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Improved particle swarm optimization algorithm and its application to search for new magnetic
ground states in the Hubbard model
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An improved particle swarm optimization algorithm is proposed, and its superiority over the standard particle
swarm optimization algorithm is tested on two typical benchmark functions. By employing this algorithm to
search for the magnetic ground states of the Hubbard model on the real-space square lattice with finite size based
on the mean-field approximation, two new magnetic states, namely, the double-striped-type antiferromagnetic
state and the triple antiferromagnetic state, are found. We further perform mean-field calculations in the
thermodynamical limit to confirm that these two new magnetic states are not a result of a finite-size effect,
where the properties of the double-striped-type antiferromagnetic state are also presented.
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I. INTRODUCTION

Antiferromagnetism has attracted tremendous interest due
to the fact that the parent states of cuprates and iron-based
superconductors are either antiferromagnets or paramagnets
with antiferromagnetic fluctuations, such as the checkerboard
antiferromagnetic (CAF) insulator of cuprates, nearly degen-
erate double-stripe (DAF) and plaquette antiferromagnetic
(PAF) order in FeTe [1,2], pair-checkerboard antiferromag-
netic (PCAF) order in monolayer FeSe thin film [3,4],
molecular-intercalated FeSe [5], and AxFe2−ySe2 [6], as well
as stripe-type antiferromagnetic (SAF) order in other iron-
based mother materials [7–9], which indicates a magnetic
origin of the two high-Tc unconventional superconductors.

Therefore much effort has been spent on studying the
properties of these magnetic states based on models related
to these two superconducting families. A simple Heisenberg
model with the nearest- and next-nearest-neighbor intralayer
couplings has been used to explain the transition from
CAF to SAF [10]. Additionally, a combination of this
simple Heisenberg model with the third-neighbor intralayer
coupling solely [11,12], or with three couplings [13], namely,
the third-neighbor intralayer coupling, nearest interlayer
coupling, and intralayer nearest-neighbor biquadratic
coupling, is introduced to further include DAF and PAF.
In addition to these models, an effective orbital-degenerate
double-exchange model consisting of both itinerant electrons
and localized spins is used to take CAF, DAF, and SAF into
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consideration [14]. Alternatively, the Hubbard model, which
covers both weak- and strong-coupling limits for magnetism,
is also employed to investigate these magnetic states, for
example, the single-orbital Hubbard model with the nearest-
and next-nearest-neighbor hoppings. Using methods like
variational cluster approximation (VCA) [15,16], variational
Monte Carlo [17], and mean-field theory [18], the presence of
CAF and SAF in this model is proposed. Apart from these two
states, PCAF is also found in this model by the path-integral
renormalization group method [19] and variational cluster
approximation [20]. Recently it was pointed out that this
Hubbard model can serve as a unified minimal model to
describe all the magnetic states mentioned above [21].

However, despite numerous investigations, only a few
new magnetic states which probably exist in the experiment
are predicted based on the aforementioned superconductor-
related magnetic models. For example, the spiral and stag-
gered trimer states are predicted in the J1-J2-J3-K Heisenberg
model [22], or a spiral state is found in a frustrated Hubbard
model containing the nearest- and next-nearest-neighbor hop-
pings, where the latter hopping breaks C4 symmetry [23]. The
lack of new magnetic states may be due to the weakness of
conventional methods, such as variational cluster approxima-
tion, variational Monte Carlo, mean-field theory, etc., as they
require preparation of the desired configurations while it is
impossible to exhaust all magnetic patterns. Thus a natural
question arises regarding whether more new exotic magnetic
states occur in the aforementioned unified minimal Hubbard
model when a method superior to conventional methods is
used. Noticeably, the particle swarm optimization (PSO) al-
gorithm is proven to be a powerful approach [24,25], which
is also used in the prediction of new materials [26–29] and
the estimation of cosmological parameters [30,31], etc. Not-
ing that PSO can handle problems with numerous energy
minima [26] and generate random particles, it may be suit-
able to search for new magnetic states, where a magnetic
pattern is viewed as a particle. Nevertheless, the insufficient
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performance of standard PSO that sometimes converges
slowly [32] or tends to converge to local minima [33]
impedes such application. Although lots of attempts have
been undertaken to improve the performance of the standard
PSO [34–41], an improved PSO with the hyperparameters
(including the inertial weight and learning factors) depend-
ing on the individual character of a particle has not yet
been proposed. Therefore, proposing an improved PSO with
particle-dependent hyperparameters and using it to search for
new magnetic states in the aforementioned Hubbard model is
an interesting work.

