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Outbreak-size distributions under fluctuating rates
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We study the effect of noisy infection (contact) and recovery rates on the distribution of outbreak sizes in the
stochastic susceptible-infected-recovered model. The rates are modeled as Ornstein-Uhlenbeck processes with
finite correlation time and variance, which we illustrate using outbreak data from the RSV 2019-2020 season in
the U.S. In the limit of large populations, we find analytical solutions for the outbreak-size distribution in the
long-correlated (adiabatic) and short-correlated (white) noise regimes, and demonstrate that the distribution can
be highly skewed with significant probabilities for large fluctuations away from mean-field theory. Furthermore,
we assess the relative contributions of demographic and reaction-rate noise on the outbreak variance and show
that demographic noise becomes irrelevant in the presence of slowly varying reaction-rate noise but persists for
large system sizes if the noise is fast. Finally, we show that the crossover to the white-noise regime typically
occurs for correlation times that are on the same order as the characteristic recovery time in the model.
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I. INTRODUCTION

Epidemic models are useful for understanding the spread-
ing dynamics of general contagious processes and effectively
describe a wide variety of phenomena from spreading diseases
to rumors, fads, panics, computer viruses, laser systems, and
even election dynamics [1–10]. In addition, epidemic models
are practically useful, since epidemiologists rely on mod-
els to quantify risks of local epidemic outbreaks of various
sizes and formulate optimal control strategies for many dis-
eases, including Sars-Cov-2, Ebola, and Dengue [11–16].
Within a given population, outbreak dynamics are typically
described in terms of compartmental models [1,4,17]. For
example, starting from some small initial infection, over time,
individuals in a population make stochastic transitions be-
tween some number of discrete disease states (susceptible,
exposed, infectious, etc.) based on prescribed probabilities
for a particular population and disease [11,14,18–22]. In
the limit of large populations and nonfluctuating parameters,
the stochastic dynamics are aptly described by deterministic
(mean-field) differential equations for the expected fraction
of a population in each state [1,4,17,23].

Yet, for real finite populations with time-fluctuating param-
eters, outbreak dynamics have a wide range of outcomes for
each initial condition, which are not predicted by mean-field
models [1,19,21,23–27]. For instance, recently we developed
a theoretical approach that allows for calculating the dis-
tribution of outbreak sizes in well-mixed populations under
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demographic noise. This approach provided a closed-form
expression for the asymptotic outbreak distribution in the
susceptible-infected-recovered (SIR) model and more general
SIR model extensions with fixed population sizes (N) and
static infection and recovery rates [15]. However, many data
analyses have shown that, for a multitude of diseases, best-fit
epidemic model parameters can fluctuate significantly in time
[28–35]. For instance, by measuring the relative changes in
reported disease incidence and hospitalization, one can com-
pute an effective infectious contact rate between individuals in
a population over time. Doing so, one often finds fluctuating
and/or periodic rates, in general [1,33,34,36–40], which in
the case of human epidemics correlate with more general so-
cial contact rates [41]. For instance, techniques for extracting
time-dependent parameters have been applied to the recent
COVID-19 pandemic as well [33,35,42,43] to account for
fluctuations in contact rates, rendering the usual SIR class
of forecasting models time dependent. In addition, here we
give an another example based on 2019-2020 hospitalization
data of the respiratory syncytial virus (RSV) season in the
U.S. [44], and find the data effectively parameterized in terms
of two general metrics for quantifying temporal variations
about a mean: the infection rate’s standard deviation and
correlation time.

Despite the theoretical importance of understanding noise
effects in canonical nonequilibrium epidemic models, as well
as the practical importance for quantifying uncertainty in real
epidemics, a general analytical approach for describing small
and large fluctuations in outbreak dynamics due to parameter
fluctuations is still lacking. Here we develop such an approach
within the context of the SIR model with noisy reaction rates
with finite variances and correlation times. We motivate our
use of these standard noise characteristics by extracting infec-
tious contact rate fluctuations in RSV outbreak data from the
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U.S. in 2019-2020 using a Bayesian model inference. In terms
of general model analysis, we focus on the outbreak-size
distribution and quantify the probabilities for outbreaks that
differ from mean-field predictions. In particular, we calculate
the distribution in the limit of adiabatic and white noises
and demonstrate several important properties including the
skewness of the outbreak distribution toward unusually small
outbreaks and the existence of optimal values of the basic
reproductive number that maximize the outbreak variance. We
also study the crossover of the outbreak distribution with finite
population size and noise-correlation time and analyze when
the limiting theories of demographic, adiabatic, and white
reaction-rate noise apply.

