between two quantum dots is investi-
gated via the inclusion of a similar term. We will both look
at topologies where ki, the number of nearest neighbors of
the unit i is independent of i, 〈k〉 = ki (all-to-all interactions
and homogeneous systems) and cases where ki depends on i
(stargraph and heterogeneous systems). One of these earlier
studies also used similar types of work sources: We consider
the worksource given by Fν with Fν = (−1)ν (1 − 2σi )F , in
such a way that transitions 0 → 1 (1 → 0) are favored ac-
cording to whether the system is placed in contact with the
cold (hot) thermal baths. This type of interaction can also be
mapped on other types of systems such as kinesin [60,61],
photo-acids [62] and ATP-driven chaperones [63].

From Eq. (1) together transition rates given by Eq. (2),
the time evolution of mean density ρ = 〈σi〉 and mean energy
〈E (σ )〉 = ∑

σ E (σ )p(σ, t ) obey the following expressions:

ρ̇ = 〈
(1 − 2σi )

(
ω

(1)
i (σ ) + ω

(2)
i (σ )

)〉
, (4)

and

d

dt
〈E (σ )〉 = P+ 〈Q̇1〉 + 〈Q̇2〉, (5)

respectively, where P and 〈Q̇ν〉 denote the mean power and
the heat exchanged with the νth thermal bath and are given by
[52,56]

P = F
N∑

i=1

〈
ω

(1)
i (σ ) − ω

(2)
i (σ )

〉
, (6)

and

〈Q̇ν〉 = 〈
(�Ei(σ ) + F (−1)(ν) )ω(ν)

i (σ )
〉
, (7)

the standard stochastic thermodynamics expressions for
power and heat respectively [3].

Throughout this paper, we assume that the system has
relaxed to a steady state, p(σ, t ) → pst (σ ), i.e., P+ 〈Q̇1〉 +
〈Q̇2〉 = 0. In this case, one can also write the entropy produc-
tion as

〈σ̇ 〉 =
2∑

ν=1

∑
σ

N∑
i=1

J (ν)(σ i) log
ω

(ν)
i (σ i )

ω
(ν)
i (σ )

, (8)

with J (ν)(σ i) = ω
(ν)
i (σ i )pst (σ i ) − ω

(ν)
i (σ )pst (σ ). One can

verify from Eq. (2) that the entropy production, Eq. (8)
assumes the classical form 〈σ̇ 〉 = −β1〈Q̇1〉 − β2〈Q̇2〉, in sim-
ilarity with equilibrium thermodynamics.

Under the correct choice of parameters, an amount of
heat extracted from the hot bath 〈Q̇2〉 > 0 can be partially
converted into power output P < 0 and the system can be
used as a heat engine. The efficiency is then defined as
η = −P/〈Q̇2〉, which satisfies the classical relation η � ηc =
1 − β2/β1. Conversely, the pump regime is characterized by
〈Q̇2〉 < 0, P > 0 and ηc < η � ∞.

III. LATTICE TOPOLOGIES

As stated in the previous section, we intend to study the
differences in thermodynamic quantities between topologies.
We will focus on two classes of systems: minimal struc-
tures, namely stargraph and all-to-all interacting systems, and
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beyond minimal structures, comprising homogeneous and het-
erogeneous systems. In stargraph systems the interactions are
restricted to a central unit (hub), which interacts with its all
nearest-neighbor sites (leaves).

