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Free-electron interactions with photonic GKP states:
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We show that the coherent interaction between free electrons and photons can be used for universal control
of continuous-variable photonic quantum states in the form of Gottesman-Kitaev-Preskill (GKP) qubits. Specif-
ically, we find that electron energy combs enable nondestructive measurements of the photonic state and can
induce arbitrary gates. Moreover, a single electron interacting with multiple photonic modes can create highly
entangled states such as Greenberger-Horne-Zeilinger states and cluster states of GKPs.
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I. INTRODUCTION

Quantum error correction is essential for reaching large-
scale quantum computation. One prominent approach toward
this goal is to encode qubit information on continuous vari-
ables [1,2] in quantum harmonic oscillators, known as bosonic
codes. These codes, and most prominently the Gottesman-
Kitaev-Preskill (GKP) code [1], facilitate quantum error
correction for fault-tolerant quantum computation [3]. The
generation and manipulation of GKP states is a formidable
challenge, as it necessitates non-Gaussian operations that typ-
ically require strong nonlinearities.

Creating the required nonlinearity can rely on a wide range
of physical mechanisms. The nonlinearity can arise from in-
trinsically nonquadratic Hamiltonians that can be realized in
the optical regime using the Kerr effect [4,5] or postselection
by number-resolving photonic measurements [6–8]. The GKP
states can also be deterministically generated from cat states
[9,10], which, however, still require nonlinearity for their gen-
eration. Such nonlinearities are typically counterproductive to
the stabilization of GKP states since they increase decoher-
ence by coupling to external degrees of freedom, even more so
given that such states rely on a large average photon number.

Leading approaches for generating and manipulating GKP
states rely on the coupling to matter ancilla qubits, which
provide the necessary strong nonlinearity. Such a scheme
was demonstrated experimentally with the vibrational motion
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of trapped ions [11,12], with cavity photons at microwave
frequencies coupled to superconducting qubits in circuit quan-
tum electrodynamics (QED) [13]. A similar ancilla-based
scheme was also recently suggested theoretically in optical
frequencies using cavity QED [14].

Here we propose a different physical mechanism that pro-
vides the needed nonlinear interaction using free electrons that
act as ancilla qubits. We show how the fundamental coherent
interaction of free electrons and photons, perhaps the most
basic interaction in QED, can provide the building blocks for
universal quantum computing with GKP states. The interac-
tion provides the strong nonlinearity needed for quantum error
correction and universal control of GKP states. This interac-
tion can be used in gate-based [15] and measurement-based
[16] computational protocols.

A step in this direction has recently shown the free-
electron-based generation of GKP states [17]. We now
unveil the complete picture and show that the fundamental
electron-photon interaction can be described as a conditional
displacement (CD) gate when the free electron is shaped in the
rotor GKP encoding [18]. The CD gate is the basic building
block for universal computation and error correction with
GKP states [13,19].

The idea to use free electrons in the context of quantum
optics is inspired by recent advances in ultrafast electron
microscopy. Specifically, our work relies on the inelastic
scattering of free electrons by electromagnetic fields, which
was famously observed in photon-induced near-field electron
microscopy (PINEM) [20–27]. This nonlinear scattering pro-
vides the additional degrees of freedom required to encode
quantum information on the individual electron by coherent
modulation of its wave function [28–30]. The ability to control
the modulated electrons has been studied extensively in theory
(e.g., [31,32]) and experiments (e.g., [33–35]). The interac-
tion of such modulated electrons enables photon addition and
subtraction [36], measurement of light statistics [37], coherent
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control of two-level systems [38–43], and investigation of ul-
trafast population dynamics of superradiance [44]. The same
underlying theory enables heralded generation of photonic
entanglement [45] and heralded generation of Fock states of
one or more photons [46–49]. Such ideas and experimental
achievements support the feasibility of the scheme we propose
here.

The use of free electrons as matter ancilla qubits is in-
triguing for a few practical reasons. In contrast to currently
used matter ancilla qubits, free electrons are versatile in their
energy spectrum and can access a large range of frequen-
cies, including the optical (and potentially higher) range. This
versatility enables the transfer to the optical regime of con-
cepts that were only demonstrated in the microwave regime,
such as nonlinear ancilla qubits—potentially bypassing inher-
ent technical limitations of scalability and low-temperature
operation.

Moreover, the free electrons are fundamentally different
from previously purposed matter ancilla qubits because they
are flying qubits, meaning they only couple temporarily to
the photonic mode before they continue propagating. The
limited interaction time reduces the decoherence of the pho-
tonic mode by its coupling to the ancilla. This coupling
decoherence can be characterized by multiple noisy channels,
such as inverse-Purcell decay [50] and self-Kerr nonlinearities
[51], which pose a stronger limitation for GKP states due to
their larger photon number. These decoherence channels are
reduced by the short interaction time of the flying electron
qubit.

Another advantage provided by the electrons being flying
qubits is that they naturally facilitate coupling between spa-
tially separated photonic modes. Being flying qubits, such
electron qubits enable the generation of multipartite highly
entangled states such as Greenberger-Horne-Zeilinger (GHZ)
states [52] and cluster states [16], important resources for
quantum computation and communication [53–55]. More-
over, our approach is applicable not only for traveling GKP
states, as the ones integrated on waveguides, but also for
stationary GKP states in cavity modes. Any operation be-
tween such stationary cavity modes requires an interaction
with a flying qubit, which is what the electron-photon in-
teraction provides. These possibilities are presented in our
work below, presenting specific schemes for GKP stabiliza-
tion and for universal control. This aspect allows one not only
to adopt concepts and protocols from the circuit QED and
trapped ions communities, but also to create new protocols in-
volving multimode interactions unique to free-electron-based
systems.

II. FREE ELECTRONS AS ANCILLAS FOR CONDITIONAL
DISPLACEMENT ON PHOTONIC STATES

We define the electron coherent energy comb as a super-
position of electron energy states with a Gaussian envelope
around a central energy E0,∣∣combω

σ

〉 ∝
∑

n

e− n2

2σ2 |E0 + nh̄ω〉. (1)

Here |E0〉 is the state of an electron with mean energy
E0 and narrow energy distribution compared to h̄ω, ω is the

modulating laser frequency, and σ is the dimensionless energy
width describing the number of energy states in the electron
comb. This electron comb can be created by shaping a mo-
noenergetic electron using multiple laser harmonics [31] or
multiple interaction stages [32]. We note that an additional
linear phase term ein(ωt−φ) with a global phase shift φ is
omitted since it only describes a shift of the comb in time.
This phase is directly controlled by the subcycle delay of
the laser excitation, which is tuned between different stages
in the system, such as between the electron modulation and
the gate interactions. In this paper, we consider the limit of
σ � 1, and omit the σ in the electron comb notation. In this
case, the electron comb becomes an approximate eigenstate of
the energy displacement operators bω, b†

ω (satisfying bωb†
ω =

b†
ωbω = 1). These operators describe a translation of h̄ω in

the electron’s energy, which corresponds to the photon ladder
operators a†

ω, aω, describing emission or absorption of a single
photon in a frequency ω, respectively.

The electron comb can be described as a qubit, encoded in
the rotor GKP encoding [18], with the following basis:

|0〉e =
∑

n

|E0 + 2nh̄ω〉 = |comb2ω〉,

|1〉e =
∑

n

|E0 + (2n + 1)h̄ω〉 = bω|comb2ω〉. (2)

We denote |ψ〉e = α|0〉e + β|1〉e as a general free-electron
qubit state. The |0〉e state can be generated via a typical
electron comb generation scheme [31,32] using a modulation
laser with frequency 2ω. Universal single-qubit gates [28]
over such free-electron qubit states are achievable by multiple
PINEM interactions separated by free-space propagation, i.e.,
drift. Free-space propagation over an appropriate distance cor-
responds to a rotation around the Z axis on the Bloch sphere,
and PINEM interaction corresponds to a rotation around the X
axis on the Bloch sphere [28]. See Fig. 1(c) and Appendix A 5.
Coming back to the analogy of coherent light, if we consider
the energy translation operator bω, then the electron qubit
states are eigenstates of b2

ω and satisfy 〈i|ebω|i〉e ≈ 0 with i =
0, 1, similar to ladder operators acting on optical cat states.
This observation creates an analogy between the creation of
GKP states [17] and cat breeding protocols [9].

