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Extractable information capacity in sequential measurements metrology
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The conventional formulation of quantum sensing is based on the assumption that the probe is reset to its
initial state after each measurement. In a very distinct approach, one can also pursue a sequential measurement
scheme in which time-consuming resetting is avoided. In this situation, every measurement outcome effectively
comes from a different probe, yet is correlated with other data samples. Finding a proper description for the
precision of sequential measurement sensing is very challenging as it requires the analysis of long sequences
with exponentially large outcomes. Here, we develop a recursive formula and an efficient Monte Carlo approach
to calculate the Fisher information, as a figure of merit for sensing precision, for arbitrary lengths of sequential
measurements. Our results show that the value of the Fisher information initially increases nonlinearly with
the number of measurements and then asymptotically saturates to a linear scaling. This transition, which
fundamentally constrains the extractable information about the parameter of interest, is directly linked to the
finite memory of the probe when it undergoes multiple sequential measurements. Based on these findings, we
establish a figure of merit to determine the optimal measurement sequence length and exemplify our results in
three different physical systems.
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I. INTRODUCTION

Quantum probes exhibit unparalleled precision com-
pared with their classical counterparts for a given resource
[1]. The resource efficiency of quantum probes has been
demonstrated through exploiting the superposition principle
via Greenberger-Horne-Zeilinger-type entanglement [2–8],
criticality in many-body systems [9–19], variational meth-
ods [20–22], adaptive [23–27] or continuous measurements
[28–34], and Floquet dynamics [35,36], to name a few. In a
general quantum sensing scenario, to estimate an unknown
parameter λ encoded in the quantum state ρλ, one performs
a measurement in a certain basis and then feeds the out-
comes to a classifier. The precision is bounded through the
Cramér-Rao inequality δλ�1/

√
MFλ, where δλ is the uncer-

tainty in estimating λ, M is the number of trials, and Fλ is
the Fisher information (FI) [37–41]. While classical sensors
exhibit linear scaling of the FI with respect to a given re-
source (e.g., measurement time), quantum probes demonstrate
greater resource efficiency, enabling the possibility of achiev-
ing superlinear behavior. The formulation of the Cramér-Rao
inequality assumes the resetting of the probe after each mea-
surement or equivalently using M identical probes at once. By
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avoiding the time-consuming resetting procedure, the quan-
tum state of the probe would be different for each data sample,
implying the use of several nonidentical probes for sensing an
unknown parameter. Therefore a question arises: How will the
precision scale when measurements are performed sequen-
tially without resetting the probe?

In many-body systems with partial accessibility, local mea-
surements on a subsystem lead to a global wave function
collapse, which has been the subject of intensive studies
[42–54]. In the domain of quantum metrology, sequences
of projective measurements followed by free evolution at
regular time intervals have led to Hamiltonian identification
[55] and sequential measurements sensing schemes [56–65]
and even hint at quantum-enhanced sensitivity observed in
short sequences that are computationally feasible [66,67].
Studying sequential measurements sensing schemes is typi-
cally limited to short lengths of measurement sequences. The
limitation arises from the exponential growth of measure-
ment outcomes with the number of measurement sequences.
Indirect approaches, based on a functional of the measure-
ment outcomes [56] or correlated stochastic processes [68],
have been proposed to estimate sensing precision with a
large number of sequential measurements. Interestingly, for
short (∼20) measurement sequences, it has been demonstrated
that the FI increases superlinearly with the number of mea-
surements [66,67], whereas the FI stemming from indirect
methods scales linearly in the asymptotic limit of sequential
measurements [56]. To reconcile this apparent discrepancy, an
efficient approach to studying the FI for an arbitrary number
of measurements is highly desirable.

In this paper, we develop a recursive formula and an effi-
cient Monte Carlo approach to compute the FI for arbitrary
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lengths of measurement sequences. Our results show that the
FI exhibits nonlinear growth in the beginning and asymptoti-
cally saturates to a linear function. Interestingly, this transition
directly relates to the memory of an early state. In fact, the
quantum probe retains only a finite memory of its initial state
during multiple sequences of evolution and local projective
measurements. Once the probe loses its memory, the FI grows
linearly with additional measurements. This enables us to
establish a figure of merit for determining the optimal reset
point, maximizing the sensing protocol. To support our find-
ings, we investigate three distinct physical systems in both
closed and open quantum systems.