In this paper we propose an improved PSO where the
hyperparameters of a specific particle depend on its present
position, corresponding local best, and global best. We first
show the superiority of this improved PSO over standard PSO
on two typical benchmark functions, namely, the Griewank
function and Rastrigin function. Then, by employing this
improved PSO to search for the magnetic ground state of
the Hubbard model on the real-space square lattice with a
finite size of 24 × 24 based on the mean-field approximation,
two new magnetic states are found, namely, the double-
striped-type state (DSAF) and the triple antiferromagnetic
state (TAF). By comparing the free energies of these two new
states with their competing states in corresponding parameter
space using mean-field theory in the thermodynamical limit,
we further confirm that these two new magnetic states are
not a result of a finite-size effect. In addition, we present the
properties of the DSAF, which occurs at a region of weak
frustration.

Our paper is organized as follows. Section II describes the
Hubbard model and the standard PSO. Section III presents our
main results, including the superiority of our improved PSO
over the standard PSO, the search of new magnetic ground
states of the Hubbard model on the square lattice with a
finite real-space size using improved PSO, and the mean-field
calculations in the thermodynamical limit. Section IV presents
a detailed discussion, and Sec. V concludes with a summary.

II. MODEL AND METHOD

The Hubbard model on a square lattice with the nearest-
and next-nearest-neighbor hoppings we studied is given by

H = −t1
∑

〈i, j〉,σ
c†

iσ c jσ − t2
∑

〈〈i, j〉〉,σ
c†

iσ c jσ + U
∑

i

ni↑ni↓, (1)

where c†
iσ (ciσ ) creates (annihilates) an electron at site i with

spin σ , niσ is the number operator, t1 and t2 denote the
nearest- and next-nearest-neighbor hoppings, and U is the
onsite Coulomb interaction. 〈i, j〉(〈〈i, j〉〉) means the sum-
mation over nearest (next-nearest)-neighbor sites. The on-site
Coulomb interaction is treated by the mean-field approxima-
tion as

Uni↑ni↓ ≈ Uni↑〈ni↓〉 + U 〈ni↑〉ni↓ − U 〈ni↑〉〈ni↓〉. (2)

By respectively defining the magnetic moment and charge oc-
cupation of site i as mi = 〈ni↑〉 − 〈ni↓〉 and n̄i = 〈ni↑〉 + 〈ni↓〉,
we have

〈ni↑〉 = 1
2 (n̄i + mi ), 〈ni↓〉 = 1

2 (n̄i − mi ). (3)
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FIG. 1. The flowchart of PSO, where local best and global best
are the minimal free energy of the kth particle and all particles,
respectively. When the convergence criterion is reached, |F LB

k −
F GB| < ε satisfies for any given kth particle, where ε is a small
positive number.

Thus, for a given charge distribution and magnetic con-
figuration {n̄1, . . . , n̄N , m1, . . . , mN }, the free energy can be
calculated as

F = − 1

β
ln� +

N∑
i=1

(
μ + Um2

i

4
− Un̄2

i

4

)
, (4)

in which the grand partition function reads

ln� =
∑

σ

N∑
i=1

ln[1 + e−β(Eiσ −μ)], (5)

where N is the total number of sites in the system, β is the in-
verse temperature defined as 1/(kBT ), μ denotes the chemical
potential, and Eiσ is the eigenvalue derived by diagonalizing
the Hamiltonian matrix of the system. Specifically, for the
case with uniform charge distribution at half-filling, namely,
n̄1 = · · · = n̄N = 1, the free energy is a function of the mag-
netic configuration {m1, . . . , mN }. We proceed to demonstrate
how this Hubbard model is solved within the framework of
PSO based on the mean-field approximation, where a mag-
netic configuration is viewed as a particle and free energy F
is the target function to be optimized to a minimum value.
The flowchart of PSO is shown in Fig. 1. As can be seen, the
first iteration consists of the following four steps, while the
other iterations contain the last three of these steps within the
framework of PSO:

(i) Initializing random particles, namely, a set of
magnetic configurations {X1, . . . , Xk, . . . , XP}, where Xk =
{mk

1, . . . , mk
N }, and P is the total number of particles.