To describe the interaction of such modulated electrons
with quantum photonic states, we quantize the electromag-
netic field, as was presented theoretically in [56,57] and was
in part demonstrated experimentally in [37]. Since photonic
modes have multiple frequency components, the interaction
can be described using the following scattering matrix, as
shown in [58]

S = exp

[∫
dω(gQ,ωbωa†

ω − g∗
Q,ωb†

ωaω )

]
. (3)

We define the electron-photon coupling strength gQ,ω at
a given frequency ω as in [59]. The coupling strength for a
mode family is |gQ,m|2 = ∫

dω|gQ,ω|2. The annihilation and
creation operators of the mode family am and a†

m are found
by integrating over all frequencies, am = 1

g∗
Q,m

∫
dωg∗

Q,ωaω

and a†
m = 1

gQ,m

∫
dωgQ,ωa†

ω. For the free-electron qubit,

bω = b†
ω = σx [see Fig. 1(b)]. We consider the case where the
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FIG. 1. The free-electron-photon interaction as a fundamental building block for quantum information processing. (a) The free electron is
preshaped into a free-electron qubit state (e.g., using laser interactions [31,32]), which interacts with the photonic mode through a near-field
coupling. The photonic mode contains a GKP state. The interaction entangles the electron with the GKP state. (b) The free-electron qubit states
are shown by their energy spectra, as the even (blue, qubit |0〉e) and odd (red, qubit |1〉e) comb electrons with 2h̄ω energy spacing. (c) Building
blocks for universal quantum computation on the free-electron qubit [28] and the GKP state (left) and their corresponding circuits (right). The
first is the interaction scattering matrix, the second is the free-space propagation (FSP) operation on the electron, and the last is the PINEM
operation on the electron describing interaction with classical coherent light.

coupling is with the multifrequency photonic mode, omitting
the m in the notation. The scattering matrix in Eq. (3) is
then reduced to a conditional displacement (CD) operator,
controlled in the X basis:

S(gQ) = exp(gQσxa† − g∗
Qσxa) = D(gQσx )

= |+〉e〈+|e ⊗ D(gQ) + |−〉e〈−|e ⊗ D(−gQ)

= CD(gQ). (4)

D(α) = exp(αa† − α∗a) is a coherent displacement operator
[60]. gQ is the coupling strength for a mode family, describing
the interaction strength and the relative phase between the
mode family and the free electron shaped by the modulating
laser. The amplitude |gQ| is controlled by the overlap of the
electron trajectory with the spatial shape of the mode, tunable
by the distance of the electron beam from the evanescent
part of the photonic mode [49]. The phase ∠gQ is tunable
by a subcycle delay of the shaping laser that creates the
free-electron qubit. All the photonic modes and modulating
lasers are phase locked, as further elaborated upon in [17].

There is an intrinsic trade-off between the strength of in-
teraction, which necessitates prolonged interaction, and the
accuracy of the CD operator, which is reduced with the in-
teraction length due to the dispersion, as detailed in [17].
Appendix F also qualitatively discusses the higher-order dis-
persion effects on the electron’s fidelity. This effect imposes a
limitation on the width of the comb electron.

The following sections show how the free-electron qubit
can be used as an ancilla qubit in manipulating GKP states in
a wide range of frequencies, including the optical range.

III. UNIVERSAL SINGLE-QUBIT GATES WITH
FREE-ELECTRON ANCILLAS

For the universality section we focus on the case where the
photonic mode is an ideal GKP state [1]. GKP states form a
lattice in their Wigner representation [61] and can be defined
by the lattice constants ax,y,z (see Appendix B). Pauli gates
on the GKP qubit can be achieved in two ways. The first is
using the CD operator from Eq. (4) and setting the coupling
constant between the free electron and the photonic mode to
be gQ = ± ai

2 , for i = x, y, z. The second is by determinis-
tically displacing the photonic mode using a coherent light
source coupled to the photonic modes containing the GKP
state. The Hadamard (H ) gate acts as a rotation in phase space.
Therefore, it can be replaced by adding a π/2 phase to gQ for
all the following computation steps [62]. This phase can be
added by a delay to the phase of the modulating laser for all
the following electrons. These choices are analogous to the
case of regular CD operations based on qubit ancillas [13,62].

When gQ = ai/4, Eq. (4) gives a controlled Pauli gate σi on
the GKP state, controlled by the electron’s state in the X basis.
For a nonideal GKP state, the added displacement D(−ai/4)
needs to be corrected (in postprocessing), to recenter the
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gate

gate

(a)

(b)

(c)

Readout

FIG. 2. Single-qubit gates induced by the free-electron ancilla.
(a) Readout operation: using electron ancilla qubit with interaction
gQ = az

4 , followed by a measurement of the electron to extract the
GKP state. Using different axes can be used for readout with any
Pauli operator. (b) Rotation gate Ri(φ) in the i = x, y, z direction:
using free-electron ancilla with gQ = ai

2 performs the gate con-
trolled Pauli (Cσi ) on the GKP state, with the electron being the
control qubit. Then the electron is measured in the basis |φ±〉 =

1√
2
(e

iφ
2 |0〉e ± e− iφ

2 |1〉e), using the unitary U (φ). For feedforward, if
the measurement result is |φ−〉, the Pauli σi gate is applied. (c) T
gate: example of rotation gate with φ = π

4 and i = z.

code space. As an example, the CNOT gate between the free
electron and the GKP state is given by gQ = ax/4:

CNOTe→ph = [He ⊗ D(−ax/4)]S(ax/4)(He ⊗ I ). (5)

Controlled Pauli gates give the ability to create maximum
entanglement between the electron qubit and the GKP state.
Moreover, controlled Pauli gates can be used to read out the
GKP state by measuring the electron’s energy as an ancilla
[15] [Fig. 2(a)].

The CD operator and rotation gates on the ancilla qubit
can be used to implement a universal set of gates on the
GKP state with an additional feedforward mechanism. In the
feedforward mechanism, the next operation is done according
to the electron’s measurement result. Further discussion of the
feedforward mechanism is in Sec. IV. Rotation gates around
i = x, y, z axis with angle φ, Ri(φ), are achieved with tele-
ported gates by an ancilla qubit [62,63], as shown in Fig. 2(c).
The initial state of the electron is |0〉e. The electron inter-
acts with the GKP state with gQ = ai

4 , i = x, y, z according
to the rotation axis and is then measured in the |φ±〉e =
1/

√
2(eiφ/2|0〉e ± e−iφ/2|1〉e) basis. The ability to coherently

control the electron’s qubit state [28] allows measuring it

in any desired basis, with additional drift and PINEM inter-
actions for the postinteraction electron. If the measurement
result is |φ−〉e, the Pauli gate σi is applied to the GKP state,
and if the measurement result is |φ+〉e there is no need to apply
any gate. See Appendix C 5 for details on measuring in the
|φ±〉e basis. The S and T gates can be achieved by rotations
around the Z axis, with the angles π

2 and π
4 , respectively.

The gates requiring feedforward, rotation Ri(φ), and
CNOTph1→ph2, as shown in Table I, are based on teleported
gates [62,63]. Depending on the measurement outcome, an
additional Pauli operation may need to be implemented. In
a quantum circuit application, these feedforward Pauli oper-
ations can be commuted to the end of the quantum circuit in
a procedure known as modifying the Pauli frame [16]. Using
the Pauli frame allows avoiding the application of Pauli gates
in teleported gates [64].

Altogether, the free-electron qubit ancilla is a universal
tool for quantum computation with GKP states in a photonic
mode. The fundamental free-electron-photon interaction is the
computational mechanism, that can be implemented and con-
trolled in ultrafast electron microscopes [20,23,32,34,37,65].

