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Synchronization approach to achieving maximum power and thermal efficiency for weakly coupled
low-temperature-differential Stirling engines
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Low-temperature-differential (LTD) Stirling engines are heat engines that can operate autonomously with a
slight temperature difference between low-temperature heat reservoirs and are thus expected to contribute to a
sustainable society. A minimal dynamical-system model with only two variables has been proposed to explain
the principle of autonomous rotational motion caused by temperature differences, and the maximum efficiency
of the engine was formulated [Y. Izumida, Europhys. Lett. 121, 50004 (2018); Phys. Rev. E 102, 012142 (2020)].
This paper aims to investigate the synchronous and asynchronous transitions and clarify the coupling effects on
the power and thermal efficiency of a pair of weakly coupled LTD Stirling engines and formulate the maximum
thermal efficiency of the coupled system. We show that the dependence relation between the effective frequency
difference and the coupling strength is characterized by a hysteresis, which comes from different kinds of
bifurcations in the process of increasing and decreasing the value of the coupling strength. Then, by generalizing
thermodynamic fluxes and forces and their quasilinear relations for engines under weak coupling, we show
that the coupling improves the power exerted against the load torques and the thermal efficiency. We further
show that their maximum values are achieved when the engines are synchronized. Since the thermal efficiency
depends on the effective frequency difference, the dependence of thermal efficiency on the coupling strength is
also characterized by a hysteresis. Finally, the load torque that achieves the maximum thermal efficiency of the
coupled system is formulated.

DOI: 10.1103/PhysRevResearch.5.043268

I. INTRODUCTION

A heat engine is a system that uses thermal energy from
a high-temperature heat reservoir to extract positive work.
According to the second law of thermodynamics, a low-
temperature heat source is required to discard part of the
thermal energy to extract positive work from a heat engine.
Low-temperature differential (LTD) Stirling engines, which
can rotate autonomously with only a slight temperature differ-
ence between low-temperature heat reservoirs, are attracting
significant attention as an elemental technology to realize a
sustainable society [1–3]. From this perspective, it is vital
to understand the dynamical characteristics of LTD Stirling
engines through appropriate mathematical modeling [4,5]. A
nonlinear dynamics model has been proposed to explain the
loss of rotational motion of LTD Stirling engines, which was
found to be caused by a homoclinic bifurcation [6].

Another important issue for the LTD Stirling engines is
thermal efficiency. In Ref. [7], one of the authors demon-
strated that the engine’s rotational state is in a quasilinear
response regime where the thermodynamic fluxes show a
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linear dependence on the thermodynamic forces and formu-
lated the maximum efficiency of the engine based on the fact
that the response coefficients of the quasilinear relations are
symmetric, which is similar to Onsager symmetry in linear
irreversible thermodynamics. However, the power extracted
from a single LTD Stirling engine is quite limited, thus it is
desirable to operate a population of Stirling engines to extract
adequate work for practical purposes. Methods that achieve
maximum efficiency by properly controlling a population of
Stirling engines then turn out to be important.

Synchronization is a self-organized phenomenon in which
oscillators align their rhythms through interaction and is
widely observed in natural and artificial systems [8,9]. A
natural question that would be raised is whether synchroniza-
tion through coupling between the LTD Stirling engines can
improve the total power and thermal efficiency. If it does,
then higher power and thermal efficiency can be achieved
simply by allowing the engines to interact with each other.
Although experimental studies on the synchronization of LTD
Stirling engines have been conducted [10,11], the effects of
synchronization on power and thermal efficiency have not yet
been clarified theoretically.

This paper aims to investigate the synchronous and asyn-
chronous transitions and clarify the coupling effects on the
power and thermal efficiency of a pair of weakly coupled
LTD Stirling engines and to formulate the maximum thermal
efficiency of the coupled system. We will provide a model
of a pair of weakly coupled LTD Stirling engines and inves-
tigate the synchronous and asynchronous transitions through
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FIG. 1. (a) Front view of an LTD Stirling engine. (b) Side view of a pair of weakly coupled LTD Stirling engines with different load torques
acting on the cranks. The gases confined to the cylinders are in contact with the bottom and top heat reservoirs.

numerical experiments. After that, we will provide a theoret-
ical analysis of the effects of the weak coupling on power
and thermal efficiency. By generalizing thermodynamic fluxes
and forces and their quasilinear relations for engines under
weak coupling, we show that the coupling improves the power
exerted against the load torques and the thermal efficiency. We
further show that their maximum values are achieved when
the engines are synchronized. Finally, we formulate the load
torques that achieve the maximum thermal efficiency of the
coupled system.