Homogeneous and heterogeneous structures present re-
markably different properties and has been subject of exten-
sive investigation. While the former case has been largely
studied for addressing the main properties of graphs, the lat-
ter describes a broad class of systems, such as ecosystems,
the internet, the spreading of rumors and news, citations,
and others, in which the agents form heterogeneous net-
works and are approximately scale-free, containing few nodes
(called hubs) with unusually high degree as compared to
the other nodes of the network. For the homogeneous case,
we shall consider those characterized by a fixed neigh-
borhood per unit, being grouped out in two categories,
including a regular arrangement (interaction between near-
est neighbors) or a random-regular structure, in which all
units have the same number of nearest neighbors, but are
randomly distributed. Such latter case is commonly generated
through a configurational by Bollobás [64]. Finally, among
the distinct heterogeneous structures, we will consider the
Barabasi-Albert scale-free network, being probably the most
well-known example of heterogeneous networks [65]. The
Barabasi-Albert (BA) model is based on a preferential attach-
ment mechanism, in which the degree distribution follows a
power law with scaling exponent γ = 3 [65].

IV. MINIMAL MODELS FOR COLLECTIVE EFFECTS:
ALL-TO-ALL INTERACTIONS VERSUS STARGRAPH

We first look at the thermodynamic properties of “all-
to-all” and stargraph minimal topologies. There are several
reasons for this. First, both of these models can in principle
be solved exactly. Second, these structures can be seen as
each others opposite. Third, the thermodynamic properties
stargraph topologies can give some insights about heteroge-
neous networks (e.g., Barabasi-Albert), in which some nodes
are highly connected and most the remaining ones have few
connections [30,66,67].

A. Steady-state distribution

For an all-to-all topology, the state of the system is fully
characterized by the number of units in the upper state, n =∑N

i=1 σi. In terms of total occupation, the master equation for
the all-to-all system simplifies to

ṗ(n, t ) =
2∑

ν=1

∑
α∈{−1,1}

[
ω

(ν)
n,n+α p(n + α, t ) − ω

(ν)
n+α,n p(n, t )

]
.

(9)
The steady-state distribution for pst (n) then satisfies [52]

pst (n) = 1

Z

[
n−1∏
m=0

ωm+1,m

]⎡
⎣ N∏

m=n+1

ωm−1,m

⎤
⎦, (10)

where Z is the normalization factor and ωi j = ∑2
ν=1 ω

(ν)
i j ,

with transition rates solely expressed in terms of n
by ω

(ν)
m+1,m = �(N − m)e− βν

2 {Ea+ε+�E+(−1)νF } and ω
(ν)
m−1,m =

�me− βν
2 {Ea−ε−�E−(−1)νF } with �E = V m(N − m)/N . The

thermodynamic quantities can be evaluated from the
probability distribution such that

P = F
N−1∑
n=0

(
J (1)

n+1,n − J (2)
n+1,n

)
, (11)

〈Q̇ν〉 =
N−1∑
n=0

[ε + �E + (−1)νF ]J (ν)
n+1,n, (12)

expressed in terms of the probability current J (ν)
n+1,n =

ω
(ν)
n+1,n pst (n) − ω

(ν)
n,n+1 pst (n + 1). An overview of the model

features in all-to-all topologies will be depicted next (see e.g.,
Fig. 2 and Refs. [52,53]), being strongly dependent on the
interplay between individual ε and interaction V parameters.
For βνε � 1, the increase of interaction strength V favors a
full occupation of units in the upper state ρ → 1, whereas ρ

exhibits a monotonous decreasing behavior upon V is raised
for βνε 	 1. The crossover between above regimes yields for
finite ε and depends on Ea, β1/β2 and F . Another important
point to be highlighted concerns that as Ea is increased and
βνε is small, the interaction marks two distinct trends of the
density: its decreasing behavior of prior the threshold inter-
action followed by sharp increase towards ρ → 1 at V = V0

[see also e.g., Fig. 2(a) below]. Such behavior corresponds to
a discontinuous phase transition [see e.g., Fig. 6(a) below]. In
Sec. IV B, we shall investigate these consequences over the
system performance.