The rest of the paper is organized as follows: In Sec. II,
we explain the general steps of the sequential measurements
sensing protocol. In Sec. III, we introduce the Fisher infor-
mation and derive a recursive formula to evaluate the Fisher
information for an arbitrary number of measurements. To en-
able efficient simulations for a large number of measurement
steps, we employ a Monte Carlo approach for this purpose.
In Sec. IV, we investigate the probe’s memory loss due to
performing local measurements at regular time intervals. In
Sec. V, we make use of the recursive Fisher information
formalism developed herein to determine the maximum ex-
tractable information capacity of the probe in the limit of
a large number of sequential measurements. In Sec. VI, we
investigate the robustness of our numerical simulations. In
Sec. VII, we examine the number of measurements and the to-
tal protocol time as sensing resources. Finally, in Sec. VIII, we
present our concluding remarks. Appendixes A and B present
the mathematical proof of the recursive Fisher information
formula and the dynamics of the Jaynes-Cummings model
under sequential measurements, respectively.

II. SEQUENTIAL MEASUREMENT SENSING PROTOCOL

Conventional sensing schemes typically rely on measure-
ment outcomes with independent and identically distributed
(i.i.d.) probability distributions. Hence, after measuring the
probe, it is necessary to reset the sensing procedure to its
exact initial quantum state in preparation for another round
of measurements. These requirements may result in resource-
demanding state preparation and time overhead due to
unavoidable resetting procedures. On the other hand, sequen-
tial sensing schemes [56,66,67] utilize non-i.i.d. probability
distributions constructed from consecutive measurements on
the probe at regular intervals. Let us consider a probe initial-
ized in a quantum state ρ (1)(0) = ρ0. The sequential sensing
protocol is an iterative approach.

(i) The quantum probe ρ (i)(0) freely evolves to ρ (i)(τi ) =
U (i)

λ ρ (i)(0)U (i)†
λ with a unitary time evolution operator U (i)

λ .
(ii) At time τi a local positive operator-valued measure

(POVM) {�γi} with random outcome γi is performed on the
probe, collapsing the state into

ρ (i+1)(0) = �γiρ
(i)(τi)�

†
γi
/p(γi ), (1)

where

p(γi ) = Tr
[
�γiρ

(i)(τi )�
†
γi

]
(2)

is the probability associated with γi at step i.

(iii) The outcome γi is recorded, and the new initial state
ρ (i+1)(0) is replaced in step (i).

(iv) The above steps are repeated until nseq measurement
outcomes are consecutively obtained.

(v) After gathering a data sequence γ = (γ1, . . . , γnseq ), the
probe is reset to ρ0, and the process is repeated to generate a
new trajectory.

In what follows, we study the above sequential measure-
ment sensing steps for a large number of measurements.

III. SEQUENTIAL-BASED METROLOGY FOR
LONG TRAJECTORIES

The FI is given by

Fλ =
∑

γ

Pγ (∂λ ln Pγ )2, Pγ =
nseq∏
γi=1

p(γi ), (3)

where
∑

γ runs over all possible trajectories, ∂λ := ∂/∂λ, and
Pγ is the conditional probability associated with a particular
quantum trajectory γ . Note that the above FI quantifies the
achievable precision limit for a given measurement basis, con-
sidering all trajectories γ . However, the exponential growth
in the number of trajectories γ makes the computation of the
FI in Eq. (3) infeasible. We now address this issue with an
efficient method for arbitrary numbers of sequential measure-
ments. To do so, let us consider the recursive formula of the
FI for arbitrary nseq as follows.

Proposition. The information gained about λ after perform-
ing a subsequent n measurement on the probe conditioned on
all previous n − 1 measurements is

F (n)
λ = F (n−1)

λ + 	F (n)
λ ,

	F (n)
λ :=

∑
γ (n−1)

Pγ (n−1) f γ (n−1)

λ , (4)

where F (n)
λ is the FI at step n, 	F (n)

λ is the increment of the FI
after performing one more measurement while the previous
n − 1 outcomes have been recorded, and f γ (n−1)

λ is the FI
obtained from the nth measurement p(γn) in trajectory γ (n−1),
written as

f γ (n−1)

λ :=
∑
γn

[
∂λ p

(
γn|γ (n−1)

)]2

p
(
γn|γ (n−1)

) . (5)

Proof. From conditional probabilities, one gets

ln Pγ (n) = ln Pγ (n−1) + ln p
(
γn|γ (n−1)

)
, (6)

where γ (n) is a generic trajectory with n measurement out-
comes and p(γn|γ (n−1)) is the conditional probability of
obtaining the outcome γn at step n conditioned upon all n − 1
previous measurement outcomes. Substituting Eq. (6) into
Eq. (3) (see Appendix A for details) results in

F (n)
λ = F (n−1)

λ +
∑
γ (n−1)

Pγ (n−1)

∑
γn

[
∂λ p

(
γn|γ (n−1)

)]2

p(γn|γ (n−1))
, (7)

which leads to F (n)
λ = F (n−1)

λ + ∑
γ (n−1) Pγ (n−1) f γ (n−1)