II. MODEL

We consider a pair of weakly coupled LTD Stirling engines
with the same parameters except for the load torques T̃ (1)

load

and T̃ (2)
load acting on the cranks (Fig. 1). Heat reservoirs at

temperatures T̃b and T̃t (T̃b > T̃t) are attached to the bottom and
top surfaces of the large cylinders of the engines, respectively,
and we define the temperature difference �T̃ ≡ T̃b − T̃t for
later use. The temperature difference �T̃ and load torque T̃ (i)

load
(i = 1, 2) are assumed to be sufficiently small. A nondimen-
sionalized minimal model of a single LTD Stirling engine has
been proposed in Ref. [6] with the following form:

dθ

dt
= ω, (1a)

dω

dt
= σ

(
T (θ, ω)

V (θ )
− Pair

)
sin θ − �ω − Tload, (1b)

where θ is the phase angle of the crank connected to the power
piston; σ is a positive constant determined by the surface areas
of the large and small cylinders; V (θ ) = 2 + σ (1 − cos θ ) and
T (θ, ω) = Teff (θ )/(1 + σ sin θω

GV (θ ) ) represents the volume and
temperature of the gas confined to the cylinders, respectively;
Teff (θ ) = 1 + sin θ

2 �T is the effective temperature of the heat
reservoirs that periodically changes depending on the phase
angle; G is the thermal conductance associated with the heat
transfer between the gas and the surface of the large cylinder;
Pair is the atmospheric pressure acting on the power piston,
and � is the friction coefficient associated with the power pis-
ton. All the variables and parameters without the tilde symbol
represent dimensionless quantities. The minimal model was
obtained by assuming that the heat fluxes from the bottom

and top surfaces of the large cylinder obey the Fourier law
JQm = Gm(θ )(Tm − T (θ, ω)), where Gm(θ ) with m = b (or t)
represents the effective thermal conductance between the gas
and the bottom (or top) heat reservoir. It was also assumed
that Gm(θ ) ≡ Gχm(θ ), where χm(θ ) (0 � χm(θ ) � 1) is a
function that controls the coupling between the gas and the
bottom or top heat reservoir, given as χb(θ ) = 1

2 (1 + sin θ )
and χt (θ ) = 1

2 (1 − sin θ ) [7]. The dynamical equations de-
scribe the engines as coupled nonlinear pendulums, where
the first term on the right-hand side of Eq. (1b) represents
the driven force due to the temperature difference. Since it
has been experimentally demonstrated that the minimal model
Eqs. (1a)–(1b) explains the essential characteristics of a real
LTD Stirling engine [12], we generalize the above minimal
model by adding a coupling term to describe the dynamics
of a pair of weakly coupled LTD Stirling engines i and j
(i, j ∈ {1, 2}, i �= j):

dθi

dt
= ωi, (2a)

dωi

dt
= σ

(
T (θi, ωi )

V (θi )
− Pair

)
sin θi − �ωi − T (i)

load

−K sin(θi − θ j ). (2b)

The last term in Eq. (2b) represents the coupling with K >

0 being the coupling strength. Note that the coupling should
be antisymmetric according to the action-reaction law and is
chosen to be a sine function for simplicity.

III. SYNCHRONOUS AND ASYNCHRONOUS
TRANSITIONS

To evaluate the degree of synchronization caused by the
coupling, we introduce the effective frequency as

〈ωi〉 = lim
τ→∞

1

τ

∫ τ

0
ωidt, (3)

where 〈...〉 ≡ limτ→0
1
τ

∫ τ

0 ...dt denotes a long-time average
and is reduced to the average over one period for engines
in periodic motion. For K = 0, the engines are adjusted to
be in the quasilinear response regime [7] so that they rotate
autonomously in a self-sustained manner. The phase space of
engine i is a set of ordered pairs {(θi, ωi ) : θi ∈ [−π, π ), ωi ∈
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FIG. 2. (a) Dependence relation between the effective frequency difference 〈ωd〉 and coupling strength K . In the forward (backward)
processes, K is increased (decreased) between 0 and 6.0 × 10−5 with a step of 4.0 × 10−7. We can confirm that the synchronous transition
point Kfd in the forward process is different from the asynchronous transition point Kbd in the backward process. Typical trajectories in the
forward process are shown in the (θi, ωi ) plane: (b) K = 0. The trajectory of each engine is a limit cycle that circles the phase cylinder.
(c) K = 1.60 × 10−5. The trajectory of each engine evolves quasiperiodically and vibrates repeatedly in the vertical direction around a certain
value. (d) K = 4.1522 × 10−5. The trajectory of each engine is a limit cycle whose periods are the same, i.e., 〈ω1〉 = 〈ω2〉, indicating that
the two engines are synchronized. Other parameters are set as follows in all subsequent numerical experiments: σ = 0.02, pair = 1