It is in principle possible to calculate the exact steady-state
distribution for a finite-size stargraph by diagonalising the
evolution matrix. However, some insights into the dynamics
can be obtained by doing appropriate approximations, as we
show now. First, we note that the state of the system can be
written in terms of n and c, denoting the number of leaves
and the hub in the upper state, respectively. The associated
probability distribution p(n, c, t ) satisfies

ṗ(c, n, t ) =
2∑

ν=1

∑
α∈{−1,1}

(
J (c,ν)

n,α (t ) +K (n,ν)
c (t )

)
, (13)

where

J (c,ν)
n,α (t ) ≡ ω

(c,ν)
n,n+α p(c, n + α, t ) − ω

(c,ν)
n+α,n p(c, n, t ), (14)

and

K (n,ν)
c (t ) = κ

(n,ν)
c,1−c p(1 − c, n, t ) − κ

(n,ν)
1−c,c p(c, n, t ), (15)

with n = 0, 1, ..., N − 1 and transition rates rewritten in the
following way:

ω
(c,ν)
n+1,n = �(N − 1 − n)e− βν

2 [Ea+ε+V (1−2c)+F (−1)ν ], (16)

ω
(c,ν)
n−1,n = �ne− βν

2 [Ea−ε−V (1−2c)−F (−1)ν ], (17)

κ
(n,ν)
1−c,c = �e− βν

2 {Ea+(1−2c)[V (N−1−2n)+ε]+F (−1)ν }. (18)

We assume that the hub dynamics evolves into a faster time
scales than the relaxation of the surrounding leaves, in such a
way that it can be assumed/treated as thermalized at a local
leaf transition n ± 1. In other words, transitions are such that
(κ (n,1)

0,1 + κ
(n,2)
0,1 )p(1|n) = (κ (n,1)

1,0 + κ
(n,2)
1,0 )p(0|n) and hence, the
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joint probability pst (1|n) is given by

pst (1|n) = κ
(n,1)
1,0 + κ

(n,2)
1,0

κ
(n,1)
1,0 + κ

(n,2)
1,0 + κ

(n,1)
0,1 + κ

(n,2)
0,1

, (19)

where pst (0|n) = 1 − pst (1|n). By summing Eq. (13) over
c, together the property p(n, c) = p(c|n)p(n), one arrives at
the following equation for the time evolution of probability
p(n, t ),

ṗ(n, t ) =
2∑

ν=1

∑
α∈{−1,1}

π
(ν)
n,n+α p(n + α, t ) − π

(ν)
n+α,n p(n, t ),

(20)
where

π
(ν)
n+α,n = pst (0|n)ω(0,ν)

n+α,n + pst (1|n)ω(1,ν)
n+α,n. (21)

Since Eq. (20) is analogous to Eq. (9) for the all-to-all case,
the probability distribution of leaves pst (n) is given by

pst (n) = 1

Z

[
n−1∏
m=0

πm+1,m

]⎡
⎣ N−1∏

m=n+1

πm−1,m

⎤
⎦, (22)

in which πi, j ≡ ∑2
ν=1 π

(ν)
i, j and Z is again the corresponding

normalization factor. Thermodynamic properties can be di-
rectly evaluated from Eqs. (19) and (22), such as the system
density given by ρ = ∑N−1

n=0 [n + pst (1|n)]pst (n)/N , where the
probability ph of hub to be in the upper state with individ-
ual energy ε reads ph = ∑N−1

n=0 pst (1|n)pst (n). As previously,
from the probability distribution, thermodynamic quantities
are directly evaluated and given by

P = F
N−1∑
n=0

[
L(1)

n+1,n −L(2)
n+1,n +K (n,1)

1 −K (n,2)
1

]
, (23)

where L(ν)
n+1,n = π

(ν)
n+1,n pst (n) − π

(ν)
n,n+1 pst (n + 1) and

pst (c, n) = pst (c|n)pst (n) was considered. Likewise, each
heat component 〈Q̇ν〉 is given by

〈Q̇ν〉 =
N−1∑
n=1

∑
c

[ε + V (1 − 2c) + (−1)νF ]J (c,ν)
n+1,−1

+
N−1∑
n=0

[V (N − 1 − 2n) + ε] + F (−1)ν]K (n,ν)
1 ,

(24)

where J (c,ν)
n+1,−1 and K (n,ν)

1 are evaluated from Eqs. (14) and
(15) in the NESS.

