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Determination of the nearest-neighbor interaction in VO2 via fractal dimension analysis
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The Ising model is one of the simplest and most well-established concepts to simulate phase transformations in
complex materials. However, its most central constant, the interaction strength J between two nearest neighbors,
is hard to obtain. Here we show how this basic constant can be determined with a fractal dimension analysis
of measured domain structures. We apply this approach to vanadium dioxide, a strongly correlated material
with a first-order insulator-to-metal phase transition with enigmatic properties. We obtain a nearest-neighbor
interaction of 13.8 meV, a value close to the thermal energy at room temperature. Consequently, even far below
the transition temperature, there are spontaneous local phase flips from the insulating into the metallic phase.
These fluctuations explain several measured anomalies in VO2, in particular the low thermal carrier activation
energy and the finite conductivity of the insulating phase. As a method, our fractal dimension analysis links the
Ising model to macroscopic material constants for almost any first-order phase transition.
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I. INTRODUCTION

Phase transitions are a fascinating branch of physics be-
cause a wealth of distinctive phenomena can emerge in
macroscopic objects from rather simple sets of atomistic
interactions. While thermodynamics drives a material into
disorder and randomness, the cooperativity between neigh-
boring elements, for example the spins in magnetic materials
or adjacent unit cells in crystals, favors self-organization and
leads to spontaneous symmetry breaks into intricate domain
structures. The Ising model [1] is one of the simplest and most
well-established theories [2,3] to understand phase transitions
from an atomistic perspective. Basically, multiple discrete
elements or cells in an array interact cooperatively with their
nearest neighbors while temperature provides a perturbing
force. Besides its original use in magnetism [4–6], the Ising
model is applied for crystallization and nucleation [7–10], ge-
netics [11], and even social sciences [12]. However, its central
constant, the nearest-neighbor interaction J , is in most cases
not well related to any measurable property of a macroscopic
material, and therefore hard to obtain. This lack substantially
limits the applicability of the Ising model to predict or under-
stand the properties of a material.

In this work, we report how to use a fractal dimension anal-
ysis of a measured macroscopic domain pattern to determine
the underlying nearest-neighbor interaction J in a quantitative
way on atomistic dimensions. To elucidate the idea of the
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approach, Fig. 1 depicts a material with two phases (black and
white) at a temperature close to a first-order phase transition.
At otherwise identical conditions, the interaction strength J is
increased from left to right, causing the macroscopic domain
structure to favor more and more consolidated configurations
with reduced surface roughness. This consolidation shows
itself as a decrease of the fractal dimension, that is, the scaling
behavior of the perimeter-to-area ratio of the domains. The
idea of this work is to link, by comparison of an atomistic
Ising model with measured domain shapes, the microscopic
coupling J to a set of measurable quantities from a macro-
scopic experiment.

We demonstrate our approach on the example of vana-
dium dioxide (VO2), a strongly correlated material with a
notable first-order phase transition from monoclinic/insulator
to rutile/metallic at a temperature of Tt ≈ 340 K [13],
slightly above room temperature. This phase transition is
not only relevant for technological applications, for exam-
ple thermochromic windows [14–16], ultrafast photoelectric
switches [17,18], ultrasensitive bolometers [19], or impulse
strain-wave emitters [20], but it is also of great interest to
fundamental physics, because the atomistic transition pro-
ceeds on nontrivial reaction paths [21–24] and the strongly
correlated nature of the material [25] can bring even ad-
vanced ab initio calculations [26–28] close to the edges of
their applicability range. Although VO2 has been heavily
investigated [13–40], there remain many open questions, in
particular why insulating VO2 has several orders of magnitude
higher electrical conductivity than estimated from the band
gap [29–34], and why there is an unexpected upper limit for
it [35,36]. Experiments with Kelvin probe force microscopy
(KPFM) [37] and scanning near-field infrared microscopy
(SNOM) [38] have revealed a complex set of domain patterns
that will be the experimental basis of our report. Similar
patterns are observed after laser excitation on ultrafast time
scales [39,40].
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FIG. 1. Influence of interaction J on domain formation. Left to
right, typical domain patterns in a two-phase material for increasing
nearest-neighbor interaction J. For small J (left), neighboring cells
hardly interact with each other, favoring a nearly random domain
structure and jagged surfaces. For intermediate J (middle), intricate
domains form via the interplay of random flips from temperature
and the cooperativity between adjacent cells. For high J (right), the
cooperative interactions dominate and produce well-defined domains
with smooth surfaces. The ratio between the black and white phases
is ∼50% in all pictures, but they differ in their fractal geometry.