V ( π
4 ) ≈

0.49854, G = 1.5, � = 0.001, �T = 1/29.3, T (1)
load = 8.5324 × 10−7, and T (2)

load = 1.2799 × 10−5. The values of the parameters other than
the load torques are set as the same as Ref. [7], corresponding to the situation where a standard LTD Stirling engine is placed at a temperature
difference of a few degrees. The load torques T (1)

load and T (2)
load are chosen so that ωvar

i 
 �ωn 
 ω(i)
n . Similar graphs can be obtained with a

different set of parameter values that satisfy the above conditions.

R} which is a one-dimensional cylinder T × R, and the
rotational motion is described by a limit cycle that circles
the surface of the cylinder. The limit cycle for K = 0 is
referred to as the unperturbed limit cycle. Since each en-
gine behaves as a limit-cycle oscillator, we can define the
natural frequencies of the two engines and denote them by
ω(i)

n where i = 1, 2, i.e., ω(i)
n = 〈ωi〉 for K = 0. We assume

that the natural frequency difference �ωn ≡ |ω(1)
n − ω(2)

n | is
sufficiently small compared to ω(i)

n , but sufficiently larger than
the ωi-directional amplitude of the unperturbed limit cycle in
the phase space, i.e., ωvar

i 
 �ωn 
 ω(i)
n , where ωvar

i is given
by ωvar

i ≡ maxsi∈
UNP
i

|si − ω(i)
n | and 
UNP

i denotes the set of
ωi components of the points on the unperturbed limit cycle
of engine i. For K > 0, the two engines are coupled with each
other and synchronous transition occurs for a sufficiently large
coupling strength. Figure 2 shows the dependence relation be-
tween the effective frequency difference 〈ωd〉 ≡ 〈ω1〉 − 〈ω2〉

and the coupling strength K , where the forward (backward)
process corresponds to the situation in which the value of K is
increased (decreased). Typical trajectories in the (θi, ωi ) plane
are also shown in the same figure.

The bifurcation diagram in Fig. 2 reminds us of the dynam-
ics of a driven pendulum [13] or a two-node power grid model
consisting of one generator and one consumer [14,15], where
a homoclinic and saddle-node bifurcation for fixed points oc-
cur in the forward and backward processes, respectively. Our
numerical analysis indicates that similar bifurcations occur
in weakly coupled LTD Stirling engines. Particularly, when
considering the differential system of Eqs. (2a)–(2b), a homo-
clinic bifurcation due to the annihilation of a quasiperiodic
trajectory is thought to occur in the forward process as a
result of the collision of this quasiperiodic trajectory with a
saddle limit cycle corresponding to an unstable synchronous
state, and a saddle-node bifurcation is thought to occur in the
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backward process due to the collision of a stable limit cycle
corresponding to a stable synchronous state and an unstable
limit cycle corresponding to an unstable synchronous state
(See Appendix A for details).

IV. COUPLING EFFECTS ON THE POWER AND
THERMAL EFFICIENCY

The power and thermal efficiency of a single LTD Stirling
engine in a quasilinear response regime have been derived in
Ref. [7]. Before discussing the coupling effects on the power
and thermal efficiency of the total system, we generalize the
thermodynamic fluxes and forces as well as their quasilinear
relations for engines under weak coupling.

The instantaneous power P(i) produced by engine i is given
by

P(i) = d

dt

(
1

2
ω2

i

)
+ Pair

dV

dt
+ P(i)

load + P(i)
fric + P(i)

K , (4)

where d
dt ( 1

2ω2
i ) is the change rate of rotational energy, Pair

dV
dt

is the power that is carried out against the atmospheric pres-
sure, P(i)

load ≡ T (i)
loadωi is the power that is carried out against

the load torque, P(i)
fric ≡ �ω2

i is the power that is carried out
against the friction torque, and P(i)