Figure 1 compares the evaluation of system density ρ from
the exact (continuous lines) method with the approximate
(symbols) method. Both curves agree remarkably well.

B. General features and heat maps for finite N

To reduce the number of parameters, we will assume that
β2 = 1 unless specified otherwise. Furthermore, we will look
at ε = 0.1 and 1 and vary β1. Figures 2 and 3 summarize the
main findings about minimal models for interacting for a small
system of size N = 20.

FIG. 1. For the stargraph, the comparison between the exact
system density ρ, obtained by diagonalising the evolution ma-
trix (continuous lines), and the approximation Eqs. (19) and (22)
(symbols). Circles and stars correspond to β1 = 5 and β1 = 10,
respectively. Parameters: N = 30, F = 1, Ea = 2, and β2 = 1.

As the all-to-all, the increase of interaction strength V also
changes ρ significantly for the stargraph and, consequently,
affects the engine performance. While intermediate densities
favor the system operation as a pump, their emptying when V
is increased changes the operation regime, from a pump to a
heat engine and also increases the engine performance, whose

FIG. 2. System density ρ (top), efficiency η/ηc (center), and
power 〈P〉 ≡ P/N per particle (bottom) vs V for the all-to-all case,
for ε = 0.1 (left panels) and ε = 1 (right panels). Discontinuities
in the efficiency correspond to crossovers from pump-dud and dud-
engine regimes. Parameters: F = 1, Ea = 2, and β2 = 1.
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FIG. 3. System density ρ (top), efficiency η/ηc (center) and
power 〈P〉 ≡ P/N per particle (bottom) vs V for the stargraph case,
for ε = 0.1 (left panels) and ε = 1 (right panels). Symbols denote
results from numerical simulations. Parameters: F = 1, Ea = 2, and
β2 = 1.

performances are meaningfully different for ε = 0.1 (smaller)
and 1 (larger) individual βνε’s. The maximal reachable effi-
ciency ηME is always lower than ηc for finite N , as expected.

Another common behavior in both cases is the fact that
large V favors a full occupation of the upper state when βνε is
small [see e.g., Figs. 2(a) and 3(a)], implying that the system
operates dudly when most of units are in the upper state,
whose crossover from heat to dud regime is marked by a
discontinuous phase transition. Conversely, the increase of ε

marks the absence of phase transition for a broader range of V
and consequently not only extends the engine regime but also
improves system performance. Despite closely dependent on
parameters, both η and P exhibit similar trends as β1 is raised
for the all to all case. Although having inferior performance
than the all-to-all (at least for the chosen set of parameters),
the stargraph yield some striking features for smaller N (see
e.g., Figs. 3, 5, and 6), including an intermediate sets of V
in which both η and P do not behave monotonously, charac-
terized by a local and global maximum (ηMP) and minimum
(PmP), as can be seen in Figs. 3(e)–3(f). In all cases, exact re-
sults (continuous) agree very well with numerical simulations
(symbols).

A global phase portrait is depicted in Figs. 4 and 5 for N =
20. These results are in agreement with the aforementioned
and reinforce previous findings, including larger maximum
efficiencies and power for all-to-all interactions than stargraph
ones for small N’s, but such later one presents two distinct
regions (for lower and larger V ’s), in which the heat engine
operates more efficiently. Similar findings are shown in the
Appendix for P’s.

In Secs. IV C and IV D, remarkable aspects about both
minimal structures, including the existence of a discontinuous
transition for smaller individual energies as well as its sup-
pression as ε increases, shall be described.