IV. FREE-ELECTRON INTERACTION AS A STABILIZER
AND ERROR CORRECTION TOOL

This section describes the stabilization and error correc-
tion process with the free electron. General error correction
involves measurements of the stabilizers and correcting ac-
cordingly. The CD operator from Eq. (4) can stabilize the
GKP manifold. Some schemes for GKP manifold stabilization
[13,66] use multiple consecutive CD interactions, performing
the error correction without feedforward of the measurement
result. On the contrary, the free-electron ancilla can inter-
act only once with the photonic mode before propagating,
necessitating a feedforward mechanism as in other more con-
ventional approaches [67]. Measurement of the stabilizers is
achieved by interaction with a coupling constant equal to the
lattice constant, gQ = ±ai, followed by a measurement of the
free electron. Combining the free-electron-photon interaction
and feedforward mechanism allows for error correction and
stabilization of the GKP manifold. Furthermore, applying a
single round of stabilizer measurement and correction im-
proves the fidelity of the photonic mode state compared to a
desired GKP state for any initial state.

With current experimental abilities, it is feasible to apply a
single round of stabilizer measurement and correction with

TABLE I. Operations on the photonic state created by a free-electron ancilla for universal quantum computation. Row 1 describes the
coupling constant and electron state needed for creating Pauli gates σi on the GKP state. Row 2 describes how to use the electron qubit for the
readout of the GKP state. Row 3 is the rotation gate Ri by angle φ, created using a teleported gate with feedforward. Row 4 shows how to use
two electron qubits to create a CNOT gate between two GKP states in different photonic modes.

Operation gQ Electron state Feedforward

Pauli gates σi ai/2 |+〉e No
Readout in i basis ai/4 |0〉e No
Rotation Ri(φ) ai/4 |0〉e If |φ+〉e is measured—none

If |φ−〉e is measured—σi gate
CNOTph1→ph2 gQ,1 = az

4 , gQ,2 = ax
4 |0〉e If |0〉e is measured—none

If |1〉e is measured—σz gate
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FIG. 3. Creation of multiqubit entanglement using free electrons. (a) CNOTph1→ph2 gate between two GKP states. (b) The scheme for
generating a GHZ state of three GKP states. (c) Two approaches for implementing the GHZ state: stationary GKP states in cavities (left) and
propagating GKP states in a waveguide (right).

feedforward (see discussion for further information). Since
error correction protocols stabilize the GKP manifold, arbi-
trary states can become closer to GKP states. This fact can
be used to increase the success probability of probabilis-
tic GKP generation mechanisms. For example, our previous
work [17] proposed a probabilistic optical GKP generation
from squeezed vacuum using free-electron interaction, with a
31.25% success probability. Combining a single feedforward
round in such probabilistic schemes increases the final state
fidelities and probability of success for GKP generation. The
details for these corrections are described in Appendix E.

V. FREE ELECTRON AS A FLYING QUBIT:
CREATION OF GHZ AND CLUSTER STATES

The unique property of a free-electron ancilla as a flying
qubit is that a single electron can be used for entangling mul-
tiple GKP states. The protocol for a CNOTph1→ph2 gate between
two GKP states in two separated photonic modes is described
in Fig. 3(a), where one electron qubit interacts with two GKP
states. The electron starts in the state |0〉e and interacts with
the first GKP state with gQ = az

4 , then changes the basis using
a Hadamard gate (He) on the electron (see Appendix D 1), and
then interacts with the second GKP state with gQ = ax

4 . The
last step of the protocol for CNOTph1→ph2 uses feedforward:
the electron is measured, and if the measurement result is |0〉e,
then nothing is applied, but if the measurement result is |1〉e,
then a Pauli σz gate is applied to one of the GKP states. The
CNOTph1→ph2 and the universal set of one qubit gates shown
in the previous section are sufficient for universal quantum
computing [15].

The maximally entangled GHZ state can be produced using
one electron qubit interacting with multiple photonic GKP
states. Each interaction is a CNOTe→ph, which can be imple-
mented with gQ = ax/4, as presented in Eq. (5). In the final
step of creating the GHZ state, the Hadamard gate is applied
to the electron. The electron is then measured to disentangle
it from the GKP states. Ultimately, a D(−ax/4) correction
should be applied by using one |+〉e electron with gQ = − ax

4

interacting with all the GKP states to displace it back to the
center of the phase space. The procedure is shown in Fig. 3(b).

This scheme of GHZ state creation can be realized using
photonic cavities or waveguides, as shown in Fig. 3(c). The
GKP states must be all phase matched to the electron; i.e.,
the phase velocity of each mode must be equal to the veloc-
ity of the electron wave function [34]. Such phase matching
conditions were satisfied in experiments over distances of up
to 500 μm [34], and have been achieved in several distinct
configurations since [35,37,49,68]. For the cavities approach,
all cavities need to be locked, i.e., with the same spectrum
up to the coherent width of the electron. For the waveguide
approach, the path between the interaction points must match
the electron’s path such that the electron will overlap with the
GKP states in time. For example, this requirement can be sat-
isfied by designing the repetition time of the GKP pulses plus
the time it takes for the electron to go between the interaction
points to be equal to the time it takes for the GKP mode to go
between the two interaction points.

The prospects of free-electron flying qubits include the
potential to create the cluster states needed for measurement-
based quantum computation schemes. In recent years, much
effort has been invested in measurement-based photonic quan-
tum computation, specifically in the optical range. Such
schemes require the efficient generation of photonic states
and their entanglement into cluster states [16]. Clusters of
GKP states [69] are especially desirable because GKP states
are robust against photon loss errors [1], and can be easily
measured in a different basis with the same operation, as
shown in Fig. 2.

Following [70], we can add appropriate propagation
distances between the subsequent interactions in the GHZ-
creation scheme (shown in the previous section) to add
single-qubit rotation on the electron and create a one-
dimensional (1D) cluster of GKP states using a single
electron [Fig. 4(a)]. Additionally, combining multiple elec-
tron channels can create two-dimensional (2D) and potentially
higher-dimensional cluster states, as shown in Fig. 4(b).
These higher-dimensional schemes are based on the protocol
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FIG. 4. Using flying qubits for the generation of cluster states. (a) A scheme for generating a 1D cluster state of GKP states in a photonic
waveguide. Quantum circuit description of the proposed scheme (left) and a possible physical scheme using propagating GKP states in a
waveguide (right). (b) Generation of 2D cluster states of GKP states. A possible implementation using a waveguide, two free-electron sources,
and a delay (left). Visualization of the resulting 2D cluster state (right).

presented in [71] (further discussed in Appendix D 2 B). Con-
sequently, free-electron interactions can be used as a building
block in measurement-based photonic quantum computation
schemes.

VI. DISCUSSION AND OUTLOOK

In summary, this paper demonstrates how the coherent
interaction between free electrons and GKP states enables
projective measurements, error correction, and universal con-
trol over the GKP states. This paper also demonstrates how
the interaction of multiple GKP states with the same elec-
tron enables the creation of highly entangled states such as
GHZ and cluster states. The key to these possibilities is the
creation of CD based on the electron interaction. The electron-
photon interaction thus reproduces other protocols for GKP
state generation in superconducting qubits [13] and ion traps
[12]. Going beyond these demonstrations, the free-electron
implementation provides additional degrees of freedom to the
interaction due to the intrinsic nature of the free electron as a
flying qubit.

The use of free electrons as matter ancilla qubits is in-
triguing for a few practical reasons. In contrast to currently
used matter ancilla qubits in circuit QED, trapped ions, and
cavity QED counterparts [11–14], free electrons are versatile
in their energy spectrum and can access a large range of
frequencies. Second, the most significant difference is that
the free-electron ancilla is a flying qubit. While photons also
act as flying qubits, they do not exhibit the strong interac-
tions usually needed to realize the operations required from
ancilla qubits, such as CD. A flying ancilla qubit allows for
high connectivity between the electron and multiple spatially
separated photonic modes. This fact can enable possibilities
that are hard to create in other systems, such as the generation
of highly entangled GHZ and cluster states with only one
ancilla electron (rather than multiple ancilla qubits [72,73] or
multimode coupling [74], which further limits the coherence
times and exponentially complicates the physical realization.
The flying qubit nature of the electron also implies that it
interacts with the GKP state only for a short time (typically
single-picosecond timescales [34,37]). In “aloof”/grazing an-

gle experiments [75,76], electrons fly by tens of nanometers
from the surface to minimize radiation damage. From this dis-
tance, the electrons can only excite lower-energy excitations
and do not typically cause damage to the sample. Therefore,
the coherence time of the photonic qubit is not significantly
reduced by the free-electron interaction (unlike the case of
interaction with ancilla qubits in circuit QED [77]).