K ≡ K sin(θi − θ j )ωi is the
power due to the weak coupling. The power that is carried
out against the load torque P(i)

load is referred to as the brake
power [16] made by engine i. Since 〈 d

dt ( 1
2ω2

i )〉 = 〈Pair
dV
dt 〉 =

0, the time-averaged power of engine i is obtained as 〈P(i)〉 =
〈P(i)

load〉 + 〈P(i)
fric〉 + 〈P(i)

K 〉. It should be noted that for the system
in quasiperiodic motion, the trajectory is not closed, so the
long-time average cannot be reduced to the average over an
oscillation period. Given that the coupling is sufficiently weak
and each engine is in the quasilinear response regime when
there is no coupling, ωi can be approximated to be the ef-
fective frequency 〈ωi〉 when considering 〈P(i)

K 〉, i.e., 〈P(i)
K 〉 can

be approximated as 〈P(i)
K 〉 ≈ K〈sin(θi − θ j )〉〈ωi〉. Since the

time-averaged changes in the entropy and the internal energy
of the gas confined to the cylinder are zero, the time-averaged
entropy production rate of the total thermodynamic system
〈 dσ

dt 〉 is the sum of the time-averaged entropy change rates of
the two heat baths, which is calculated as

〈
dσ

dt

〉
=

2∑
i=1

[
−

〈
J (i)

Qb

〉
Tb

−
〈
J (i)

Qt

〉 − 〈
P(i)

fric

〉
Tt

]
(5)

=
2∑

i=1

[
−

〈
P(i)

load

〉 + 〈
P(i)

K

〉
Tt

+ 〈
J (i)

Qb

〉( 1

Tt
− 1

Tb

)]
(6)

≈
2∑

i=1

[−〈ωi〉T (i)
load + 〈

J (i)
Qb

〉
�T

]
+K〈sin(θ1 − θ2)〉(〈ω2〉 − 〈ω1〉) (7)

= 〈ωm〉(−T (1)
load − T (2)

load

)
+〈ωd〉

[
−K〈sin(θ1 − θ2)〉 − 1

2

(
T (1)

load − T (2)
load

)]

+(〈
J (1)

Qb

〉 + 〈
J (2)

Qb

〉)
�T, (8)

where we have used the energy conservation law 〈J (i)
Qb

〉 +
〈J (i)

Qt
〉 = 〈P(i)

load〉 + 〈P(i)
fric〉 + 〈P(i)

K 〉 in Eq. (6) and approximated
Tb and Tt as their mean value in Eq. (7), which equals 1 for the
nondimensionalized case. Here, 〈ωm〉 ≡ 1

2 (〈ω1〉 + 〈ω2〉) is the
mean effective frequency, 〈ωd〉 = 〈ω1〉 − 〈ω2〉 is the effective
frequency difference, and 〈J (1)

Qb
〉 + 〈J (2)

Qb
〉 is the total heat flux

from the high-temperature heat reservoir.
Equation (8) suggests that −T (1)

load − T (2)
load, −K〈sin(θ1 −

θ2)〉 − 1
2 (T (1)

load − T (2)
load ), and �T can be considered as thermo-

dynamic forces with conjugate fluxes 〈ωm〉, 〈ωd〉, and 〈J (1)
Qb

〉 +
〈J (2)

Qb
〉 under appropriate conditions, for which the quasilinear

relations are obtained as follows (See Appendix B for details):

⎡
⎣ 〈ωm〉

〈ωd〉〈
J (1)

Qb

〉 + 〈
J (2)

Qb

〉
⎤
⎦ ≈

⎡
⎣ 1

2 L11 0 L12

0 2L11 0
L12 0 2L22

⎤
⎦

×
⎡
⎣ −T (1)

load − T (2)
load

−K〈sin(θ1 − θ2)〉 − 1
2

(
T (1)

load − T (2)
load

)
�T

⎤
⎦.

(9)

Here, L11, L12, L21, and L22 correspond to the quasilinear
response coefficients of a single engine in the noncoupling
case [7]

L11 = 1

� + σ 2

G

〈
sin2 θ
V 2(θ )

〉
θ

, (10)

L12 = L21 =
σ
2

〈
sin2 θ
V (θ )

〉
θ

� + σ 2

G

〈
sin2 θ
V 2(θ )

〉
θ

, (11)

L22 = G

8
+

σ 2

4

〈
sin2 θ
V (θ )

〉2

θ

� + σ 2

G

〈
sin2 θ
V 2(θ )