II. FRACTAL DIMENSION ANALYSIS

Let us first consider the general approach of our fractal
dimension analysis and discuss the physical implications at
a later stage. We consider a material with two phases and de-
scribe its microscopic behavior with an Ising model in which
neighboring unit cells show some effective cooperativity. We
use a cubic lattice and identify the two phases (for example
metal and insulator) with the two states σi = ±1 of the Ising
system. Each unit cell of the crystal is associated with one cell
in the Ising model. The nearest-neighbor interaction J denotes
the energy it takes when two neighboring cells are in different
phases. The temperature T in the material is considered via
the free energy of a unit cell, approximated as h(T ) = L Tt −T

Tt
,

where Tt is the transition temperature. This can be derived us-
ing the Helmholtz free energy F = U−T S [41] of a first-order
phase transition with the latent heat L = T �S. The resulting
energy bias is zero for cells in any phase at the transition
temperature Tt but linearly favors the “correct” phase for cells
with a temperature difference Tt−T . The resulting Hamilto-
nian H of our Ising model is

H = −1

2

∑

i, j∈NN

J σiσ j +
∑

i

hi(T )σi, (1)

where σi is the state at position i and σ j are all the nearest
neighbors at positions j. The factor of 1

2 accounts for the
double summation. Note that the energy to create a domain
wall in the Ising model is 2J because σiσ j jumps from −1 to
+1. All parameters except J are available from experiments;
the values for VO2 are given in Table I.

TABLE I. Parameters in our simulations of VO2.

System parameter Value Reference

Transition temperature Tt 340 K [13]
Standard deviation �Tt 0.25 K [38,42]
Latent heat L 51 J/g ≈ 3 kBTt [43]
Unit cell size 0.5 nm [44]
Grain size 90 nm [42]

FIG. 2. Generation of the grain-induced bias of the transition
temperature. (a) Scanning electron microscopy image of a VO2 thin
film prepared by sol-gel deposition, reproduced from Ref. [42]. Even
after substantial annealing efforts, slightly different grains are still
distinguishable. Black to white, secondary electron emission current.
(b) Model for the distribution of transition temperature Tt in our
simulations (see Appendix). The dotted lines indicate the area used
for the analysis in Fig. 3.

Realistic materials in condensed-matter physics are often
not perfect crystals but have inhomogeneities on nanometer
and micrometer dimensions, for example, small variations of
density, strain, or stoichiometry. Such inhomogeneities of-
ten slightly change the local transition temperature, and Tt

therefore becomes a function of position within the material.
Without such deviations, the hysteresis would be infinitely
sharp and no domains would be observed. In our Ising model,
we consider a finite steepness of the hysteresis curve by as-
signing a normal-distributed Tt with a width �Tt to each cell
in a way that mimics the typical nanostructure of a realistic
material. Figure 2(a) shows a measured scanning-electron-
microscopy image of a polycrystalline thin film of VO2 and
Fig. 2(b) depicts the granular Tt map that we use in our
simulations (Appendix). While the existence of a finite bias
width is central to our approach, its specific value or the
particular distribution into grains does not affect the fractal
domain geometry and its link to J (Appendix).

We use the Metropolis Monte Carlo algorithm [45] to
generate equilibrated sample states for different interactions
and temperatures. We simulate a three-dimensional volume
of 2000 × 2000 × 120 unit cells (1000 × 1000 × 60 nm3)
with six nearest neighbors per cell and alternatively
a two-dimensional area with 2000 × 2000 unit cells
(1000 × 1000 nm2) with four nearest neighbors per cell. For
each configuration and initialization, we conduct 5000 Monte
Carlo sweeps, found to be sufficient for reaching equilibrium.
One typical three-dimensional (3D) simulation takes ∼640
core hours on the supercomputer JUWELS in Jülich while a
typical 2D simulation takes only ∼40 core hours on a desktop
computer.

Figure 3 shows in the middle two columns a set of sim-
ulated domain configurations. In comparison, the left and
right columns show measurement results from Kelvin probe
force microscopy (KPFM) and scanning near-field optical
microscopy (SNOM), reprinted from Refs. [37,38]. From top
to bottom, the temperature is increased. We see that our
Ising simulations and the two experimental data sets produce
comparable results. The slight discrepancies in the SNOM
measurements (right column) are explained by the finite prob-
ing depths of ∼50 nm in SNOM [46] as compared to <1 nm
in KPFM [47].
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FIG. 3. Measured and simulated domain structure of VO2 thin
films at different temperatures. Black, metallic phase; white, insu-
lator phase. Top to bottom, increasing temperature, calibrated by
the ratio of phase coverage. KPFM, Kelvin probe force microscopy
(left column); SNOM, scanning near-field optical microscopy (right
column); data reproduced from Refs. [37,38]. In the 3D simulations,
we plot only the topmost layer. Besides slight measurement artifacts,
such as line scanning effects in KPFM and nonvanishing depth infor-
mation in SNOM, the measured and simulated fractal geometries are
in good agreement.