It is also interesting to compare the interaction of free-
electron qubits with GKP states to other schemes that can be
realized in the optical range, such as the beam-splitter interac-
tion of optical cat states [10,17]. Beam splitters can generate
GKP states with low success probability using postselection.
They can also enable entangling photonic states and creating
cluster states for fault-tolerant measurement-based quantum
computation. The free electron enables this, but can also apply
additional operations, such as efficient GKP generation [17],
operation, stabilization, and gate-based universal quantum
computation. Another aspect that makes free-electron-based
schemes promising arises from developments in fast elec-
tron counting detectors (especially direct detection schemes)
[78]. Since free electrons are energetic particles, it is easier
to achieve number-resolved electron detection than similar
detection with photons.

As presented in this work, the electrons can stabilize the
quantum state by performing error correction. The importance
of GKP stabilization and error correction was demonstrated in
microwave cavities [13,79]. The electron flying qubit can per-
form gates on such stationary modes in a manner that photonic
flying qubits can only apply on traveling modes. Currently, to
the best of our knowledge, there is no way to generate, sta-
bilize, or manipulate GKP states while performing error cor-
rection inside optical cavities. Such abilities, if achieved, can
open up new opportunities in quantum technologies, such as
optical quantum memories [80], full-on error-correction gate-
based quantum computation using stored GKP states at room
temperature, or the integration of GKP states into other optical
quantum computational systems such as optical cavity QED.

Since current electron sources are not deterministic,
heralding the application of the gates or using feedforward
is necessary. Recent experiments have shown opportunities
for both photon-heralded electron sources by time-resolved
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detection [47,48] and electron-heralded electron sources
by antibunching [81,82]. Such heralding abilities, together
with multiplexing, can be used for deterministic single-
electron sources, similar to the current common approach
for continuous-variable (CV) optical quantum computation
[69,83].

Realizing free-electron-driven optical GKP states requires
addressing crucial challenges in each of the two main stages
of the process: initial electron qubit preparation and effi-
cient electron-photon quantum interaction. Both stages are
currently extensively investigated theoretically and experi-
mentally.

For the first, free-electron qubits and single-qubit oper-
ations of limited fidelity are already generated in PINEM
experiments [34,35,84]. Some of these experiments realized
free-electron combs even before the theory work showed how
such combs implement qubits [28]. Methods for increasing
the fidelities of such combs (and thus of the qubits) are being
developed (e.g., [31,32]). Other relevant ways of encoding
qubits on free electrons (not via combs) were also demon-
strated, as in [29], where the Bloch-sphere algebra of the qubit
was demonstrated.

For the second, efficient electron-photon quantum interac-
tion is now at the frontier of research and is advancing quickly
(e.g., [58]). The realization of integrated photonic structures
inside ultrafast electron microscopes contributed to these ef-
forts [35,47]. The necessary coupling strengths have been
recently realized using plasmonic structures [49] and pho-
tonic flatbands [85]. Our recent work [17] summarized these
advances and drew a roadmap toward free-electron quantum
information processing with continuous variables.

The electron detectors’ response time limits the number
of feedforward operations possible before the photonic mode
loses coherence. Electron detectors’ response times can be
very fast [comparable to Avalanche photodiodes (APDs)], on
the order of hundreds of picoseconds [86]. However, elec-
tronic latency delays the feedforward process to the order
of 10 ns (the electron detector and the photonic chip are
separated by a meter-scale distance). In the optical range,
most optical material-limited loss time for a cavity with high
confinement is on the order of 10 ns [87]. The current pa-
rameters indicate that it is possible to do approximately one
feedforward operation. As discussed in Sec. IV, a single
feedforward’s time is sufficient since, in a quantum circuit
application, the Pauli operations applied in the feedforward
process can be commuted to the end of the quantum circuit in
a procedure known as modifying the Pauli frame [16,64,69].
This circuit modification enables the computation of circuits
with many feedforward gates, applying the total correction at
the end, utilizing the same electronic latency in parallel. It
is also important to note that electron cameras and detection
technologies are not optimized for feedforward operation, and
with time, the numbers are expected to improve.

The free electron can also be shaped to multilevel qu-
dits with the GKP rotor encoding. By changing the electron
comb energy gap from 2h̄ω to Nh̄ω [17,30], the free electron
encodes an N-level qudit in the rotor encoding [18]. One
can compare the rotor states to Pegg-Barnett phase states
[88]; like the rotor states, they are not normalizable, but their
approximation can still be used. Based on this analogy, the

approximated free-electron normalized states compare to the
bosonic rotation codes state of qudit binomial or N-legged
cat state. These states approximate the not-normalizable Pegg-
Barnett phase states and can also be used to encode qudits by
changing the spacings [89]. The binomial qudit code state and
N-legged cat state can provide additional degrees of freedom
that can be exploited for generating and controlling GKP
states. However, they are extremely difficult to generate in
optics. Free electrons can substitute these useful states and
provide additional degrees of freedom. This research direction
facilitates the tunability of free electrons to provide degrees of
freedom that fundamentally differ from their circuit QED or
trapped-ion counterparts.
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APPENDIX A: FREE ELECTRONS AS QUDITS

This section focuses on the free electron’s state. We will
describe the electron as a qudit, showing the case of two-level
and four-level systems.

1. Free electrons as two-level and four-level systems

Let us introduce an N-level comb electron, with an energy
difference of Nh̄ω, a shift in energy by mh̄ω, and a Gaussian
envelope σ around a central energy E0:

∣∣combm,N
σ,φ

〉
e
∝

∞∑
n=−∞

e− n2

2σ2 eiφn|E0 + h̄ω(Nn − m)〉. (A1)

To create an electron qubit, we consider a comb electron
with an energy difference of 2h̄ω. The |0〉e state is

|0〉e = ∣∣comb0,2
σφ=0

〉
e
∝

∞∑
n=−∞

e− n2

2σ2 |E0 + h̄ω2n〉. (A2)

The |1〉e state, orthogonal to the |0〉e state, is

|1〉e = ∣∣comb1,2
σ,φ=0

〉
e
∝

∞∑
n=−∞

e− n2

2σ2 |E0 + h̄ω(2n − 1)〉.

(A3)
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The X basis will be built out of the general comb electron
states as follows:

|+〉e = ∣∣comb0,1
σ,φ=0

〉
e
, |−〉e = ∣∣comb0,1

σ,φ=π

〉
e
. (A4)

Using N = 4, the electron can act as a four-level system.
The basis states are

|00〉e = ∣∣comb0,4
σ,φ=0

〉
e
, |01〉e = ∣∣comb1,4

σ,φ=0

〉
e
,

|10〉e = ∣∣comb2,4
σ,φ=0

〉
e
, |11〉e = ∣∣comb3,4

σ,φ=0

〉
e
. (A5)

2. Interaction Hamiltonian as a conditional gate

The scattering matrix describes the interaction between
the electron and the photonic modes, and was introduced in
Eq. (3) in the main text. When the electron is in the electron
qubit sub-Hilbert space, the operator bω becomes the Pauli
operator σx [28]. Thus the scattering matrix alters into a
displacement operator:

S(gQ) = D(σxgQ) = eσx[(�{gQ}+i{gQ})a†−(�{gQ}−i{gQ})a]

= eσx[�{gQ}(a†−a)+i{gQ}(a†+a)]. (A6)

We will use the connection between the annihilation and
creation operators a, a†, and the position and momentum op-
erators x, p:

a = 1√
2

(x + ip), a† = 1√
2

(x − ip). (A7)

Thus

S(gQ) = ei
√

2(−�{gQ}p+{gQ}x)σx . (A8)

Therefore, the scattering matrix can be written as a condi-
tional displacement in the electron’s X basis, as follows:

S(gQ) = D(gQσx )

= |+〉e〈+|e ⊗ D(gQ) + |−〉e〈−|e ⊗ D(−gQ)

= 1
2 {[D(gQ) + D(−gQ)]I + [D(gQ) − D(−gQ)]σx}

= CD(gQ). (A9)

3. Using electrons in the X basis

Using electrons in the X basis, |+〉e, |−〉e will create a
deterministic displacement gate on the photonic mode. Fol-
lowing Eq. (A9), acting with a |+〉e will create a D(gQ) gate,
and acting with a |−〉e will create a D(−gQ) gate on the pho-
tonic mode. No entanglement is induced between the electron
and the photonic mode, and the electron state is not changed
in the interaction. Using this knowledge, one can use a regular
comb electron to create any displacement gate on the photonic
mode (up to a physical value of gQ).