λ . �
Note that Eq. (4) is exact (i.e., no approximation or as-

sumptions have been made). However, in order to obtain such
an exact evaluation of the FI, one is required to calculate
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the whole probability distributions (i.e., the whole trajectory
space γ ) associated with measuring the probe locally at reg-
ular time intervals. Since the whole trajectory space grows
exponentially, although Eq. (4) is exact, it rapidly becomes
computationally infeasible. To circumvent this issue, we em-
ploy a Monte Carlo approach to evaluate the FI for any nseq,
approximating the FI increment as follows:

	F (n)
λ ∼

μmax∑
μ=1

f μ,(n)
λ

μmax
, (8)

where f μ,(n)
λ is the FI obtained from p(γn) in the Monte Carlo

trajectory μ and μmax is the total number of Monte Carlo
samplings. In the limit of μmax → ∞, Eq. (8) converges to
the actual FI increment shown in Eq. (4). Note that the Monte
Carlo approach automatically selects the more probable tra-
jectories, making the simulation computationally efficient and
robust even in the presence of a large number of sequential
measurements n; see later discussions on numerical robust-
ness in Sec. VI. Two key questions arise from Eq. (8): How
does the increment 	F (n)

λ of the FI behave as n increases?
Is there a limit to the amount of information that can be
extracted about λ as n increases? To address these issues, we
shed light on two central features of sequential measurements
sensing: the memory loss of the probe due to consecutive
measurements and the fact that the resulting state can be well
approximated by the orthonormal basis of the singular value
decomposition of the combined evolution and measurement
dynamics.

IV. MEMORY LOSS AND RANK-1 MATRIX

Performing nseq sequential measurements on the probe’s
initial state ρ0 leads to a gradual loss of information about
ρ0. To support this, consider

V ( j) := �γ jU
( j)
λ , (9)

where U ( j) is a unitary operator and �γ j = I⊗|γ j〉〈γ j | is a
local projection measurement. Note that in the absence of an
explicit Hilbert space structure it is challenging to provide an
explicit POVM �γ j . Nonetheless, for the sake of simplicity,
we have given �γ j = I⊗|γ j〉〈γ j | only to stress that through-
out this paper we consider local measurements performed on
the probe. The (un-normalized) quantum state after nseq steps
is

ρ (nseq ) ∼ P
(nseq )
λ ρ0P

(nseq )†
λ , (10)

where

P
(nseq )
λ :=

nseq∏
j=1

V ( j). (11)

To validate the memory loss observation, we simulate final
states φ(nseq ) and θ (nseq ) resulting from two distinct random
initial states ρ0 = φ0 and ρ0 = θ0 following the same quantum
trajectory. We consider three P

(nseq )
λ cases.

(i) The first case is a random unitary URnd measured locally
in the computational basis.

FIG. 1. We compare final states φ (nseq ) and θ (nseq ) resulting
from two distinct random initial states ρ0 = φ0 and ρ0 = θ0

following the same quantum trajectory. (a) Fidelity 〈F 〉traj :=
〈F (φ (nseq ), θ (nseq ) )〉traj as a function of nseq for several unitary op-
erators. (b) Ratio between the largest and second-largest singular
values s1 and s2 as a function of nseq for several unitary operators.
We consider a system size of N = 6.

(ii) The second case is a Heisenberg unitary UHeis =
exp[−iτHHeis], where

HHeis = −J
N−1∑
j=1

σ j · σ j+1. (12)

(iii) The third case is an Ising unitary UIsing =
exp[−iτHIsing], where

HIsing = −J
N−1∑
j=1

σ z
j σ

z
j+1 + B

N∑
j=1

σ x
j . (13)

In the above, N is the system size, σ j = (σ x
j ,σ

y
j ,σ

z
j ) is a

vector of Pauli matrices acting at site j, J > 0 is the exchange
interaction, and B is a magnetic field. For the Heisenberg
(Ising) case we sequentially measured a single spin in the
σz (σx) basis at Jτ = N . To quantify their distinguishability
between states, we use the fidelity [69]

F := F
(
φ(nseq ), θ (nseq )). (14)

In Fig. 1(a), we plot the fidelity 〈F 〉traj averaged over 104

trajectories as a function of nseq for several unitary operators.
As the figure shows, the fidelity goes towards unity as nseq

increases; namely, the resulting states are indistinguishable
regardless of their initial states.
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Interestingly, the total evolution-measurement operator
P