Sohn et al. [37] have found in their experiments on thin
films that the domain patterns have a fractal shape and there-
fore the ratio of perimeter to area follows a power law.
To find the microscopic interaction strength J on atomistic
dimensions, a metric is needed to compare the simulated
domain patterns from the Ising model with the experimental
results. Figure 4(a) depicts our approach: we numerically
determine the domain perimeter and domain area for each
measured or simulated domain with depth-first search; data
are not sorted by temperature in this approach. Figure 4(b)

shows the results for the two experiments (dots and squares).
We see that all data points lie on a linear curve in a log-log
plot, indicating a power law that is consistent over four orders
of magnitude, independently of temperature. The slight con-
stant offset between the two data sets is irrelevant because it
relates only to a smoothing of the perimeter by experimental
resolution effects.

In order to determine the fractional exponent, we fit
the perimeter-to-area distribution of Fig. 4 by linear re-
gression, weighted by inverse density via Kernel density
estimation [48,49] to account for the inhomogeneous size
distribution of the domain clusters; there are typically many
small ones and few large ones. Finite-size effects [50,51] from
the experimental resolution or the discrete nature of the Ising
model are avoided by disregarding domains with areas below
103 nm2 for KPFM, below 105 nm2 for SNOM, and below
50 nm2 in the simulations. We define the fractal dimension
D as the slope of the linear fits in the log-log plot. It is related
to the Hausdorff dimension DH [52] used in Ref. [37] by a
factor of two, that is, DH = 2D; compare Refs. [53–55]. We
obtain DKPFM = 0.72 and DSNOM = 0.71. These almost iden-
tical results, obtained with completely unrelated experimental
methods, KPFM and SNOM, on rather different thin-film
materials, produced with pulsed laser deposition [37] or the
sol-gel method [38], show that the fractal dimension of a
two-phase material is indeed a robust material constant in the
investigated ranges.

The fractal dimension of a domain pattern, accessible to
experiments, is therefore a robust and solid basis for our next
step, the extraction of a value for the microscopic interaction.
Figure 4(c) shows a fractal dimension analysis of simulated
domain configurations from our Ising model as a function
of an increasing interaction J. Using the identical analysis
procedure as described above, we find the same power laws
as in the experiments. We see that the fractal dimension D
of the simulated data sets strongly depends on the atomistic
interaction parameter J. With decreasing J (blue), the domain
perimeters become more and more irregular and jagged, re-
sulting in a higher D, while a larger J (green) produces more
roundish domains, resulting in a smaller D (compare Fig. 1).
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FIG. 4. Area dependence of the perimeter distribution and analysis of fractal dimensions. (a) Definition of area and perimeter.
(b) Experimental data from Kelvin probe force microscopy (dots) and scanning near-field optical microscopy (squares). Self-similarity results
in a power law behavior (linear in the log-log plot) in both cases (solid lines). The averaged fractal dimension (the slope) in the two experiments
is Dexp = 0.715. (c) Same data from our three-dimensional Ising model for increasing interaction J (blue, black, green) together with the
resulting fractal dimensions D. The black result corresponds best to the experiment.
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FIG. 5. Determination of nearest-neighbor interactions J from
fractal dimensions D. (a) Results of a set of three-dimensional sim-
ulations; we obtain J ≈ 13.8 meV for the measured Dexp (dashed
lines). Error bars, standard deviation of five independent simulations.
The dotted line is a logistic fit to the data; we exclude data points
below the critical interaction JC where the cells become uncorrelated
(orange). (b) Results of a set of two-dimensional simulations; we
obtain an effective J2D ≈ 20.8 meV (dashed lines).

Figure 5(a) shows the dependency between D and J as
obtained from the simulations. Each data point is the average
of five independent simulations; the error bar denotes the
standard deviation. For a very high interaction, the domains
become nearly circular and the fractal dimension eventually
approaches 1/2. For zero interaction, each cell is completely
independent of its neighbors and the fractal dimension ap-
proaches 1. Between these limits, we find that the dependency
of D on J can be approximated with the logistic function
(dotted line). Reproducing the measured fractal geometry
Dexp = 0.715 requires a nearest-neighbor interaction of J =
13.8 meV.