4. Using electrons in the Z basis

Using electrons in the Z basis, |0〉e, |1〉e will create Kraus
operators on the photonic mode, after postselection. Using
Eq. (A9), the final joint state after an interaction of electron
state |0〉e and a general photonic state |ψ〉ph is

|ψ〉final = S(gQ)|0〉e|ψ〉ph

= [|+〉e〈+|eD(gQ) + |−〉e〈−|eD(−gQ)]|0〉e|ψ〉ph

= [|0〉eM+(gQ) + |1〉eM−(gQ)]|ψ〉ph, (A10)

while we defined the Kraus operators as

M±(gQ) = [D(gQ) ± D(−gQ)]/2. (A11)

M+(gQ) acts after measuring |0〉e and M−(gQ) acts after
measuring |1〉e. For an initial |1〉e electron state, the final state
is

|ψ〉final = [|0〉eM−(gQ) + |1〉eM+(gQ)]|ψ〉ph. (A12)

For an initial general electron state |φ〉e = cosθ |0〉e +
eiϕ sin θ |1〉e, the final state is

|ψ〉final = S(gQ)|φ〉e|ψ〉ph

= [(cosθ |0〉e + eiφ sin θ |1〉e)M+(gQ)

+ (eiφ sin θ |0〉e + cosθ |1〉e)M−(gQ)]|ψ〉ph. (A13)

Using four-level comb electrons, one can operate in two
orthogonal axes in phase simultaneously. After one interaction
of |00〉e with a general photonic mode state, the final state is

|ψ〉final = S(gQ)|00〉e|ψ〉ph

= 1

4

⎡
⎢⎢⎢⎢⎣

|00〉e(DgQ + DigQ + D−gQ + D−igQ )

+|01〉e(DgQ + iDigQ − D−gQ − iD−igQ )

+|10〉e(DgQ − DigQ + D−gQ − D−igQ )

+|11〉e(DgQ − iDigQ − D−gQ + iD−igQ )

⎤
⎥⎥⎥⎥⎦|ψ〉ph.

(A14)

5. Universal control over the electron qubit

As shown in [28,29], free-electron qubits can be controlled
universally with two components. The first is interaction with
classical coherent light, classical PINEM, with interaction
constant g:

PINEM(g) = Rx(4{g})

=
(

cos(2{g}) −i sin(2{g})

−i sin(2{g}) cos(2{g})

)
, (A15)

while g = e
h̄ ω

∫ z
−∞ dz′ Ez(z′, x, y)e− iω

v
z′

depends on the trans-
verse directions x, y and the integration limit z in the direction
parallel to the electron’s momentum. Ez is the electric field
in the z direction, ω is the shaping laser’s phase, and v is the
electron velocity.

The second is free-space propagation (FSP), applying
Rz(π/2). FSP changes each energy component of the electron,
U (φ)|n〉e = e−iφn2 |n〉e. φ is defined by 2π z

zT
with z being

the propagation distance, and zT = 4πγ 3mev
3

h̄ ω2 is the Talbot
distance [29]. me is the electron mass, v is its average velocity,
and γ is the Lorentz factor. As the electron propagates, the
phases accumulated take the electron out of the electron qubit
sub-Hilbert space. However, propagation distance z = zT

4 cor-
responds to a rotation gate on the electron’s Bloch sphere of π

2
around the z axis [28]. Thus, when designing an experiment,
the distance between the interactions of the electron with the
photonic modes must be an integer multiple of this value. For
simplicity, when we mark the FSP operation, we consider free
propagation of zT

4 such that FSP = Rz(π/2). The following
sequence can create the Hadamard (H) gate on the electron:

He = FSP × PINEM(iπ/8) × FSP. (A16)
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APPENDIX B: LIGHT AS A QUBIT

This section focuses on the photonic mode, describ-
ing it as a qubit in the continuous-variable approach. [17]
Gottesman-Kitaev-Preskill (GKP) states appear to be the lead-
ing candidates for correcting errors when encoding qubits
into oscillators. Our previous paper [17] described creating
these states using the qubit comb electrons. This paper focuses
on using free electrons for controlling the photonic modes,
specifically GKP states. Thus we will elaborate on a few
properties of the GKP state. There are two main types of GKP
states—rectangular lattice and hexagonal lattice. Let us define
the lattice constants for each option:

square lattice:ax = α, ay = α(1 + i), az = iα,

hexagonal lattice:ax = β, ay = βeiπ/3, az = βei2π/3,
(B1)

with α = √
2π and β =

√
4π/

√
3. ax and az are the distances

between the lattice points in the two main lattice directions,
connected to Pauli σx and σz, accordingly. For any GKP state,
{axay} = 4π . ay = ax + az depends on the other two and is
defined here to connect to Pauli σy.

APPENDIX C: SINGLE-QUBIT GATES
ON THE PHOTONIC MODES

This section shows that free-electron qubits can be used for
universal control over the photonic state. A set of universal
quantum gates is any set of gates to which any operation
possible on a quantum computer can be reduced.

1. Pauli gates and stabilizers

For an ideal GKP state, the stabilizers are

si = D(±ai ), (C1)

with i = x, y, z. One can use the following identities to dis-
place the state in phase space:

D(c) = e−i
√

2cp̂, D(ic) = ei
√

2cx̂, (C2)

where c is real, representing the displacement distance. Pauli
gates can be found by the following formula:

σi = D

(
±ai

2

)
, (C3)

using i = x, y, z once again. All these gates and stabilizers can
be created using interactions with comb electrons |+〉e with
the coupling gQ = ±ai for the stabilizers and gQ = ±ai/2 for
the Pauli gates (i = x, y, z).

2. Projections

The electron qubit to can be used to create projection
operators on the photonic state. Using the free-electron qubit
in the state |0〉e, and choosing gQ = ai/4, i = x, y, z, the Kraus
operators, defined in Eq. (A11), become projection operators:

M±
(

ai

4

)
= D

(
ai

4

)
1

2
(I ± σi )

= D

(
ai

4

)
|±i〉GKP

ph 〈±i|GKP
ph :−D

(
ai

4

)
P±

i , (C4)

with the projections acting as follows:

P±
i |±i〉GKP

ph = (|±i〉GKP
ph 〈±i|GKP

ph

)|±i〉GKP
ph = |±i〉GKP

ph ,

P±
i |∓i〉GKP

ph = (|±i〉GKP
ph 〈±i|GKP

ph

)|∓i〉GKP
ph = 0. (C5)

We defined |±i〉GKP
ph as the eigenvalue of σi for i = x, y, z.

3. Readout

Let us show how to measure in the X direction. Start
with a general GKP state in the X basis, |ψi〉ph = α|+〉GKP

ph +
β|−〉GKP

ph . The initial electron state is |0〉e. In that case, accord-
ing to Eq. (A10), the final state after the interaction is

|ψ f 〉 = [|0〉eM+(gQ) + |1〉eM−(gQ)]
(
α|+〉GKP

ph + β|−〉GKP
ph

)
.

(C6)

Here we will use the projection operators, by choosing
gQ = ax/4. Thus the final state can be written as

|ψ f 〉 = D(ax/4)
(
α|0〉e|+〉GKP

ph + β|1〉e|−〉GKP
ph

)
. (C7)

Measuring the quantum state of the electron qubit is equiv-
alent to measuring the GKP state in the X basis. Note that
a displacement of D(−ax/4) is necessary to return the final
photonic mode state into a GKP state, by deterministically
using an electron |+〉e with gQ = − ax

2 . To change this scheme
and measure in the Y or Z basis, all that is needed is to change
ax → ay, az accordingly.