C. Effect of system sizes and phase transitions

The first common aspect regarding the behavior of star-
graph and all-to-all interaction structures is that the increase
of interaction V (for smaller values of βνε) not only influ-
ences the system properties and the engine’s performance but

FIG. 4. For the all-to-all topology, the efficiency heat maps for various choices of ε’ as in Fig. 3. HE, P, and D denote the heat engine,
pump, and dud regimes, respectively. Parameters: N = 20, Ea = 2, β1 = 10, β2 = 1.
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FIG. 5. For the stargraph topology, the efficiency heat maps for various choices of ε, as in Fig. 3. Parameters: N = 20, Ea = 2, β1 = 10,
β2 = 1.

also gives rise to a phase transition characterized by a full
occupancy of units in the upper state as N → ∞. However,
the behavior of finite systems provides some clues about the
classification of phase transition, as described by the finite-
size scaling theory [68–74]. In the present case, the existence
of a crossing among curves for distinct (finite) system sizes N
reveals a discontinuous phase transition [73,74], as depicted in
Fig. 6. More specifically, the density curves ρ strongly depend
on the system size near phase transition V0 [V0 = 3.712(3) and
1.942(2) for the all-to-all and stargraph, respectively], whose
intersection among curves is consistent to a density jump for
N → ∞. Such features are also manifested in the behavior of
both η and P (see arrows in Fig. 6), marking the coexistence
between heat engine and dud regimes. The opposite scenario
is verified by raising ε, as depicted in Fig. 7 for ε = 1 for
both all-to-all and stargraph topologies. Unlike the behavior
of ε = 0.5, the phase transition is absent for both structures
and as a consequence, the heat engine regime is broader.

We close this section by stressing that, although discontin-
uous phase transition have already been reported for similar
systems [52], the existence of a phase transition in the star-
graph structure is revealing and suggests that a minimal
interaction structure is sufficient for introducing collective
effects that are responsible for the phase transition.

D. The N → ∞ limit and phenomenological descriptions

A question, which naturally arises concerns the system be-
havior in the thermodynamic limit N → ∞ for both all-to-all
and stargraph structures. The former case is rather simple and
can be derived directly from transition rates, in which system
behavior is described by a master equation with nonlinear
transition rates. Since the all-to-all dynamics is fully charac-
terized by the quantity n, the macroscopic dynamics is given
by the probability of occupation p1, corresponding to ρ in
the thermodynamic limit p1 = limN→∞

∑N
i=1 ipst (i)/N (p0 =

1 − p1) [52,56] and described by the master equation that has

FIG. 6. The effect of system size in minimal collectively models:
Left and right panels depict the behavior of density (top), η/ηc

(center), and 〈P〉 ≡ P/N (bottom) for the all-to-all and the stargraph,
respectively. Arrows indicate the discontinuous phase transitions,
characterized by the crossing among curves. The inset in the right
bottom panel indicates the hub density for the stargraph model.
Dashed lines: Results for N → ∞. Parameters: F = 1, Ea = 2, ε =
0.5, β1 = 10, and β2 = 1.
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FIG. 7. Depiction of system density (top), η/ηc (center), and
〈P〉 ≡ P/N (bottom) for distinct system sizes and also for the N →
∞ limit for all-to-all(left) and stargraph(right). The monolog plot of
ρ in (a) has been considered in order to validate Eq. (30). Dotted
lines: the phenomenological description for the all-to-all case. Pa-
rameters: β1 = 10, β2 = 1, Ea = 2, ε = 1, and F = 1.

the form ṗ1 = ∑2
ν=1 J (ν)

10 , such that

ṗ1 =
2∑

ν=1

[
ω

(ν)
10 (1 − p1) − ω

(ν)
01 p1

]
, (25)

where transition rates ω
(ν)
10 and ω

(ν)
01 denote the transition the

lower to the higher state and vice versa, respectively, and are
listed below:

ω
(1)
10 = �e− β1

2 {Ea+�E10−F },

ω
(2)
01 = �e− β2

2 {Ea−�E10+F }, (26)

where �E10 = V (1 − 2p1) + ε. For N → ∞, expressions for
the power 〈P〉 ≡ P/N and heat per unit 〈Q̇ν〉 ≡ 〈Q̇ν〉/N from
Eqs. (11) and (12) read

〈P〉 = F
(
J (1)

10 − J (2)
10

)
and (27)

〈Q̇ν〉 = (�E10 + (−1)νF )J (ν)
10 , (28)

respectively.

p1 is obtained by solving Eq. (25). As shown in Sec. IV C,
small and large values of individual energy βνε mark different
behaviors a N increases, the former yielding a discontinu-
ous phase transition. Unlike the behavior of finite N , the
discontinuous phase transition is featured by the existence
of a hysteretic branch in which the system has a bistable
behavior [52]. We shall focus on ε = 1, which describes the
behavior of large βνε’s, as depicted in Fig. 7, together with
a comparison with different N’s. As can be seen in this fig-
ure, in both cases, maximum efficiencies ηME ’s (for coupling
strength V = VME ’s) and (absolute) minimum powers PmP’s
(for coupling strength V = VmP’s) increase as N is raised
and approaching to the N → ∞, consistent with enhancing
collective effects. However, contrasting with the power, the
efficiency for smaller system sizes is larger for V > VME .
This can be understood from the interplay between power
and 〈Q̇2〉. For V > VmP, the power mildly changes with N ,
whereas 〈Q̇2〉/N monotonically increases with N . Likewise
for VME < V < VmP, but in this case 〈Q̇2〉/N increases “faster”
than 〈P〉.

Although Eq. (25) can be solved numerically for any set of
parameters, its nonlinear shape makes it impossible to obtain
analytical results. However, it is possible to get some insights
about the system in the heat engine regime when p1 � 1 (and
p0 is close to 1). In this case, the terms p1 and p0 appearing
in transition rates can be neglected and treated as p0 ≈ 1, re-
spectively, in such a way one arrives at the following formula:

p1 ≈ ω
(1)
10 + ω

(2)
10

ω
(1)
01 + ω

(2)
01 + ω

(1)
10 + ω

(2)
10

. (29)

By inserting transition rates from Eq. (26) into Eq. (29), we
arrive at the following approximate expression for p1:

p1 ≈ A1e− 1
2 β1(V +ε−F ) +A2e− 1

2 β2(V +ε+F )

A1e
1
2 β1(V +ε−F ) +A2e

1
2 β2(V +ε+F )

, (30)

where Aν = e− βν
2 Ea . Approximate expressions for 〈P〉 and

〈Q̇ν〉’s in the heat engine are promptly obtained inserting
Eq. (30) into Eqs. (27) and (28), respectively. Although they
are cumbersome, they solely depend on the model parameters
β1, β2, Ea, ε, F , and V . The comparison between exact and
approximate results is also shown in top panels from Fig. 7
(symbols) for ε = 1, in which no phase transition yields (at
least for limited V ’s). As can be seen, the agreement is very
good for p1 � 1.

The limit N → ∞ for the stargraph is obtained in a similar
way, but leaves and hub are treated separately. Given that
Eqs. (9) and (22) present similar forms, the density of leaves
p1 = limN→∞

∑N−1
i=1 ipst (i)/N also has the form of Eq. (29)

and are given by

p1 = ω
(c,1)
10 + ω

(c,2)
10

ω
(c,1)
10 + ω

(c,1)
01 + ω

(c,2)
10 + ω

(c,2)
01

, (31)

where transition rates given by

ω
(c,ν)
10 = �e− βν

2 [Ea+ε+V (1−2c)+F (−1)ν ], (32)

ω
(c,ν)
01 = �e− βν

2 [Ea−ε−V (1−2c)−F (−1)ν ]. (33)
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FIG. 8. Results for homogeneous topologies with distinct con-
nectivities k’s. Depiction of density ρ (top), efficiency η/ηc (center),
and 〈P〉 ≡ P/N (bottom) vs coupling for ε = 0.1 (left) and 1
(right). Symbols RR and SL denote square-lattice and random-
regular topologies, respectively. Parameters: β1 = 5, β2 = 1, F = 1,
and Ea = 2.