In order to describe thin-films or monolayers at much
shorter computation times, we alternatively invoke a two-
dimensional simulation; the analysis procedure remains the
same. Figure 5(b) shows the results. Again, we see a charac-
teristic increase of the fractal dimensions D with J that allows
us to extract a value for the effective two-dimensional inter-
action; we obtain J2D = 20.8 meV. Interestingly, this value
relates to the 3D result by a factor of roughly 6/4, the ratio
of the numbers of nearest neighbors.

III. IMPLICATIONS FOR VO2

We now discuss the immediate physical consequences of
our results on VO2. Close to room temperature, when the
material is in principle in the insulating phase, our simulations
reveal a substantial percentage of single unit cells that are, for
tiny amounts of time, fluctuating into the metallic phase. How-

FIG. 6. Average fraction of metallic respectively insulating
phase as a function of temperature. (a) Fraction of the individ-
ual minority phase across the hysteresis curve. When approaching
the transition from low temperatures (upwards arrow), there is an
increasing amount of metallic unit cells in an otherwise insulat-
ing material. The dashed line shows our analytic result from the
Hamiltonian of Eq. (1). The slight deviations when approaching
the phase jump are due to double-cell or multicell fluctuation
events. A similar behavior occurs during cooling (downward arrow).
(b) Real-space snapshots of the simulated phase maps for three se-
lected temperatures [57]. Bottom, below the transition temperature;
middle, after nucleation of a first stable bigger domain; top, far
above the transition. Here, the fluctuations are similar but reversed
as compared to the low-temperature phase. White denotes insulat-
ing/monoclinic unit cells, black denotes metallic/rutile unit cells.

ever, each of these spontaneously flipped unit cells is unstable
and rapidly flips back. We can now use the measured J = 13.8
meV to predict quantitatively the fraction of such cells. The
activation energy for the creation of a single rutile/metallic
unit cell in an otherwise monoclinic/insulating material is
Eact ≈ 6 × 2J = 166 meV. Below the transition, we obtain
the average fraction Pmetal = e−Eact/kBT of metallic unit cells.
For example, at room temperature at T = 300 K, about 40 K
below Tt , where the entire crystal appears completely insu-
lating in the measurements [29], these fluctuations amount to
1‰, averaged over space and time. This level of fluctuations
corresponds nicely to the measured carrier density at room
temperature from Hall experiments [34,56].

Figure 6 shows the phase distributions between metal-
lic/rutile and insulating/monoclinic at different sample tem-
peratures in the simulations. Figure 6(a) shows the average
fraction of the minority phase as a function of temperature
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and Fig. 6(b) shows snapshots of the simulated sample area at
selected times. As the temperature increases, more and more
unit cells flip, thermally activated, into the metallic phase
and back [bottom of Fig. 6(b)]. The dashed line shows the
expected amount of metallic unit cells as calculated analyt-
ically for flips of single unit cells. Far below the transition,
it reproduces the simulated behavior. Closer to the transition
there appear deviations due to the contributions of fluctuating
double-cell and multicell nanodomains.

At a certain threshold (here 350 K), the first stable metallic
domain emerges [middle of Fig. 6(b)] and rapidly grows,
triggering a fast transformation of the complete material
(upwards arrow). In the high-temperature phase, the metal-
lic/rutile material [top of Fig. 6(b)] fluctuates back into the
insulating/monoclinic phase (white dots) at a similar rate as
in the opposite, insulating case. The slope of the fluctuations
is now lower, because a rising temperature results in higher
available thermal energies but also higher flipping barriers
[see second part of Eq. (1)]. When the sample is cooled down,
it transforms back into the insulating phase (downward arrow)
with an insulating/monoclinic phase nucleus (white). The
width of the simulated hysteresis depends on the speed of the
cooling and heating processes. A movie of these fluctuations
and the corresponding phase percentages during heating and
cooling is provided in the Supplemental Material [57].

The existence of these surprisingly substantial thermal
phase fluctuations far below the transition temperatures offers
an elegant explanation of diverse reported anomalies of VO2.
For example, insulating VO2 has an optically measured band
gap of 600 meV [58,59] and the material should therefore
be a good insulator with an electrical activation energy of
∼300 meV [34,35]. However, many experiments [29–34] re-
port substantially lower values of 90–190 meV, for example,
in nanorods (90 meV [29]), nanowires (128 meV [30]), thin
films on sapphire (76 meV [31], 168 meV [32]), thin films
on Ge (180 meV [31], 190 meV [33]), thin-films on Si (190
meV [33]), and bulk (100–650 meV [34]). Only experiments
on extremely thin films [60] and nanobeams [35] report values
of 225–310 and 300 meV, respectively.