4. Hadamard gate on the photonic mode

The Hadamard (H) gate on the GKP state is a rotation
in phase space [62]. This gate can be achieved digitally by
adding a π/2 phase shift to the calculated gQ in the requested
computation step and all the following steps.

Another option is to use a four-level comb electron, specif-
ically choosing the initial state |00〉e and choosing gQ = ax/2.
According to Eq. (A14), when starting from a general GKP
state in the Z basis, |ψi〉ph = α|0〉GKP

ph + β|1〉GKP
ph , the final

state after the interaction is

|ψ f 〉 = S

(
ax

2

)
|00〉e

(
α|0〉GKP

ph + β|1〉GKP
ph

)
= 1

2
√

2

[|00〉e

(
α|+〉GKP

ph + β|−〉GKP
ph

)
+ |10〉e

(
β|+〉GKP

ph − α|−〉GKP
ph

)]
. (C8)

If we measure |00〉e, we have success. Otherwise, a σy gate
on the GKP is required, the |+〉e comb electron with gQ = ay.
For the completeness of this section, let us show how the gate
acts on the GKP in the X basis, translating it to the Z basis:

|ψ f 〉S
(

ax

2

)
|00〉e

(
α|+〉GKP

ph + β|−〉GKP
ph

) =

= 1

2
√

2

[|00〉e

(
α|0〉GKP

ph + β|1〉GKP
ph

)
+ |10〉e

(
α|1〉GKP

ph − β|0〉GKP
ph

)]
. (C9)

From here we will use the same process. If we measure
|00〉e, we have success. Otherwise, we will use one |+〉e comb
with gQ = ay to create a σy gate on the GKP state.
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5. Rotation gate

To get a rotation gate on the GKP state, an ancilla qubit can
be used for teleported gates [11,13,62]. Using this scheme,
the free-electron qubit is the ancilla qubit. One can apply
a rotation gate around the X , Y , or Z axis at any angle φ,
implemented with teleported gates, as shown in Fig. 2(b) in
the main text.

We consider the case of a rotation of the GKP state Ri(φ),
where i = x, y, z. We can write the state of the GKP state in
the i basis as

|ψ〉GKP
ph = α|+i〉GKP

ph + β|−i〉GKP
ph . (C10)

The teleported gate protocol starts with preparing the elec-
tron in the state |0〉e. We then apply a conditional displacement
with gQ = ai

4 , i = x, y, z. Finally, we use the unconditional
displacement D(gQ) to recenter the code. At the end of the
sequence, the joint final state is

|ψ〉final = α

2
(I + σi )|0〉e|+i〉GKP

ph + α

2
(I − σi )|1〉e|+i〉GKP

ph

+ β

2
(I + σi )|0〉e|−i〉GKP

ph + β

2
(I − σi )|1〉e|−i〉GKP

ph

= α|0〉e|+i〉GKP
ph + β|1〉e|−i〉GKP

ph . (C11)

We then measure the electron along an axis rotated by an
angle φ from the X axis, in the |φ±〉 basis:

|φ±〉 = 1√
2

(e
iφ
2 |0〉e ± e− iφ

2 |1〉e). (C12)

The Kraus operators acting on the GKP state, depending
on the measurement outcome, are

K (φ±) = 1√
2

(
e

iφ
2 |+i〉〈+i|GKP

ph ± e− iφ
2 |−i〉〈−i|GKP

ph

)
. (C13)

Applying a feedforwarded σi gate if the electron is found
in |φ−〉e, we find that K (φ±) = Ri(φ)|ψ〉GKP

ph , and the whole
sequence performs an unconditional rotation Ri(φ) of the
GKP state around the i = x, y, z axis by an angle of −φ with
Ri(φ) = e

iφ
2 |+i〉〈+i|GKP

ph ± e− iφ
2 |−i〉〈−i|GKP

ph . To apply the re-
spected rotation on the electron, we can use the PINEM
interaction and FSP mentioned in Appendix A 5. As shown in
[28], using both PINEM and FSP interactions is a universal set
of one qubit gate; therefore it is possible to get every unitary
operation. In the teleported gates scheme, we need to measure

FIG. 5. Schematic of a device that implements a rotation gate on
the free-electron qubit. This device implements the unitary opera-
tion U (φ), rotating the electron qubit from the computational basis
to the |φ±〉 = 1√

2
(e

iφ
2 |0〉e ± e− iφ

2 |1〉e) basis. Performed by apply-

ing the following sequence: U (φ) = PINEM(4{g2(φ)}) × FSP3 ×
PINEM(4{g1(φ)}) × FSP.

the electron in the basis of |φ±〉 = 1√
2
(e

iφ
2 |0〉e ± e− iφ

2 |1〉e).
This can be achieved by applying on the electron, after the
interaction with the photonic mode, a unitary operation to
rotate the electron to the |φ±〉 basis.

To measure the electron in the |φ±〉e basis, a unitary U (φ)
operation is applied on the electron before the measurement
in the z basis, where U (φ) is defined as follows:

U (φ) = 1√
2

(
e− iφ

2 e
iφ
2

e− iφ
2 −e

iφ
2

)
,

U (φ)|φ+〉e = |0〉e, U (φ)|φ−〉e = |1〉e. (C14)

Using the operations available for the free-electron qubit,
FSP and PINEM, the unitary U (φ) is constructed by the
following (see Fig. 5):

PINEM(g) = Rx(4{g}) =
(

cos(2{g}) −i sin(2{g})

−i sin(2{g}) cos(2{g})

)
,

FSP =
(

1 0
0 i

)
,

U (φ) = PINEM(4{g2(φ)}) × FSP3

× PINEM(4{g1(φ)}) × FSP. (C15)

The unitary U (φ) is

U (φ) = 1√
2

(
e− iφ

2 e
iφ
2

e− iφ
2 −e

iφ
2

)

=
(

cos(a) cos(b) + i sin(a) sin(b) cos(b) sin(a) − i cos(a) sin(b)

− cos(b) sin(a) − i cos(a) sin(b) cos(a) cos(b) − i sin(a) sin(b)

)
. (C16)

When we mark the following values a = 2{g1(φ)}, b =
2{g2(φ)}, the solution is g1 = −iπ/8 and g2 = i(π + φ)/4.
One could make a device that implements this unitary rotation

sequence. When there is no need to apply any U (φ), one could
just not use any pulses in the two PINEM operations and get
FSP4 which is equal to the identity. The S and T gates can be
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achieved by rotation around the z axis, with the angles π
2 and

π
4 , respectively.

APPENDIX D: MULTIQUBIT GATES
AND ENTANGLEMENT

This section will elaborate on using free-electron qubits
to create multiqubit gates between GKP states and to induce
entanglement between multiple qubits.

1. Two-qubit gates: CNOT between photonic modes

In this section, we will present the full protocol for creat-
ing two-qubits gates between GKP states using free-electron
qubits. The first photonic mode is in a general GKP state,
|ψ〉GKP

ph1 = α|0〉GKP
ph1 + β|1〉GKP

ph1 . The second photonic mode is
in a general GKP state |ψ〉GKP

ph2 . The electron state is |0〉e. For
a CNOT gate the final state is expected to be

CNOT|ψGKP〉ph1|ψ〉GKP
ph2 = CNOT

(
α|0〉GKP

ph1 + β|1〉GKP
ph1

)|ψ〉GKP
ph2

= (
α|0〉GKP

ph1 + β|1〉GKP
ph1 σx2

)|ψ〉GKP
ph2 .

(D1)

According to the readout section, after the interaction of
the electron with the first photonic mode, using gQ1 = az/4,
the final state is

|ψf,1〉 = S(1)

(
az

4

)
|0〉e

(
α|0〉GKP

ph + β|1〉GKP
ph

)|ψ〉GKP
ph2

= D(1)

(
az

4

)(
α|0〉e|0〉GKP

ph1 + β|1〉e|1〉GKP
ph1

)|ψ〉GKP
ph2 ,

(D2)

while D(1)( az

4 ) is a displacement gate acting on the first mode.
After the first interaction, we will induce a Hadamard gate on
the electron qubit, He; thus the final state will be

|ψ f ,2〉 = He|ψ f ,1〉

= D(1)

(
az

4

)(
α|+〉e|0〉GKP

ph1 + β|−〉e|1〉GKP
ph1

)|ψ〉GKP
ph2 .