(ii) Calculating the free energies of these magnetic config-
urations {F1, . . . , Fk, . . . , FP} according to Eq. (4).

(iii) Evaluating local best {F LB
1 , . . . , F LB

k , . . . , F LB
P } and

global best F GB based on {F1, . . . , Fk, . . . , FP} of the current
and last iterations.

(iv) Determining whether the convergence criterion is
reached. If |F LB

k − F GB| < ε satisfies for any given kth par-
ticle, where ε is a small positive number, the calculation is
completed; otherwise, updating the magnetic configurations
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and turning to step (ii) using the following equations:

DNew
k = ωDOld

k + c1r1
(
X LB

k − Xk
) + c2r2(X GB − Xk ),

X New
k = Xk + DNew

k , (6)

where ω denotes the inertial weight, c1 and c2 are the learning
factors, and r1(r2) is a random number between 0 and 1
that varies at each iteration. X LB

k and X GB are the magnetic
configurations of local best and global best, respectively. DNew

k
and DOld

k denote separately the displacement between the new
and current kth magnetic configurations and that between the
current and last kth magnetic configurations, in which DOld

k
should be initialized at the first iteration. It is necessary to
mention that, for standard PSO, c1, c2, and ω are particle-
independent, where c1 and c2 are two constants while ω

decreases linearly at first and then remains a small value the
iteration proceeds.

In contrast to standard PSO, the learning factors and iner-
tial weight of our improved PSO are particle dependent, where
c1 and c2 have the forms

c1k = eF GB

eF GB + eF LB
k

, c2k = eF LB
k

eF GB + eF LB
k

, (7)

while ω reads

ωk =

⎧⎪⎪⎨
⎪⎪⎩

ξ
(
Fk � FGB ∩ Fk � FLB

k

)
(Fk − F GB)γ

(
F GB < Fk < F LB

k

)
(
2Fk − F GB − F LB

k

)γ (
F GB < Fk ∩ F LB

k < Fk
) ,

(8)

in which γ is a tunable positive number with the high-
est performance when 1.5 ∼ 1.7 for the Rastrigin function,
5 ∼ 7 for the Griewank function, and 0.01 for this Hub-
bard model, while ξ is a small positive number. Thus, by
combining Eqs. (4)–(8), the Hubbard model can be solved
self-consistently using our improved PSO.

III. RESULTS

A. The superiority of our improved PSO over standard PSO

We will now investigate the superiority of our improved
PSO over standard PSO on two typical benchmark functions,
namely, the Griewank function and Rastrigin function. As we
have proposed the improved version for both the learning fac-
tors and inertial weight in our improved PSO, it is necessary
to use the controlled variable method to separately investigate
the performance improvement for standard PSO when includ-
ing the learning factors or inertial weight individually.

In Fig. 2 we compare the convergence process on
the Griewank function [Fig. 2(a)] and Rastrigin function
[Fig. 2(b)] using PSO with improved c1 and c2 or with stan-
dard c1 and c2, where the inertial weight of standard PSO is
used. Obviously, for these two typical benchmark functions,
the convergence process of PSO using our improved version
of c1 and c2 converges faster than that using c1 and c2 of the
standard PSO in a wide range of parameter space, indicating
the superiority of our improved PSO over the standard PSO
regarding the learning factors.

FIG. 2. The convergence process on the Griewank function
(a) and Rastrigin function (b) using PSO with improved c1 and c2

or with standard c1 and c2, where the inertial weight (ω) of standard
PSO is used.

Furthermore, we compare the convergence process on the
Griewank function and Rastrigin function in Figs. 3(a) and
3(b), respectively, using PSO with the improved version of ω

or with the standard version of ω, where the learning factors
of standard PSO are used. Similarly, our improved version of
ω exhibits higher performance than the standard version of ω

in wide range of c1 and c2 for these two typical benchmark
functions.

Thus, for both learning factors and inertial weight, our
improved versions exhibit a higher performance than the stan-
dard PSO. It is necessary to mention that the combination
of these two kinds of improved hyperparameters converges
faster than the inclusion of learning factors or inertial weight
individually.