Since p1 is dependent on the hub occupation, it is worth
investigating its behavior when N → ∞. From Eq. (19),
pst (1|n) → 0 and 1 for n < N/2 and n > N/2, respectively,
as N → ∞. Also, ph = ∑N−1

n=0 pst (1|n)pst (n)/N → 0 and 1
when p1 is small and large, respectively. From Eqs. (23) and
(25), expressions for the power 〈P〉 ≡ P/N and heat 〈Q̇ν〉 ≡
〈Q̇ν〉/N are obtained by noting that the hub contribution van-
ishes as limit N → ∞ and hence they read

〈P〉 = F
[(

π
(1)
10 − π

(2)
10

)
(1 − p1) − (

π
(1)
01 − π

(2)
01

)
p1

]
, (34)

and

〈Q̇ν〉 = [ε + V (1 − 2c) + (−1)νF ]
[
π

(ν)
10 − (

π
(ν)
10 + π

(ν)
01

)
p1

]
,

(35)

respectively, where π
(ν)
10 = ω

(0,ν)
10 and π

(ν)
10 = ω

(1,ν)
10 provided

ph = 0 and 1, respectively. Efficiency η is straightforwardly
evaluated using the above equations

η = − F
[(

π
(1)
10 − π

(2)
10

)
(1 − p1) − (

π
(1)
01 − π

(2)
01

)
p1

]
[ε + V (1 − 2c) + F ]

[
π

(2)
10 − (

π
(2)
10 + π

(2)
01

)
p1

] . (36)

FIG. 9. Results for heterogeneous topologies with distinct mean
connectivities 〈k〉. Depiction of ρ (top), efficiency η/ηc (center), and
〈P〉 ≡ P/N (bottom) vs coupling for ε = 0.1 (left) and 1 (right).
Parameters: β1 = 5, β2 = 1, F = 1, and Ea = 2.

We pause again to make a few comments about Eq. (36).
For small values of βνε, in which a discontinuous phase tran-
sition yields at V0, ph jumps from 0 to 1 for V < V0− and V >

V0+, respectively, and ph = 1/2 precisely at V = V0. Second,
from the hub behavior, it follows that p1 jumps from p1− to
p1+, where p1−(p1+) are obtained from Eq. (31) evaluated at
c = 0 (for V → V0−) and c = 1 (for V → V0+), respectively.
Third, the order-parameter jump is also followed by disconti-
nuities in the behavior of thermodynamic quantities, such as
〈P〉 and η. They are evaluated from Eqs. (34) and (36) at c = 0
and V = V0− to c = 1 and V = V0+, respectively. Fourth and
last, large βνε’s mark no phase transitions for limited values
of V and hence the power and efficiency are evaluated at c = 0
(since ph = 0). All above findings, together the reliability of
Eqs. (31), (34), and (36) for small and large values of βνε,
are depicted in bottom panels from Figs. 6 and 7 for ε =
0.5 and 1, respectively. As for the all-to-all, thermodynamics
quantities for finite N approach to the N → ∞ limit as N is
increased.