(D3)

Then the electron will interact with the second photonic
mode with coupling constant gQ2 = ax

4 . The final state will be
the following:

|ψf,3〉 = S(2)

(
ax

4

)
|ψf,2〉

= D(1)

(
az

4

)[
α|+〉e|0〉GKP

ph1 D(2)

(
ax

4

)

+ β|−〉e|1〉GKP
ph1 D(2)

(
−ax

4

)]
|ψ〉GKP

ph2 . (D4)

Afterward, a comb electron |+〉e will interact with the
second photonic state, creating a deterministic displacement

on the second photonic state. The coupling constant it chosen
to be gQ3 = − ax

4 :

|ψ f ,4〉 = D(2)

(
−ax

4

)
|ψ f ,3〉

= D(1)

(
az

4

)[
α|+〉e|0〉GKP

ph1

+ β|−〉e|1〉GKP
ph1 D(2)

(
−ax

2

)]
|ψ〉GKP

ph2 . (D5)

For a GKP state D(− ax
2 ) = σx. Therefore, the final state is

|ψ f ,4〉 = D(1)

(
az

4

)(
α|+〉e|0〉GKP

ph1 + β|−〉e|1〉GKP
ph1 σ (2)

x

)|ψ〉GKP
ph2

= 1√
2

D(1)

(
az

4

)[|0〉e

(
α|0〉GKP

ph1 + β|1〉GKP
ph1 σ (2)

x

)
+ |1〉e

(
α|0〉GKP

ph1 − β|1〉GKP
ph1 σ (2)

x

)]|ψ〉GKP
ph2 . (D6)

The final step is the electron measurement. Measuring the
state |0〉e, i.e., detecting an even energy, will create the ex-
pected CNOT gate. If the state |1〉e is measured, a deterministic
correction can be done, using a comb electron |+〉e interacting
with the first photonic state, to operate with a σ (1)

z Pauli
operator on the final state. The probability to postselect |0〉e
in the last step is

P1 = 1√
2

∥∥(
α|0〉GKP

ph1 |ψ〉GKP
ph2 + β|1〉GKP

ph1 σ (2)
x |ψ〉GKP

ph2

)∥∥2

= 1

2
(|α|2 + |β|2) = 1

2
. (D7)

According to the one-qubit gates section, choosing differ-
ent gQ will induce different Pauli gates on the GKP state.
Choosing the coupling constant to be gQ2 = −gQ3 = ai

4 will
give a controlled Pauli Cσi gate.

2. Multipartite entanglement between photonic modes

In this section we show how to create an entangled state
between multiple GKP states in two different ways. Using the
fact that the free electron is a flying qubit, one free electron
can interact with multiple GKP states, giving the ability to
create multipartite entanglement.

a. Creating photonic modes GHZ state

To create a GHZ state between many GKP states, first a
Hadamard gate is applied to the electron, and then a CNOTe→ph

gate between the free electron and each GKP state. As pre-
sented in Eq. (5) in the main text, the interaction between an
electron and the GKP state can be translated to a CNOTe→ph

gate, where the free electron is the control qubit. To create a
GHZ state using a free electron qubit, the following circuit
can be applied:

(
He ⊗ I⊗n

ph

)
CNOT

(1)
e→ph × CNOT

(2)
e→phCNOT

(3)
e→ph . . . CNOT

(n)
e→ph =

[
Ie ⊗ D(1)

(
−ax

4

)]
S(1)(gQ)

[
Ie ⊗ D(2)

(
−ax

4

)]
S(2)(gQ) (D8)
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Then after applying this circuit, we will get the following
state:

|ψ〉GHZ = 1√
2

(|0〉e|00 . . . 0〉GKP
ph + |1〉e|11 . . . 1〉GKP

ph

)
. (D9)

Measurement of the free-electron qubit in the X basis can
then disentangle the free electron from the GKP states. After
the measurement, if the measurement outcome is |+〉e the
state will be

|ψ〉+GHZ = 1√
2

(|00 . . . 0〉GKP
ph + |11 . . . 1〉GKP

ph

)
, (D10)

and if the measurement outcome is |−〉e the state will be

|ψ〉−GHZ = 1√
2

(|00 . . . 0〉GKP
ph − |11 . . . 1〉GKP

ph

)
. (D11)

The σz gate on one of the GKP states changes from the
|ψ〉−GHZ state to the |ψ〉+GHZ state.

b. Creating photonic modes cluster states

Similarly, cluster states between a single electron and many
photonic states can also be obtained. The difference between
creating a cluster state and a GHZ state is the Hadamard
gate between each interaction that needs to be applied to the
electron, as shown in Fig. 4(a) in the main text. The following
circuit is applied to create a cluster state between an electron
and multiple photonic modes:(

He ⊗ I⊗n
ph

)
CNOT

(1)
e→ph

(
He ⊗ I⊗n

ph

)
CNOT

(2)
e→ph

. . .
(
He ⊗ I⊗n

ph

)
CNOT

(n)
e→ph

(
He ⊗ I⊗n

ph

)
. (D12)

where the CNOT gate is controlled by the electron. This circuit
can be written with the scattering matrix S:[

Ie ⊗ D(1)

(
−ax

4

)]
S(1)(gQ)

[
He ⊗ D(2)

(
−ax

4

)]

× S(2)(gQ) . . .

[
He ⊗ D(n)

(
−ax

4

)]
S(n)(gQ). (D13)

It is easier to apply a rotation gate Rz( π
2 ) on the electron

since it is just an FSP. Thus, we will change the basis from
X , Y , Z to the Y , Z , X basis, which means that instead of the
CNOT gate, we will use the controlled Pauli σy, controlled by
the free-electron state in the X basis. This way, the process of
creating a cluster state is interaction with the photonic states
with gQ = ay

4 , with FSP between the interactions. To create
cluster state in the X and Y basis, the following circuit is
applied between an electron and multiple photonic modes:[

Rz

(
π

2

)
⊗ I⊗n

ph

]
Cxσ

(1)
z

[
Rz

(
π

2

)
⊗ I⊗n

ph

]

× Cxσ
(2)
z

[
Rz

(
π

2

)
⊗ I⊗n

ph

]
. . .Cxσ

(n)
z

[
Rz

(
π

2

)
⊗ I⊗n

ph

]
.

(D14)

A 2D cluster state can be created using the scheme shown
in Fig. 4(b) in the main text, similarly to [71]. The photonic
modes pass through the waveguide, and the distances between
each interaction will constitute an FSP. After that, they go
through a delay of τ and again interact; thus, it is possible

to entangle between different rows in the matrix of the 2D
cluster, in a similar way as [71].

APPENDIX E: IMPROVING THE PROTOCOLS OF
CREATING GKP STATES USING A SINGLE ELECTRON

The free-electron interaction can improve existing proto-
cols for creating GKP states. Free electrons can be used in
several schemes, specifically in our last paper [17] on creat-
ing GKP states using free electrons. Let us describe how to
increase the probability of creating a GKP state using free
electrons by utilizing feedforward, focusing on the case of
creating GKP states from squeezed vacuum; in a similar way
as in [14,69], the following identity holds:

D(iaβ )[D(β ) − D(−β )]S(ξ )|0〉ph

≈ ei π
2 [D(β ) + D(−β )]S(ξ )|0〉ph, (E1)

where α = π

4|β|2 . S(ξ ) is the squeezing operator with squeez-
ing parameter ξ [90] and |0〉ph is a photonic vacuum state. The
identity holds if the left displacement direction is in the same
direction as the squeezing; thus D(iaβ )S(ξ )|0〉ph ≈ S(ξ )|0〉ph.