B. The application of improved PSO in the Hubbard model

We now employ our improved PSO to search for new
magnetic ground states of the Hubbard model on the real-
space square lattice with a finite size of 24 × 24 based on the
mean-field approximation. The periodic boundary condition
is used. Since particles, namely, the magnetic configurations,
will ultimately converge to the position where the free en-
ergy is minimized, regardless of their initial positions within
the framework of this algorithm, we initialize the magnetic
configurations randomly and update them iteratively follow-
ing the flowchart as shown in Fig. 1. Notably, two new
magnetic states, namely, DSAF and TAF, are found apart
from the existing states of CAF, DAF, PAF, PCAF, and SAF,
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FIG. 3. The convergence process on the Griewank function
(a) and Rastrigin function (b) using PSO with improved ω or with
standard ω where the learning factors (c1 and c2) of the standard PSO
are used.

where DSAF is in the region of weak geometrical frustration,
while TAF is located in the strong geometrical frustration
region. Interestingly, a Hubbard model with only the nearest-
and next-nearest-neighbor hoppings can favor TAF, whereas
J1, J2, J3, and K are needed for a Heisenberg model [22].
The specific configurations of DSAF and TAF are shown
in Figs. 4(a) and 4(b), respectively. It is necessary to men-
tion that the calculations here are performed on a finite
size of only 24 × 24, which may be affected by finite-size
effects.

To confirm that these two new magnetic states are not a
result of a finite-size effect, we further perform mean-field
calculations in the thermodynamical limit. Figure 5 shows
the comparison of free energies between DSAF and its corre-
sponding competing states 5(a), as well as between TAF and
its corresponding competing states 5(b). Obviously, DSAF
occurs in the region between the paramagnetic state (PM)
and SAF, while TAF exists in the region between PAF and
PCAF. Thus the presence of our two new magnetic states is
confirmed in the thermodynamical limit, which is not a result
of a finite-size effect.

Considering that DSAF occurs at 2.8 < U/t1 < 4.5
(0.23 < U/W < 0.36, where W is the bandwidth) for t2/t1 =
0.99, where geometrical frustration is released and the elec-
tronic correlation is relatively weak, this state may be reliable
within the mean-field approximation. Thus we investigate
the band structure and density of states (DOS) for DSAF

(a)

(b)

FIG. 4. The DSAF and TAF patterns found by our improved PSO
on the real-space square lattice with a finite size of 24 × 24, where
t2/t1 = 0.99 and U/t1 = 3.4 in (a), while t2/t1 = 0.765 and U/t1 =
4.43 in (b).

in Fig. 6. As can be seen, DSAF is metallic. Furthermore,
we demonstrate the magnetic moments of DSAF and its
corresponding competing states as a function of the on-
site Coulomb interaction U at t2/t1 = 0.99 in Fig. 7(a).
The sudden enhancements of the magnetic moments from
PM to DSAF and from DSAF to SAF suggest first-order
phase transitions. The kink occurring in the magnetic mo-
ment for the case of SAF is a result of a phase transition
from metallic SAF to insulating SAF, consistent with a
previous study [18]. We also present a schematic phase dia-
gram of DSAF in Fig. 7(b). Obviously, DSAF becomes the
ground state within a broad region for the magnetic states we
considered.

IV. DISCUSSION

We have proposed an idea about how to search for mag-
netic ground states of the Hubbard model using PSO based
on the mean-field approximation by viewing magnetic con-
figurations as particles. We have found two new magnetic
ground states in the Hubbard model with the nearest- and
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FIG. 5. (a) The free energies of SAF and DSAF as functions of
the on-site Coulomb interaction U at t2/t1 = 0.99, where the energy
of the paramagnetic state is set to zero. (b) The free energies of CAF,
DAF, TAF, PCAF, PAF, and SAF as functions of U at t2/t1 = 0.765,
where the energy of the paramagnetic state is set to zero.

next-nearest-neighbor hoppings by employing our improved
version of PSO. Although the PSO calculations in this pa-
per are based on the mean-field approximation, PSO is a
very powerful algorithm that can be effectively combined
with higher-level approximations to handle the Hubbard
model, such as the Hubbard-I approximation [42], Hubbard-
III approximation [43], the projective operator approximation
[44,45], coherent potential approximation [46–48], dynamical
mean-field theory [49,50], etc.
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-9
ΓΓ M

En
er
gy
(t 1
)

X 0 2 4
DOS

FIG. 6. Band structure and corresponding DOS for the DSAF
state at t2/t1 = 0.99 and U/t1 = 3.6.