(nseq )
λ approximates a rank-1 matrix as nseq increases. Hence

P
(nseq )
λ can be written as

P
(nseq )
λ ∼ |p〉〈p|, (15)

where |p〉 is an orthonormal basis of the singular value decom-
position of P

(nseq )
λ . In Fig. 1(b), we plot the ratio between the

largest and second-largest singular values of P
(nseq )
λ , namely

s1 and s2, as a function of nseq for different unitary operators.
As seen from the figure, s1 dominates as nseq increases, result-
ing in a rank-1 matrix in agreement with the memory loss of
the initial state; see Fig. 1(a). Thus, for a given trajectory, the
state of the system asymptotically approaches |p〉〈p| indepen-
dent of its initial state, though depending on the trajectory. It
is worth emphasizing that the quantum state never reaches a
steady state. Indeed, at step n, it changes after a subsequent
evolution followed by another measurement which extracts
f γ (n)

λ information about the unknown parameter. The resulting
state belongs to a subspace of which the new state can be well
approximated by an orthonormal basis of the singular value
decomposition of P (n+1)

λ .

V. EXTRACTABLE INFORMATION LIMITS

We aim to estimate the parameter λ which is encoded in
the unitary operation U ( j)

λ . Let us assume that P (m)
λ becomes

a rank-1 matrix after m sequential measurements; that is,

P (m)
λ ∼ |p(m, λ)〉〈p(m, λ)|. (16)

This means that for any arbitrary long sequence, the final state
can always be written as

ρ (m) ∼ P (m)
λ ρ̃P†(m)

λ , (17)

where ρ̃ is any density matrix independent of λ. Since m is
a finite number of sequential steps, the FI that can be accu-
mulated throughout this process can only be finite. The above
statement implies

	F ( j)
λ =

∑
γ ( j−1)

Pγ ( j−1) f γ ( j−1)

λ � f max
λ ∼ G

(
P (m)

λ

)
, (18)

where f max
λ = maxγ (n−1) [ f γ (n−1)

λ ] and G(P (m)
λ ) is a finite func-

tion depending on P (m)
λ . Hence, at each measurement step,

one can, at best, add G(P (m)
λ ) to the FI. The direct conse-

quence is that the FI is bounded by a linear function of the
number of sequential measurements m. In the following, we
provide three distinct physical systems to support our findings.

A. Example 1: Spin chain magnetometry

We consider N spin-1/2 particles with Heisenberg interac-
tion in the presence of a local magnetic field B, which we aim
to estimate with sequential metrology. The Hamiltonian is

H = −J
N−1∑
j=1

σ j · σ j+1 + Bσ x
1 , (19)

where J > 0 is the exchange interaction and B is a magnetic
field. Without loss of generality, we consider a probe size

FIG. 2. (a) FI increment 	F (nseq )
B as a function of nseq for various

B. (b) Averaged fidelity 〈F 〉traj as a function of nseq for various
B. Dashed lines divide the curves into a nontrivial (memory) and
constant (memoryless) dependence on nseq. (c) F (nseq )

B as a function
of nseq for several values of B.

N = 4, where each trajectory initializes in |ψ (0)〉 = |↓〉⊗N ,
evolves unitarily at regular times Jτi = Jτ = N under U ( j) =
U = e−iτH , and is measured sequentially at local site N in
the σz basis. In Fig. 2(a), we plot the FI increment 	F (nseq )

B
averaged over 105 trajectories [see Eq. (8)] as a function of
nseq for several values of B. As the figure shows, 	F (nseq )

B
initially grows with increasing nseq and then saturates to an
approximately constant value. The transition has been speci-
fied by a dashed line. To link the memory loss feature with the
above nontrivial behavior of 	F (nseq )

B , we simulate final states
φ(nseq ) and θ (nseq ) resulting from two distinct random initial
states ρ0 = φ0 and ρ0 = θ0 following the same quantum tra-
jectory. In Fig. 2(b), we plot the fidelity 〈F 〉traj averaged over
104 trajectories as a function of nseq for several values of B.
Remarkably, as seen from the figure, a clear correspondence
between the nontrivial dependence of 	F (nseq )

B with respect to
nseq and the loss of memory with respect to the probe’s initial
state emerges; see dashed lines in Figs. 2(a) and 2(b). Indeed,
as the probe keeps the memory of the initial state, the FI
increment grows nonlinearly with respect to nseq. Conversely,
when the probe loses its memory of the initial state, the FI
increment reaches an approximate constant value. Thus the FI
can only grow linearly with nseq. This is explicitly depicted in

Fig. 2(c), where we plot the FI F (nseq )
B as a function of nseq for

several values of B. As shown in the figure, a clear superlinear
behavior (inset) transits to a linear behavior as nseq increases.
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B. Example 2: Light-matter interaction

We consider the Jaynes-Cummings (JC) model which
describes the interaction between a two-level atom and a
quantized radiation field [70]. The Hamiltonian is