〉
θ

, (12)

where 〈...〉θ ≡ 1
2π

∫ 2π

0 ...dθ denotes a phase average.
We now consider the coupling effects on the averaged

brake power 〈Pload〉 ≡ T (1)
load〈ω1〉 + T (2)

load〈ω2〉 and thermal effi-
ciency η ≡ 〈Pload〉

〈J (1)
Qb

〉+〈J (2)
Qb

〉 by using the generalized quasilinear

relations Eq. (9) between thermodynamic fluxes and forces.
To that end, we rewrite the averaged brake power 〈Pload〉 in
the following form:

〈Pload〉 = T (1)
load

(
〈ωm〉 + 1

2
〈ωd〉

)
+ T (2)

load

(
〈ωm〉 − 1

2
〈ωd〉

)
(13)

= 〈ωm〉(T (1)
load + T (2)

load

) + 1

2
〈ωd〉

(
T (1)

load − T (2)
load

)
(14)

= 〈Pm〉 + 〈Prel〉. (15)

Here, 〈Pm〉 ≡ 〈ωm〉(T (1)
load + T (2)

load ) denotes the power owing to
the motion of the mean angle and 〈Prel〉 ≡ 1

2 〈ωd〉(T (1)
load − T (2)

load )
denotes the power owing to the relative motion. Since 〈ωm〉
is independent of the coupling from Eq. (9), we need only
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FIG. 3. Dependence relation between the thermal efficiency and the coupling strength for (a) forward process and (b) backward process. K
is increased from 0 to 6.0 × 10−5 in increments of 4.0 × 10−7 in the forward process and decreased in the same way in the backward process.
In the current case, we can confirm that the coupling has increased the thermal efficiency of the total system by about 7%.

consider the coupling effects on 〈Prel〉. Without loss of gen-
erality, we assume T (1)

load < T (2)
load, in which case the value of

〈ωd〉 decreases due to the effect of the coupling strength K
in both forward and backward processes, as was shown in
Fig. 2. This leads to the fact that 〈Prel〉 is an increasing function
of K , which means that the coupling improves the averaged
power. To see the coupling effect on the thermal efficiency,
we notice that the total heat flux from the high-temperature
heat reservoir 〈J (1)

Qb
〉 + 〈J (2)

Qb
〉 is independent of the coupling

from Eq. (9). This suggests that the coupling improves both
the averaged brake power and the thermal efficiency given that
different load torques act on the cranks, and their maximum
values are achieved when the engines are synchronized.

To give a physical interpretation of the fact that a weak
coupling improves 〈Prel〉, let us concentrate on 〈ωd〉 in Eq. (9).
We find that 〈ωd〉 in the noncoupling case is reduced to
−L11(T (1)

load − T (2)
load ), which means that 〈Prel〉 is generated by

the synergy of the load torque difference and the relative
motion due to the load torque difference when there is no
coupling. In this case, 〈Prel〉 takes a negative value as long
as T (1)

load �= T (2)
load, and is a decreasing function of |T (1)

load − T (2)
load|.

We thus conclude that 〈Prel〉 reduces the averaged brake power
given a fixed sum of load torques. When there is a coupling
added, 〈Prel〉 is obtained by

〈Prel〉 ≈ 1

2
× 2L11

[
−K〈sin(θ1 − θ2)〉 − 1

2

(
T (1)

load − T (2)
load

)]

× (
T (1)

load − T (2)
load

)
(16)

= −1

2
L11

(
T (1)

load − T (2)
load

)2 − L11K〈sin(θi − θ j )〉

× (
T (1)

load − T (2)
load

)
. (17)

Here, 〈�Prel〉 ≡ −L11K〈sin(θi − θ j )〉(T (1)
load − T (2)

load ) represents
the change of 〈Prel〉 due to the coupling, which takes a positive
value as long as T (1)

load �= T (2)
load. This suggests that the cou-

pling improves the averaged brake power. From Eq. (16), we
find that the increase in averaged brake power is due to the
suppression effect of coupling on relative motion caused by

the load torque difference. The averaged brake power takes
the maximum value when K〈sin(θi − θ j )〉 reaches − 1

2 (T (1)
load −

T (2)
load ), in which case 〈ωd〉 = 0, meaning that the engines are

synchronized.
Figure 3 shows the dependence relation between the ther-

mal efficiency and the coupling strength in the forward and
backward processes. The blue line is obtained by numerical
experiment, while the orange line is obtained by approximate
calculation using the quasilinear relations between thermo-
dynamic fluxes and forces. Since it is difficult to calculate
K〈sin(θ1 − θ2)〉 analytically, we used numerical values of it
in the approximate calculation. We can see some gap be-
tween experimental and theoretical values, which is caused
by neglecting higher-order terms and by the averaging ap-
proximation made in the derivation of Eq. (9). We also find
that the dependence of the thermal efficiency on the coupling
strength is characterized by a hysteresis as in the case of the
effective frequency difference in Fig. 2(a). This is because
the thermal efficiency depends on the effective frequencies
of the two engines. Such a hysteresis structure facilitates the
robustness of maintaining maximum thermal efficiency.