We close this section by drawing a comparison between all-
to-all and stargraph performances in the heat engine regime
for the same set of parameters in Figs. 6 and 7. While the for-
mer structure is more efficient, stargraph ones present larger
power outputs.
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V. BEYOND THE MINIMAL MODELS: HOMOGENEOUS
AND HETEROGENEOUS TOPOLOGIES

In this section, we will go beyond the minimal models
and look at both homogeneous and heterogeneous structures.
Unlike minimal models, it is not possible to obtain analytical
expressions and our analysis will focus on numerical simula-
tions using the Gillespie method [75]. Due to the existence of
several parameters (β1, β2, F, ε,V , and Ea), we shall center
our analysis on F = 1, β1 = 5, and β2 = 1, in which results
minimal models predict a marked engine regime as V is var-
ied. Figures 8 and 9 depict some results for homogeneous and
heterogeneous structures, respectively. Starting our analysis
for ε = 0.1 (top panels) and homogeneous arrangements, we
see [Figs. 8(a) and 8(c)] that the system performance increases
by increasing the connectivity k and there are small dif-
ferences between regular and random-regular arrangements.
Unlike the homogeneous case, differences between 〈k〉’s are
particularly clear for heterogeneous structures, where the heat
engine is absent for 〈k〉 = 4. In this case, the system only
operates as a pump, similarly to the stargraph, see e.g., Fig. 3
for N = 20. On the other hand, the heat engine is present for
〈k〉 = 10 and 40. A possible explanation is that the former
and latter cases are closer to the stargraph and the all to all
structures, respectively.

The results for ε = 1 (bottom panels) are remarkably dif-
ferent. We see that the heat engine regime becomes much
larger in terms of V (with ρ monotonously decreasing as V
goes up). Furthermore, one can see that the influence of the
lattice topology and neighborhood becomes negligible and the
results become very similar to those of the all-to-all topology,
revealing that the role of topology is not so important for
larger βνε’s.

VI. CONCLUSIONS

In this paper, we studied the role of topology of interactions
on the performance of thermal engines. We investigated four
distinct topologies for a simple setup composed of interacting

unicyclic machines, each one allowed to be in two states: all-
to-all, stargraph, homogeneous and heterogeneous structures.
Different findings can be extracted from the present study.
Interestingly, the interplay among parameters (individual
βνε, interaction energies V and temperatures) provides two
opposite scenarios, in which the role of topology is impor-
tant and less important respectively, depending on whether
βνε is small or large. The former case not only shows a
discontinuous phase transition as the interaction is raised,
but also how the increase of neighborhood (both homo-
geneous and heterogeneous) increases the efficiency but in
contrast its power is inferior. Since a majority fraction of are
empty in the latter case, the topology of interactions plays no
major role.

As a final comment, we mention some ideas for future
research. It might be interesting to study the the full statis-
tics of power and efficiency in different lattice topologies,
in order to tackle the influences of fluctuations. Also, it
might be interesting to compare the performance of different
engine projections, such as those composed of interacting
units placed in contact with only one thermal bath in in-
stead of two, in order to compare the system’s performances
as well a the influence of lattice topology in those cases.
Finally, it shall be interesting to investigate the inclusion
of interactions between units in the same sate (as consid-
ered in Ref. [58]) as its competition with interactions given
by Eq. (3).
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FIG. 10. For the all-to-all case, 〈P〉 heat maps for the same ε in Fig. 3. Parameters: N = 20, Ea = 2, β1 = 10, and β2 = 1.
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FIG. 11. Heat maps for the power of the stargraph model for different values of ε. Parameters: N = 20, Ea = 2, β1 = 10, and β2 = 1

APPENDIX: POWER-OUTPUT HEAT MAPS
FOR THE MINIMAL MODELS

In this Appendix, we show in Figs. 10 and 11 the heat
maps for the power output for both all-to-all and stargraph
cases for N = 20 for the same parameters from Figs. 4
and 5.

Finally, Fig. 12 draws a global comparison among all
structures for ε = 1. As can be seen, there is small differ-
ence among structures, conferring some somewhat superior
efficiencies for large connectivities.

FIG. 12. Depiction of η/ηc and 〈P〉 for all the topologies. Sym-
bols RR, SL, and BA denote square-lattice, random-regular, and
heterogeneous (Barabasi-Albert) topologies, respectively. Parame-
ters: β1 = 5, β2 = 1, Ea = 2, ε = 1, and F = 1.
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