HJC = h̄ωca†a + 1
2 h̄ωaσ

z + h̄�(σ+a + σ−a†), (20)

where a (a†) is the annihilation (creation) operator; σ z =
|e〉〈e| − |g〉〈g|, σ+ = |e〉〈g|, and σ− = |g〉〈e|, where |g〉 (|e〉)
is the ground (excited) state of the two-level atom; ωc is
the frequency of the field; ωa is the two-level atom’s tran-
sition frequency; and � is the atom-field coupling strength.
We aim to estimate � using sequential measurements on the
atom. Without loss of generality, ωc = ωa = ω, we initialize
each trajectory from |ψ (0)〉 = |g〉|α〉, where |α〉 is a coherent
state, and measurements are performed at ωτ = 2π intervals.
Notably, for nseq 
 1, the field will likely be filtered into a
specific number state |m̃〉 (see Appendix B for details). This
implies that the atom-field state evolves within the subspace
{|e, m̃〉,|g, m̃ + 1〉}, with 	F (nseq )

� ∼ τ 2(m̃ + 1). Hence, for a
fixed evolution time τ and number state m̃, the FI increment is
bounded in agreement with Eq. (18). In Fig. 3(a), we plot the
FI increment 	F (nseq )

� as a function of nseq for two coupling
strengths �. As the figure shows, the transition between non-
trivial behavior and a constant value of 	F (nseq )

� concerning
nseq holds. Thus the FI can only grow linearly with extra

measurements. In Fig. 3(b), we plot the FI F (nseq )
� as a function

of nseq for two values of �. The figure shows a clear transition
from nonlinear to linear behavior.

C. Example 3: Nonunitary dynamics

To demonstrate the generality of our analysis, we show that
our results still hold for nonunitary dynamics. We consider the
spin chain of Eq. (19) with B = 0,

H = −J
N−1∑
j=1

σ j · σ j+1, (21)

subjected to local dissipation:

ρ̇ = − i

h̄
[H, ρ] + κ

N∑
i=1

[(1 + nth )D[σ−
i ]ρ + nthD[σ+

i ]ρ],

(22)
where D[O]ρ = OρO†− 1

2 {O†O, ρ}, {·, ·} is the anticommu-
tator, κ is the decay rate, and nth is the average number of
bath excitations. We aim to estimate κ using local sequential
measurements on the spin at site N . In Fig. 3(c), we plot the FI
increment 	F (nseq )

κ as a function of nseq for two values of κ . As

seen from the figure, a clear constant saturation of 	F (nseq )
κ is

reached for both cases, demonstrating that a finite amount of
information can be extracted at each step even for nonunitary
dynamics. In Fig. 3(d), we plot the FI F (nseq )

κ as a function of
nseq for two values of κ . The figure demonstrates an evident
transition from nonlinear to linear behavior.

FIG. 3. JC model case: (a) 	F (nseq )
� as a function of nseq for

various �; (b) F (nseq )
� as a function of nseq for several �. Nonunitary

case: (c) 	F (nseq )
κ as a function of nseq for different values of κ;

(d) F (nseq )
κ as a function of nseq for various κ .

VI. ROBUSTNESS ANALYSIS

This section demonstrates the high accuracy of our numeri-
cal simulations using the Monte Carlo approximation method
for calculating the FI, specifically its FI increment shown in
Eq. (8). Throughout this section, we use the following nota-
tion: The FI approximated using the Monte Carlo approach
is denoted as FMC, and the FI computed from exact proba-
bility distributions is denoted as F exact. Moreover, we analyze
the numerical robustness for the three examples considered
above, namely spin chain magnetometry, light-matter (Jaynes-
Cummings) interaction, and nonunitary dynamics.

We first focus our analysis on comparing the relative error
between FMC and F exact as the number of Monte Carlo tra-
jectories grows [μmax in Eq. (8)]. To do so, we consider the
relative error between these quantities as

relative error
(
FMC

i ,F exact
i

) =
∣∣FMC

i − F exact
i

∣∣
F exact

i

, (23)
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FIG. 4. Relative error between the Monte Carlo FI FMC and the exact FI F exact as a function of the number of Monte Carlo trajectories for
the (a) spin chain, (b) light-matter interaction, and (c) nonunitary dynamics examples. The relative error decreases to around 1% as the number
of trajectories increases for all three cases. Monte Carlo FI FMC as a function of the number of Monte Carlo trajectories for a fixed sequential
measurement number nseq = 100, for the (d) spin chain, (e) light-matter interaction, and (f) nonunitary dynamics cases. A clear convergence
of FMC towards a stationary value emerges as the number of Monte Carlo trajectories increases. Exact FI and Monte Carlo FI as a function of
the number of sequential measurements nseq for various parameter values, for the (g) spin chain, (h) light-matter interaction, and (i) nonunitary
dynamics scenarios. The curves closely overlap, demonstrating the accuracy of our procedure.

where i refers to B, �, and κ for the spin chain, light-matter,
and nonunitary examples, respectively.