We have confirmed that coupling can improve the averaged
brake power and thermal efficiency. Since the total load torque
determines the power and thermal efficiency given a fixed
coupling strength, it is important to investigate the total load
torque that achieves the maximum values of them for synchro-
nized engines. In this case, 〈ωm〉 and 〈ωd〉 are reduced to the
synchronized frequency ωs and 0, respectively, indicating that
ωs and 〈J (1)

Qb
〉 + 〈J (2)

Qb
〉 are the only thermodynamic fluxes for

the coupled system with conjugate forces −T (1)
load − T (2)

load and
�T . The thermal efficiency is given by

η = ωs
(
T (1)

load + T (2)
load

)
〈
J (1)

Qb

〉 + 〈
J (2)

Qb

〉 , (18)

which is completely determined by the thermodynamic fluxes
and forces. Therefore, the formulation of the maximum ther-
mal efficiency of a single engine given in Ref. [7] is directly
applicable to the present case. The maximum thermal effi-
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ciency ηmax and the total load torque T (1)
load + T (2)

load that achieves
this maximum thermal efficiency are given by

ηmax = (1 −
√

1 − q2)2

q2
ηC, (19)

T (1)
load + T (2)

load = 2L12�T (1 −
√

1 − q2)

q2L11
, (20)

where q ≡ L12√
L11L22

is the coupling-strength parameter and

ηC ≡ 1 − Tt
Tb

is the Carnot efficiency, i.e., the maximum ther-
mal efficiency that a heat engine may have operating between
two heat reservoirs. We find that the coupling-strength param-
eter, as well as the maximum thermal efficiency, is of the same
form as that of a single engine, while the total load torque that
achieves the maximum thermal efficiency is twice as large as
that of a single engine given a fixed temperature difference
�T . The load torques achieving the maximum power and the
corresponding thermal efficiency [17] can be discussed in the
same way [7].

V. DISCUSSION AND CONCLUSIONS

In this paper, we have considered a minimal dynamical-
system model of two weakly coupled LTD Stirling engines
and analyzed the coupling effects on the dynamics, power, and
thermal efficiency. We clarified the mechanism of different
kinds of bifurcation in the forward and backward processes
and generalized the thermodynamic fluxes and forces and
their quasilinear relations when the weak coupling is incor-
porated. Based on the linear relations, we concluded that the
coupling improves the power exerted against the load torque,
as well as the thermal efficiency, and that their maximum
values are achieved when two engines are synchronized. We
formulated the maximum thermal efficiency given that the
coupled engines are synchronized and found that the expres-
sion of the maximum thermal efficiency is given in the same
form as that of a single engine. Although the thermal effi-
ciency of LTD Stirling engines is low [18], their great value
lies in their ability to generate power with only a small temper-
ature difference. In other words, unlike the large engines that
are run in factories, they do not need fuel to generate power,
and only a ubiquitous temperature difference (e.g., between
air and ground) is needed for the engine to generate power.
To achieve sufficient power for practical use, it is desirable to
operate a large number of LTD Stirling engines, and synchro-
nizing the engines may be an effective way to further improve
power and thermal efficiency. This study discusses the effects
of synchronizing two engines as the simplest case, but will be
extended to the case of multiple (three or more) engines in the
future.
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APPENDIX A: BIFURCATION ANALYSIS OF
THE COUPLED SYSTEM