FIG. 7. (a) The magnetic moment as a function of the on-site
Coulomb interaction U at t2/t1 = 0.99. (b) A schematic phase dia-
gram in the region of 0.75 < t2/t1 < 1 and 2 < U/t1 < 5.5, in which
the star, square, triangle, inverted triangle, pentagon, and circle de-
note PM, PCAF, PAF, SAF insulator (SAFI), SAF metal (SAFM),
and DSAF, respectively.

Twisting often leads to the emergence of exotic mag-
netic phases in layered materials, such as the coexistence
of interlayer ferromagnetic and interlayer antiferromagnetic
states in twisted bilayer CrI3 [51]. However, enumerating
all the possible magnetic states in twisted layered materials
becomes challenging due to the large number of sublattices
in the supercell. Fortunately, PSO offers an excellent plat-
form to automatically search for the magnetic ground state
without the need for manual preparation of magnetic con-
figurations. Therefore the application of PSO in studying
the magnetism of twisted systems is expected to be very
interesting.

By using PSO we have discovered two new magnetic states
in the Hubbard model we investigated, including DSAF and
TAF. Although a double-Q coplanar spin-vortex crystal phase
is proposed when t2 ≈ t1 and U/W > 0.31 (U/t1 > 3.8) [52],
our DSAF occurs at the region with a weaker correlation
interaction of U/W > 0.23 (U/t1 > 2.8). Besides, since the
geometrical frustration is released and the electronic corre-
lation is weak, the mean-field approximation is reliable, as
evidenced by qualitative consistencies between solutions from
the mean-field approximation [21] and VCA [16], where SAF
starts to appear at U/t1 less than 4 if DSAF is not taken
into account, indicating that quantum fluctuations completely
ignored in the mean-field approximation are suppressed in
the large t2/t1 and weak U/W region.. Since the free energy
of DSAF is significantly lower than that of other states in
the DSAF phase, it is reasonably expected that the stable
DSAF solution should survive against the quantum fluctua-
tions, due to the fact that even the metastable SAF solution
has already survived against the quantum fluctuations [16].
Additionally, we find that a prominent peak is present in the
vicinity of (π/2, 0) for the Pauli susceptibility in the t2 ≈ t1
region, indicating a tendency towards DSAF if perturbation,
like the on-site Coulomb interaction, is switched on, further
supporting our finding of DSAF in a particular region. Thus
DSAF is most probably a genuine ground state in a sufficient
large parameter space for this Hubbard model, even if both
noncollinear magnetism and quantum fluctuations are consid-
ered. In contrast, TAF may be controversial since it occurs
in the region of strong geometric frustration, where macro-
scopic degeneracies dramatically affect the magnetism of the
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one-band Hubbard model. As a result, various competing
states are proposed in this region, such as PCAF [19,20], DAF
[21], PAF [21], as well as nonmagnetic insulating states [19].
Thus it is interesting to use a more sophisticate method than
the mean-field approximation to confirm the stability of TAF
over its corresponding competing states.

Compared to standard PSO, our improved PSO exhibits a
higher performance because the search direction of particles
in the standard PSO is so random that it lacks sufficient
guidance. In contrast, by proposing an improved version
of the learning factors and inertial weight, particles have
their own characteristics to recognize the searching direc-
tion in our improved PSO, which significantly saves the
time of particles wandering around a local optimum. Thus,
our improved PSO converges faster than standard PSO.
Our work provides valuable insights into how to improve
PSO by modifying the learning factors and inertial weight
and demonstrates its effectiveness in searching new states
of matter.

V. CONCLUSION

In conclusion, we have proposed an improved version of
PSO that converges to the global optimum faster than standard
PSO. By employing this improved PSO to search for new
magnetic states in the Hubbard model with the nearest- and
next-nearest-neighbor hoppings on a real-space square lattice
with a finite size of 24 × 24 based on the mean-field approx-
imation, two new magnetic states, including DSAF and TAF,
are found. The presence of these two states in this Hubbard
model is further confirmed by mean-field calculations in the
thermodynamical limit, where the band structure, DOS, and
magnetic moment of DSAF are also present.
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