In Figs. 4(a)–4(c), we plot the relative error between FMC

and F exact as a function of the number of Monte Carlo trajecto-
ries. As the figures show, there is a prompt reduction of the rel-
ative error for all three cases. Particularly, for this specific set
of parameters, the number of trajectories needed to go below
1% is of the order of 102. It is worth noting that throughout our
numerical simulations in this paper, we typically used from
104 to 105 trajectories to ensure high accuracy as other system
parameters increase, e.g., when nseq is of the order of 102. In
general, our numerical simulations are robust as the relative
error reduces across all scenarios. To further support the ro-
bustness analysis, in Figs. 4(d)–4(f) we plot FMC as a function
of the Monte Carlo trajectories for a fixed number of se-

quential measurements nseq = 100. As seen from the figures,
the FI approximated via the Monte Carlo approach quickly
converges to a stationary value across all examples. Finally,
in Figs. 4(g)–4(i), we plot FMC and F exact individually as a
function of nseq. It is worth noting that for the exact case, we
are able to simulate up to ∼30 sequential measurements, as
higher values are extremely computationally costly. However,
for the area in which both can be compared, the results almost
overlap. Therefore our methodology stands as a reliable one
with very small relative error and quick convergence.

VII. RESOURCE ANALYSIS

Any sensing protocol requires that the available sensing
resources such as time or number of particles be defined.
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FIG. 5. (a) Gain F (nseq )
B /nseq as a function of nseq for different

values of B. (b) n∗
seq as a function of B.

Therefore the sensing benefits in relation to these resources
must be determined. In what follows, we consider two sce-
narios relevant to experimental realizations using sequential
measurements sensing schemes: the number of total measure-
ments performed on the probe and the total sensing protocol
time.

A. Measurements as resource

When should we reset the sensing protocol to maximize the
potential of the sequential measurement scheme? To address
this issue, we consider the total number of measurements,
Mnseq = R, as our sensing resource R. This constraint causes
the Cramér-Rao inequality to be

Var[λ] � 1

RF (nseq )
λ

nseq

, (24)

where Var[λ] is the variance of λ. Clearly, the gain F (nseq )
λ /nseq

determines the step nseq to cease the protocol and initiate a
new trajectory. The larger the gain, the smaller the uncertainty
provided by the sequential measurement protocol. Based on
the first example, in Fig. 5(a), we plot the gain F (nseq )

B /nseq as
a function of nseq for different B. As the figure shows, the gain
slows down after a specific nseq for all B. This suggests that
after a certain nseq the protocol provides marginal benefits. We

denote n∗
seq as the nseq such that F (n∗

seq )
B /n∗

seq is over 90% of the
saturated value at nseq = 600. In Fig. 5(b), we plot n∗

seq as a
function of B. As the figure shows, n∗

seq grows monotonically

as B increases. This means that for larger B one should stop
the sensing protocol after longer sequential measurements.

B. Time as resource

Thus far, we have considered the total number of mea-
surements as our main sensing resource. With this approach,
we were able to determine the specific n∗

seq at which we
needed to stop a particular trajectory and start a newly fresh
trajectory. This allowed us to exploit the sequential measure-
ments scheme optimally with respect to that sensing resource.
Nonetheless, time can also be accounted for as a sensing
resource. To consider time as a resource, we follow Ref. [67],
where the total protocol time T is defined as

T = M(treset + nseqtmeas + nseqτ ), (25)

where M is the total number of trajectories, treset is the time
it takes to reset each trajectory, tmeas is the time it takes to
measure the particle, τ is the free-evolution time between
measurements, and nseq is the number of sequential measure-
ments. It is typical in experiments that the resetting time is
larger than the time it takes to measure a subsystem. Thus we
consider tmeas = 10τ , while treset is found to be in the range
0 � treset � 4000τ .

By recalling the Cramér-Rao inequality, one obtains that
the variance of the unknown parameter relates to the inverse
of the FI, i.e., Var[λ] � (F )−1. Therefore the lower the FI
inverse, the lower the uncertainty.

Having this relationship at hand, in Figs. 6(a)–6(c) we plot
the inverse FI (approximated using the Monte Carlo approach)
as a function of nseq for several values of treset for a fixed total
protocol time T . As seen from the figures, all cases show that
the best scenario is the ideal case where treset = 0. However,
once treset �= 0, the results show that one can truly benefit from
consecutively measuring the system. Interestingly, Figs. 6(a)–
6(c) all show that for the same fixed total protocol time T ,
a very long number of sequential measurements proves to be
very beneficial for reducing the uncertainty of the unknown
parameter. In other words, since resetting the system is very
costly, one could spend the entire time measuring the sys-
tem constrained to the same total protocol time T , achieving
similar sensing performance with a very large number of
sequential measurements.