To gain more insight into the synchronous and asyn-
chronous transitions that occur when changing the coupling
strength, we plot the trajectories in the subspace {(θd, ωd )} in
the forward and backward processes before and after the bifur-
cations occur, where θd ≡ θ1 − θ2 and ωd ≡ ω1 − ω2. In the
forward process, when K is raised to a value slightly less than
the bifurcation point Kfd, the quasiperiodic trajectory evolves
much more slowly near θd = 3 than elsewhere [See Fig. 4(a)].
After the bifurcation, the trajectory converges to a stable limit
cycle [See Figs. 4(b) and 4(c)]. In the backward process, the
stable limit cycle does not disappear until K reaches another
bifurcation point Kbd. After the bifurcation, the stable limit
cycle collapses and the trajectory converges to a quasiperiodic
attractor circling the phase cylinder. These results suggest
that a homoclinic bifurcation and a saddle-node bifurcation
occur in the forward and backward process, respectively: in
the forward process, the quasiperiodic trajectory evolves in
the neighborhood of the stable and unstable manifolds of a
saddle limit cycle corresponding to an unstable synchronous
state when K is slightly smaller than Kfd, and converges to
a stable limit cycle corresponding to a stable synchronous
state after the bifurcation occurs; in the backward process,
a saddle-node bifurcation occurs due to the collision of the
stable and unstable synchronous states.

APPENDIX B: DERIVATION OF EQ. (9)

We derive the quasilinear relations between thermody-
namic fluxes and forces given by Eq. (9). To that end, we
average both sides of Eq. (2b):

0 = σ

〈(
T (θi, ωi )

V (θi)
− Pair

)
sin θi

〉
− �〈ωi〉 − T (i)

load

− K〈sin(θi − θ j )〉, (B1)

where we have used the fact that

〈
dωi

dt

〉
= lim

τ→∞
1

τ

∫ τ

0

dωi

dt
dt = lim

τ→∞
1

τ
{ωi(τ ) − ωi(0)} = 0

(B2)

since the trajectory remains in the neighborhood of the unper-
turbed limit cycle. By expanding T (θi, ωi ) with respect to ωi

as

T (θi, ωi ) = Teff (θi) − σ sin θi

GV
ωi + O(

�T ωi, ω
2
i

)
, (B3)

the first term on the right-hand side of Eq. (B1) can be
obtained as

σ

〈(
T (θi, ωi )

V (θi )
− Pair

)
sin θi

〉
= σ

〈(
Teff (θi)

V (θi )
− σ sin θi

GV 2(θi )
ωi − Pair

)
sin θi

〉
+ 〈
O

(
�T ωi, ω

2
i

)〉
. (B4)
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FIG. 4. Trajectories in the subspace {(θd, ωd )} in the forward process for different values of K . (a) K is set slightly smaller than Kfd and
the quasiperiodic trajectory evolves much more slowly near θd = 3 than elsewhere. (b) K is set slightly larger than Kfd. The trajectory evolves
in the neighborhood of a homoclinic orbit starting and ending at a saddle limit cycle corresponding to an unstable synchronous state before
converging to a stable limit cycle corresponding to a stable synchronous state. (c) Enlarged view of the stable synchronous state.

Substituting Eq. (B4) into Eq. (B1), we obtain

σ

〈(
Teff (θi )

V (θi )
− Pair

)
sin θi

〉
− σ 2

G

〈
sin2 θi

V 2(θi )
ωi

〉
− �〈ωi〉 − T (i)

load − K〈sin(θi − θ j )〉 + 〈
O

(
�T ωi, ω

2
i

)〉 = 0. (B5)

Let τ
(i)
k be the time required for θi to increase from θi(0) + 2(k − 1)π to θi(0) + 2kπ . The first and second terms on the left-hand

side in Eq. (B5) can then be calculated as follows:

σ

〈(
Teff (θi)

V (θi )
− Pair

)
sin θi

〉
= σ

(
lim

τ→∞
1

τ

∫ τ

0

(
Teff (θi )

V (θi )
− Pair

)
sin θidt

)
(B6)

= σ

(
lim

N→∞
1

〈ωi〉
∑N

k=1 τ
(i)
k

∫ ∑N
k=1 τ

(i)
k

0

(
Teff (θi )

V (θi )
− Pair

)
sin θi〈ωi〉dt

)
(B7)

= σ

(
lim

N→∞
1

2πN

∫ 2πN

0

(
Teff (θ )

V (θ )
− Pair

)
sin θdθ

)
+ 〈
O(�θi )

〉
(B8)

= σ

2

〈
sin2 θ

V (θ )

〉
θ

�T + 〈
O(�θi )

〉
, (B9)

σ 2

G

〈
sin2 θi

V 2(θi )
ωi

〉
= σ 2

G

(
lim

τ→∞
1

τ

∫ τ

0

sin2 θi

V 2(θi )
ωidt

)
(B10)

= σ 2

G

(
lim

N→∞
1∑N

k=1 τ
(i)
k

∫ 2πN

0

sin2 θ

V 2(θ )
dθ

)
(B11)