In our simple and approximate model, the structural acti-
vation energy of rutile/metallic unit cells is Eact ≈ 6 × 2J =
166 meV. If we assume that a material with fluctuating unit
cells has a carrier concentration that is the average of the in-
dividual unit cells (mean material), many of the experimental
results can be reproduced, although some of the experiments
are made on samples without fractal domains. We argue that
the steady-state carrier densities in insulating/monoclinic VO2

are the direct result of spontaneous and quick structural unit
cell fluctuations into the metallic/rutile phase and back. If so,
band gap effects, special energy levels, doping, defects, or
edge effects are not required to explain the high conductivity
of insulating VO2. The observed decrease of conductivity in
strained materials [34,35] fits into the picture, because closer
proximity between adjacent unit cells increases the structural
coupling J and therefore increases the activation energy for
metallic unit cells, reducing their number. In VO2 nanorods
with domain coexistence, there is a surprising upper limit for
the conductivity of the insulating parts [35,36]. Our model of
phase fluctuations can explain this result via classical nucle-
ation theory, because only a maximum amount of metallic unit

cells can exist within an insulating domain until they nucleate
and transform into a macroscopic metallic domain.

In the high-temperature phase, experiments have revealed
an increase in electrical conductivity with increasing temper-
ature [33,61,62], opposite to the behavior of normal metals.
Our model naturally predicts this effect: Slightly above the
transition temperature, there are lots of fluctuating insulat-
ing/monoclinic unit cells that act as defects and reduce the
electrical conductivity. At higher temperatures above the tran-
sition temperature, these fluctuations are more and more
suppressed [see Fig. 6(a)]. Consequently, electrical conduc-
tivity increases with rising temperature.

The reported spontaneous phase fluctuations affect not
only the electronic but also the mechanical properties of
VO2: When approaching the phase transition, VO2 becomes
soft in terms of an increasing lattice elasticity [63], because
the higher amount of structural phase fluctuations at higher
temperatures allows the material to react more softly to me-
chanical strain. A generalized Ising model (Potts model)
can be applied if other low-temperature phases, external
strain [64], stripe formation [65], twinning or related effects
shall be simulated as well. To confirm or invalidate the gen-
erality of our Ising model and fluctuation results for VO2

samples in other than thin-film geometries, more experiments
will be appropriate.

IV. CONCLUSIONS

In summary, our fractal dimension analysis of macroscopic
experimental domain structures from thin-film specimen pro-
vides a robust and reproducible material constant, the fractal
dimension, that we can relate to the most central parameter of
the Ising model, the microscopic cooperativity between adja-
cent unit cells. This direct access to the interaction strength
enables coarse-grained simulations of almost any material
with fractal domain structures in a quantitative way. All ma-
terial parameters that are needed for the reported procedure
are quite basic and obtainable for a manifold of other phase-
change materials as well. Morphologies or defects that only
impact the local transition temperature are insignificant to
our results, and fractional dimension analysis therefore gives
extrapolated access to the properties of the ideal material.
Quantitative knowledge of atomistic nearest-neighbor inter-
actions links the Ising model to macroscopic quantities of a
material, such as the absolute energy cost for the formation of
domain boundaries, and also provides insight into fluctuation
effects. These abilities will help to elucidate the emergence
of macroscopic phase diagrams from microscopic phenomena
and link the dynamics of phase transitions to atomistic pro-
cesses in space and time.
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APPENDIX: MODELING OF CRYSTAL
NANOSTRUCTURES

For simulating inhomogeneous crystals with varying Tt

[see Fig. 2(a)] we use a 90% volume fraction of dumbbell
colloids with an aspect ratio of 1.55 [66] to represent the
different grains. The dumbbells have a length of 90 nm [42].
Each grain gets a transition temperature normally distributed
around Tt with a width of �Tt = 0.25 K, estimated from
measured hysteresis curves [38,42]. We close the remaining

holes in the Tt map by cubic interpolation and ensure periodic
boundaries by stitching of mirror images. Figure 1(b) shows
the results. Variations of �Tt or different grain sizes do not
affect our simulations, even when the grain size becomes as
small as one unit cell. Although perfect bulk single crys-
tals cannot be used for our procedure because the domains
are as large as the entire material, the robustness of our re-
sults over three to four orders of magnitude of domain sizes
[see Fig. 4(b)] indicates the applicability of our evaluated
J for single crystals on millimeter dimensions [67]. Materi-
als in which anisotropic external strain is dominant [64,65]
could be incorporated into our model by a generalized Ising
Hamiltonian.
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