VIII. CONCLUSIONS

We introduce a recursive formula and an efficient Monte
Carlo approach to evaluate the Fisher information for sequen-
tial measurements sensing of arbitrary lengths. Our findings
show that the obtainable Fisher information initially grows
nonlinearly with respect to the number of measurements and
then asymptotically saturates to a linear function. This tran-
sition is directly linked to the probe’s finite memory of an
early state. When the memory of such early state is lost, the
information accumulation about the unknown parameter (i.e.,
incremental FI) becomes almost constant, resulting in linear
scaling of the FI. This fundamentally limits the extractable
information capacity through sequential measurements. Fi-
nally, we considered the total number of measurements
and the total protocol time as main sensing resources and
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FIG. 6. Inverse of the Monte Carlo FI FMC as a function of nseq for several resetting times treset : (a) spin chain case, (b) Jaynes-Cummings
case, and (c) nonunitary dynamics case. We consider the measurement time as tmeas = 10τ , where τ is the free-evolution time between
measurements. In particular, we chose Jτ = 4 for the spin chain case, ωτ = 2π for the Jaynes-Cummings case, and Jτ = 1 for the nonunitary
case, respectively. Other parameters are shown in the figure.

established a figure of merit to identify the optimal measure-
ment sequence length. Establishing such a resetting point is
relevant in practice due to the limited coherence time of the
probe and the limited number of sequential measurements that
can be performed. We exemplified our results in three distinct
physical systems.

Our study bridges the gap between several previous stud-
ies connecting the initial superlinear growth of the Fisher
information [67] to the linear scaling at a large number of
measurement sequences, which previously could be addressed
only through indirect methods [56,68]. Although our protocol
assumes minimal control, it can be improved by employing
quantum control for updating measurements at each sequence
or mitigating possible noise in practical scenarios [71].
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APPENDIX A: PROOF OF THE RECURSIVE FORMULA
FOR FISHER INFORMATION IN SEQUENTIAL

MEASUREMENTS METROLOGY

The following proof follows Ref. [41]. Here, we reformu-
late it to fit our sequential measurements sensing protocol. The
Fisher information (FI) takes into account all (n) sequential
measurement outcomes, γ (n) = (γ1, γ2, . . . , γn), and can be
expressed as follows:

F (n)
λ = Eγ (n)

[(
∂ ln Pγ (n) (λ)

∂λ

)2
]
, (A1)

where E [·] is the expectation value of “·” (here, with a
countable set of possible outcomes) and Pγ (n) denotes the

conditional probability of the random variable γ (n) for n con-
secutive outcomes.

According to the definition in Eq. (3) (see main text), the
probability associated with a specific trajectory exhibits the
following simple relationship:

ln Pγ (n) (λ) = ln Pγ (n−1) (λ) + ln p
(
γn | γ (n−1); λ

)
, (A2)

where p(γn | γ (n−1); λ) accounts for the conditional proba-
bility of obtaining γn as the outcome of the nth sequential
measurement conditioned on (n − 1) previous measurements,
i.e., conditioned on the trajectory γ (n−1).

By substituting Eq. (A2) into Eq. (A1), one obtains

F (n) = Eγ (n)

[(
∂ ln Pγ (n−1) (λ)

∂λ

)2
]

+ Eγ (n)

⎡
⎣

(
∂ ln p

(
γn | γ (n−1); λ

)
∂λ

)2
⎤
⎦

+2 · Eγ (n)

[(
∂ ln Pγ (n−1) (λ)

∂λ

)(
∂ ln p

(
γn | γ (n−1); λ

)
∂λ

)]
,

(A3)

where the first term on the right-hand side of Eq. (A3) can be

written as Eγ (n) [(
∂ ln P

γ (n−1) (λ)

∂λ
)2] =: F (n−1). The last cross term

on the right-hand side of Eq. (A3) can be expressed as follows:

Eγ (n)

[(
∂ ln Pγ (n−1) (λ)

∂λ

)(
∂ ln p

(
γn | γ (n−1); λ

)
∂λ

)]

=
∑
γ (n)

Pγ (n) (λ)

(
∂ ln Pγ (n−1) (λ)

∂λ
· ∂ ln p

(
γn | γ (n−1); λ

)
∂λ

)

=
∑
γ (n−1)

Pγ (n−1) (λ)

(
∂ ln Pγ (n−1) (λ)

∂λ

)

×
∑
γn

p
(
γn | γ (n−1); λ

)(∂ ln p
(
γn | γ (n−1); λ

)
∂λ

)
. (A4)
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FIG. 7. (a)–(d) The occupation probability of the field as a function of its number state for different nseq. (e)–(h) The Wigner function for
the field state for different nseq instances. This figure demonstrates that the field, under Jaynes-Cummings interaction, is likely to collapse into
a single number state after the qubit is measured repeatedly.