For an example, we will improve on our previous work
[17], on how to create a rectangular GKP state from a
squeezed vacuum state. m interactions are needed with even
postselection and coupling constant gQ = √

π/2, meaning
that the final GKP state is ∝ [M+(

√
π/2)]

m|0〉S
ph. To increase

the probability of success, apply correction to the state. If
the electron state measured is |1〉e, the state will evolve ac-
cording to the operator M−(

√
π/2) and it can be corrected

deterministically to M+(
√

π/2) using the identity in Eq. (E1),
by interacting with another electron in the state |+〉e with
gQ = i

√
π/8. Specifically, there are two options for the timing

of the feedforward correction. The first option is to correct the
state after the first electron, meaning that if the measurement
result was |1〉e at the first step the state will be corrected. The
second option is to wait with the correction to the end, after all
the electrons are measured. If all the electrons are measured
in the state |1〉e, meaning that the final state in the photonic
mode is ∝ [M−(

√
π/2)]

m
S(r)|0〉, it will be corrected using a

single comb electron in the state |+〉e with gQ = i
√

π/8. The
probability to create a GKP state with 10 dB squeezing will
increase from 31.25% [17] to 62.5%.

APPENDIX F: HIGHER-ORDER DISPERSION EFFECT
ON THE ELECTRON’S FIDELITY

This section considers the higher-order dispersion effects
on the free-electron comb and evaluates its fidelity. We con-
sider a comb electron with finite energy width σ in the
momentum basis:

|+σ 〉e = 1√
Norm

∞∑
n=−∞

e− n2

2σ2

∣∣∣∣k0 + ω

v
n

〉
. (F1)

When the electron propagates for time t , each momentum
component accumulates a different phase according to the
electron’s dispersion relation:

∣∣+t
σ

〉
e = 1√

Norm

∞∑
n=−∞

e− n2

2σ2 e− iE (k0+ ω
v n)

h̄ t

∣∣∣∣k0 + ω

v
n

〉
, (F2)
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FIG. 6. Fidelity of the free-electron qubit state with high-order dispersion. (a), (b) The fidelity between the free-electron-qubit state before
and after N Talbot periods, according to Eq. (F6). The fidelity is plotted as a function of the number of Talbot periods N and the electron finite
energy width σ , for |+〉e in (a) and |0〉e in (b). The red curve is the 0.99 fidelity threshold; below it, the fidelity is higher than 0.99, and an
extensive regime approaches a unit fidelity. (c), (d) The real and imaginary parts of the free-electron-qubit |0〉e wave function with high-order
dispersion for different N Talbot periods and σ energy width. (e), (f) The absolute value of the free-electron-qubit |0〉e with and without
high-order dispersion for different N Talbot periods and σ energy width. Panels (c), (e) show the wave function for N = 1 and σ = 10. Panels
(d), (f) show the wave function for N = 3 and σ = 15. These points are marked with a star in (b). High-order dispersion does not change the
parity of the electron and cannot rotate |0〉e to be |1〉e and vice versa.

while E (k) = h̄c
√

k2 + m2c2

h̄2 . It is convenient to work with the
frame of reference moving with the mean electron velocity
such that t = z

v
where v = ck0/

√
k2

0 + m2c2

h̄2 .
We can now Taylor expand the dispersion relation of the

electron around the central momentum k0 to get

E
(
k0 + ω

v
n
)

h̄
≈ c

√
k2

0 + m2c2

h̄2 + ck0
(

ω
v

n
)

√
k2

0 + m2c2

h̄2

+
m2c3

h̄

(
ω
v

n
)2

2
(
k2

0 + m2c2

h̄2

) 3
2

−
m2c3

h̄ k0
(

ω
v

n
)3

2
(
k2

0 + m2c2

h̄2

) 5
2

. (F3)

The dispersion relation can be written with v and the Talbot
distance zT [28]:

E

(
k0 + h̄ω

v
n

)/
h̄ ≈ E0

h̄
+ ωn + 2πv

zT
n2 − 2πvh̄ω

E0zT
n3.

(F4)

As discussed in the main text, different operations require
applying quantum gates on the electron. The universal control
of the free-electron qubits (Appendix A 5) requires the FSP

operation, which relies on the propagation distance of the free
electron of zT

4 .
To quantify the effect of the high-order dispersion, we

calculate the fidelity between the electron comb state before
and after propagation of N Talbot periods. We write the state
after N Talbot periods, up to an overall phase that does not
change the fidelity, and up to a linear phase that only describes
a shift in time and does not change the fidelity:

∣∣+NzT
σ

〉
e = 1√

Norm

∞∑
n=−∞

e− n2

2σ2 e−i2πn3N h̄ω
E0

∣∣∣∣k0 + ω

v
n

〉
. (F5)

Note that the quadratic term in the dispersion exactly can-
cels out as this is the definition of the Talbot period. The
resulting fidelity is

∣∣〈+σ

∣∣+NzT
σ

〉∣∣2 =
∣∣∑

n e− n2

σ2 e−i2πn3N h̄ω
E0

∣∣2

∣∣∑
n e− n2

σ2
∣∣2 . (F6)

The third-order dispersion is proportional to the ratio be-
tween the photon energy and the electron’s central energy. For
typical parameters of optical frequencies and TEM electrons,
the ratio h̄ω

E0
is on the order of 10−5. This small value makes
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the high-order dispersion negligible and tolerated for quantum
processing purposes. The fidelities of the free-electron wave
function, with and without high-order dispersion, are plotted
in Fig. 6. The electron parity cannot be changed since the
high-order dispersion can rotate the electron only around the
Z axis. For example, an even-comb electron will keep only
even energies, and its measurement will remain independent
of high-order dispersion.

The high-order dispersions present a trade-off that should
be satisfied when determining the electron energy width σ .
On the one side, the free-electron state fidelity decreases
for large σ due to the third-order dispersion, while on
the other side, the free-electron state fidelity increases with
large σ (as seen in [17]). The consequences of the disper-
sion effects on the gates’ fidelity are examined in the next
section.

APPENDIX G: NOISE EFFECTS ON GATES’ FIDELITIES

This section examines the impact of dispersion effects
on the fidelities of the gates presented in the paper. Two
noise sources need to be considered: the nonideal Gaussian
envelope of the free-electron comb with variance σ and the
high-order dispersion relevant to the free-space propagation
(FSP). Both effects were analyzed separately in RM 5.1 of
[17] and in Appendix F of this paper. Here we quantify their
effects on gates’ fidelities.

The CD gate used in our proposal for one qubit gate ap-
plication and error correction occurs immediately after the
electron is shaped. Therefore, the high-order dispersion that
comes with free-space propagation does not affect it. Hence,
the CD gate’s primary error model is the free-electron comb’s
nonideality (the finite size of σ ). This type of noise was stud-
ied extensively in the context of nonideal GKP noise [1,91]
and was explicitly studied in the case of free-electron comb

in RM 5.1 of [17]. The conclusion is that if the normalized
envelope variance σ exceeds 8, the conditional displacement
gate fidelity will be larger than 0.99. There is no fundamental
limit on the fidelity of this gate.

The FSP operation used in our proposal for rotation around
the Z axis is affected by the high-order dispersion, thus setting
the upper limit for the variance. As we show in Appendix F,
a variance of σ = 8 limits the maximum number of Talbot
periods to 2.5. Since only a single Talbot period is needed
for the rotation gate, and a shorter FSP distance is needed for
all other gates, it is possible to fulfill the trade-off between
the lower and upper limits on the variance. One can always
increase the fidelity further by more intricate schemes, as
discussed below.

The two gate sequences relevant for universality that are
limited by the high-order dispersion are the single-qubit rota-
tion gate and the two-qubits CNOT gate. In the rotation gate,
the unitary U (φ) applied to the electron, as discussed in Ap-
pendix C 5, uses FSP with one Talbot period. According to
Appendix F, the upper limit for the variance is σ � 10. The
CNOT gate uses one Hadamard gate with half a Talbot period,
limiting the variance to σ � 13. The GHZ state creation con-
sists solely of CD gates, and therefore σ has no upper limit. In
all of the above, there is a parameter space satisfying all the
dispersion limitations to achieve high gate fidelity.

Cluster state generation requires multiple Hadamard gates.
By the above trade-off, if we take, for example, σ = 8, the
maximum number of Talbot periods is 2.5. Thus each electron
is limited to five Hadamard gates, creating a cluster with six
modes (to achieve a fidelity greater than 0.99). This limit
is not fundamental, as multiple electrons can increase the
cluster size, and other schemes, such as fusion, can enlarge
the cluster further. Even limiting to a single electron, disper-
sion mitigation techniques can increase the number of modes
above 6.
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