= σ 2

G

(
1

2π

∫ 2π

0

sin2 θ

V 2(θ )
dθ

)(
lim

N→∞
2πN∑N
k=1 τ

(i)
k

)
(B12)

= σ 2

G

〈
sin2 θ

V 2(θ )

〉
θ

〈ωi〉, (B13)

where �θi(t ) ≡ ∫ t
0 ωi(τ )dτ − 〈ωi〉t and 〈O(�θi )〉 denotes the error due to approximating ωi to 〈ωi〉 in the calculation of the

long-time average. Substituting Eq. (B9) and Eq. (B13) into Eq. (B5), we obtain

(
� + σ 2

G

〈
sin2 θ

V 2(θ )

〉
θ

)
〈ωm〉 =

[
σ

2

〈
sin2 θ

V (θ )

〉
θ

�T − 1

2

(
T (1)

load + T (2)
load

)] + 〈
O

(
�T ωi, ω

2
i ,�θi

)〉
, (B14)
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(
� + σ 2

G

〈
sin2 θ

V 2(θ )

〉
θ

)
〈ωd〉 = [−2K〈sin θd〉 − (

T (1)
load − T (2)

load

)] + 〈
O

(
�T ωi, ω

2
i ,�θi

)〉
, (B15)

where 〈ωm〉 = 1
2 (〈ω1〉 + 〈ω2〉) is the mean effective fre-

quency, and 〈ωd〉 = 〈ω1〉 − 〈ω2〉 is the effective frequency
difference. By neglecting the higher order terms in Eqs. (B14)
and (B15), we can obtain the quasilinear relations with respect
to 〈ωm〉 and 〈ωd〉 in Eqs. (9), and the effective frequency 〈ωi〉
of each engine:

〈ωi〉 ≈
−T (i)

load − K〈sin(θi − θ j )〉 + σ
2

〈
sin2 θ
V (θ )

〉
θ
�T

� + σ 2

G

〈
sin2 θ
V 2(θ )

〉
θ

. (B16)

If K is large enough so that the two engines are synchronized,
the synchronized frequency ωs can be obtained as

ωs ≈
− 1

2

(
T (1)

load + T (2)
load

) + σ
2

〈
sin2 θ
V (θ )

〉
θ
�T

� + σ 2

G

〈
sin2 θ
V 2(θ )

〉
θ

, (B17)

which is the same formula as ωm. On the other hand, 〈J (i)
Qb

〉 can
be written as

〈
J (i)

Qb

〉 = lim
τ→∞

1

τ

∫ τ

0
G

1 + sin θi

2
(Tb − T (θi, ωi ))dt (B18)

= lim
τ→∞

1

τ

∫ τ

0
G

1 + sin θi

2
(Tb − Teff (θi ))dt

+ lim
τ→∞

1

τ

∫ τ

0

1 + sin θi

2

σ sin θi

V (θ )
ωidt

+〈
O

(
�T ωi, ω

2
i

)〉
. (B19)

The first and second terms of Eq. (B19) are calculated as
follows:

lim
τ→∞

1

τ

∫ τ

0
G

1 + sin θi

2
(Tb − Teff (θi ))dt (B20)

= G�T

4
lim

τ→∞
1

τ

∫ τ

0
cos2 θidt (B21)

= G�T

4
lim

N→∞
1

〈ωi〉
∑N

k=1 τ
(i)
k

∫ ∑N
k=1 τ

(i)
k

0
cos2 θi〈ωi〉dt

(B22)

≈ G�T

4
lim

N→∞
1

2πN

∫ 2πN

0
cos2 θdθ + 〈

O(�θi )
〉

(B23)

= G

8
�T + 〈O(�θi )〉, (B24)

lim
τ→∞

1

τ

∫ τ

0

1 + sin θi

2

σ sin θi

V (θ )
ωidt (B25)

= σ

2

(
lim

N→∞
1∑N

k=1 τ
(i)
k

∫ 2πN

0

(1 + sin θi ) sin θi

V (θi )
dθ

)
(B26)

= σ

2

(
1

2π

∫ 2π

0

(1 + sin θ ) sin θ

V (θ )
dθ

)(
lim

N→∞
2πN∑N
k=1 τ

(i)
k

)
(B27)

= σ

2

〈
sin2 θ

V (θ )

〉
θ

〈ωi〉. (B28)

It is then straightforward to obtain the quasilinear relation with
respect to 〈J (1)

Qb
〉 + 〈J (2)

Qb
〉 by neglecting higher order terms in

Eqs. (B19) and (B24).
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