Note that

∑
γn

p
(
γn | γ (n−1); λ

)(∂ ln p(γn | γ (n−1); λ)

∂λ

)

= ∂λ

∑
γn

p
(
γn | γ (n−1); λ

) = 0, (A5)

and therefore the cross term vanishes. Equation (A3) simply
reduces to

F (n) = F (n−1) + Eγ (n)

⎡
⎣(

∂ ln p
(
γn | γ (n−1); λ

)
∂λ

)2
⎤
⎦. (A6)

By expanding the second term on the right-hand side of
Eq. (A6), one gets

Eγ (n)

[(
∂ ln p

(
γn | γ (n−1); λ

)
∂λ

)2]

=
∑
γ (n−1)

Pγ (n−1) Eγn

[(
∂ ln p

(
γn | γ (n−1); λ

)
∂λ

)2]

=
∑
γ (n−1)

Pγ (n−1)

∑
γn

[
∂λ p

(
γn|γ (n−1)

)]2

p
(
γn|γ (n−1)

)
=

∑
γ (n−1)

Pγ (n−1) f γ (n−1)

λ , (A7)

where we have defined f γ (n−1)

λ as the FI obtained from the nth
measurement probability distribution p(γn | γ (n−1); λ) in the
trajectory γ (n−1). Therefore the recursive formula for the FI in

the sequential measurement metrology reads as

F (n)
λ = F (n−1)

λ +
∑
γ (n−1)

Pγ (n−1) f γ (n−1)

λ . (A8)

APPENDIX B: JAYNES-CUMMINGS FILTERING
TOWARDS A FOCK NUMBER STATE

For the Jaynes-Cummings example, we stated that after
many sequential steps, the cavity field is likely to collapse into
a single number state, denoted |m̃〉 in the main text. Here, we
present numerical evidence to support such a statement.

Let us start from the Jaynes-Cummings Hamiltonian HJC

[see Eq. (20) in the main text for details on the notation]:

HJC = h̄ωa†a + 1
2 h̄ωσ z + h̄�(σ+a + σ−a†). (B1)

By initializing each trajectory from |ψ (0)〉 = |g〉|α〉, where
|α〉 = ∑

m C(m)|m〉 is a coherent state of amplitude α, here
α ∈ Re, and

C(m) = e− α2

2
αm

√
m!

, (B2)

one obtains the evolved wave function as

|ψ (t )〉 = e−iωtHJC |ψ (0)〉
=

∑
m

Cg(m)|g, m〉 + Ce(m)|e, m − 1〉, (B3)

where the field distributions associated with the states |g〉 and
|e〉 are

Cg(m) = C(m)e−imωt cos(
√

m�t ), (B4)

Ce(m) = −iC(m)e−imωt sin(
√

m�t ). (B5)
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Note that the initial probability field distribution, namely
P0(n) = |C(n)|2, is now split into Pg(n) = |Cg(n)|2 and
Pe(n) = |Ce(n)|2. This is the core of the filtering process.
By performing local measurements nseq times on the qubit
sequentially, here at (scaled) times 2π , the number state dis-
tribution filters to new distributions associated with states |g〉
or |e〉.

In Fig. 7 we present the sequential measurements proce-
dure for a representative trajectory. Figures 7(a)–7(d) show
the field probability occupation as a function of the field
number. As the figures show, the initial coherent distribution
in Fig. 7(a) is subsequently filtered as the value of nseq in-
creases, collapsing ultimately into a single field state |m̃〉 as
seen in Fig. 7(d). Note that this represents a trajectory that is
likely to happen; however, other field distributions can indeed
occur. This is because the distributions accompanying the
qubit states Cg(m) and Ce(m) (see above discussion) depend

on �, the number state m, and the measurement time t as
well. Therefore the filtering is conditioned upon other system
parameters. Unwanted collapsing states can further be filtered
by properly tuning the above. To further discuss the filtering
case, we consider the Wigner quasiprobability distribution of
the field to observe its behavior in phase space. The Wigner
quasiprobability distribution is defined as follows:

W (q, p) = 1

π h̄

∫ ∞

−∞
〈q − y|ρfield|q + y〉e2ipy/h̄dy. (B6)

In Figs. 7(e)–7(h), we show the Wigner function W (q, p) for
different nseq, namely collapsed instances of the field state.
As the figures show, the initial field distribution shown in
Fig. 7(e), W (q, p) > 0, becomes more and more narrow as
nseq increases, with Fig. 7(h) showing a clear single field
number state |m̃〉 = 4.
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