II. SIR MODEL WITH REACTION-RATE NOISE

We are interested in outbreak dynamics in which the
epidemic wave is fast compared to both demographic and
reinfection timescales; the latter denotes the possibility for
individuals to be infected multiple times [45]. The canonical
epidemic model for this regime is the SIR model [1,2], in
which individuals are either susceptible (capable of getting
infected), infected, or recovered [or removed (deceased)], and
can make transitions between these states through two basic
processes: infection and recovery. Denoting the total number
of susceptibles S, infected I , and recovered R in a popula-
tion of fixed size N , the probability per unit time that the
number of susceptibles decreases by one and the number of
infected increases by one is βSI/N (for a well-mixed popula-
tion), where β is the infectious contact rate [1,2,4]. Similarly,
the probability per unit time that the number of infected de-
creases by one is γ I , where γ is the recovery rate [1,2,4]. As
a result, the deterministic rate equations in the limit of large
N describing the mean densities of susceptibles, infected, and
recovered, xs = S/N , xi = I/N , and xr = R/N , respectively,
read

ẋs = −βxsxi, ẋi = βxsxi − γ xi, ẋr = γ xi, (1)

where xs + xi + xr = 1. Starting from a small initial infec-
tion density, xi(t =0)�1, the final fraction of susceptibles in
Eqs. (1) x∗

s ≡ x0 satisfies x0 = e−R0(1−x0 ), where R0 = β/γ is
the basic reproduction number [1,2]. Hence, in the mean-field
theory, the total fraction of the population infected over the
whole epidemic wave is x∗

r = 1 − x0:

x∗
r = 1 − e−R0x∗

r . (2)

Note that if R0 � 1 in Eq. (2) then x∗
r = 0, giving us the usual

condition R0 =1 as the epidemic threshold.
As noted in Sec. I, in many cases the parameters for the SIR

model are time fluctuating. As a simple model, we allow the
infection and recovery rates to be generated by independent
Ornstein-Uhlenbeck (OU) processes with some correlation
times and variances. For simplicity, we assume the correla-
tion times are identical for both rates and equal τ , while the
noise variances are σ 2

β and σ 2
γ for the infection and recov-

ery rates, respectively. Thus, we write β(t ) = β0(1 + ξβ (t ))
and γ (t ) = γ0(1 + ξγ (t )), and augment Eqs. (1) into the
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FIG. 1. RSV model inference. (a) Weekly RSV hospitalizations
(black dots) and two-week rolling average (black line) from the
2019-2020 season in the U.S. [44]. Results from the Bayesian infer-
ence model are overlaid with the data (median: red line, shaded bands
represent the interquartile range and the 95% credible intervals).
(b) Inferred infectious contact rate obeying a time-discretized version
of the OU process (median: black line, shaded bands represent the
interquartile range and the 95% credible intervals).

stochastic system:

ẋs = −β0(1 + ξβ )xsxi,

ẋi = β0(1 + ξβ )xsxi − γ0(1 + ξγ )xi,

ξ̇β = −ξβ

τ
+

√
2

τ

(σβ

β0

)
ηβ (t ),

ξ̇γ = −ξγ

τ
+

√
2

τ

(σγ

γ0

)
ηγ (t ). (3)

Here, ηβ and ηγ are Gaussian white noises, while ξβ and ξγ

are OU processes. Note that by construction, β(t ) and γ (t ) are
assumed to be wide-sense stationary Gaussian processes with
〈β〉=β0, 〈γ 〉=γ0, 〈(β(t ) − β0)(β(t + �) − β0)〉=σ 2

β e−�/τ ,
and 〈(γ (t ) − γ0)(γ (t + �) − γ0)〉=σ 2

γ e−�/τ , where 〈·〉 de-
notes the expectation operator. In general, one can simulate
the system of Eqs. (3) and find the final outbreak-size distri-
bution for fluctuating rates with any magnitude and correlation
time.

RSV model fit

Finite correlation time and variance are general physical
metrics that quantify temporal fluctuations around a mean—
the sort of temporal variations observed in many epidemic
data analyses [[1,28–40,42,43]]. We can further motivate our
study of the SIR model with temporally fluctuating reaction
rates by extracting such noise characteristics from data on the
2019-2020 RSV season in the U.S.

We perform a parameter inference from RSV hospitaliza-
tion data assuming a discretized version of Eqs. (3) with daily
time steps and a fixed recovery rate γ =γ0 =1/7 days−1. We
use the well-known platform Stan via the R package rstan
[46,47] to do the numerical Bayesian inference by tying the
dynamical model to the number of recorded daily hospital-
izations, as obtained from the CDC [44,48]. The parameters
for the inference are β0, the inverse correlation time α, σβ ,
the hospitalization rate, and initial conditions for the SIR
[49]. Further details are given in Appendix A [50]. Output
examples are shown in Fig. 1. In Fig. 1(a), we plot the daily
hospitalization numbers and compare to the median predic-
tion of the model (in red) along with its credible intervals.
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A similar plot is shown in Fig. 1(b) for the daily infectious
contact rate, which drives the predictions for Fig. 1(a).

Our inference uncovers significant temporal fluctuations in
the most-likely RSV infectious contact rate. A summary of
the output that is relevant for our analysis includes R̂0 =1.37
in [1.32,1.44], α̂=0.11 days−1 in [0.045, 0.20] days−1, and
σ̂β =0.026 days−1 in [0.014, 0.040] days−1, where ˆ denotes
the median within a quartile range specified by the square
brackets. From these, we observe a fairly tight value of the
inferred time-averaged R0 =β0/γ0, but with substantial tem-
poral fluctuations between 10 − 20%. On the other hand, the
correlation time estimate α−1 is quite broad, ranging from
5 − 20 days. Note, however, that these noise correlation time
estimates are significantly smaller than the expected timescale
of periodic (seasonal) terms in β(t ), which are necessary
for multiyear predictions [51]. The natural timescales for the
latter are on the order of a year. Hence, the noise inference
quantifies temporal fluctuations distinct from seasonality.

We can situate the inferred noise characteristics of the RSV
season within the results of our analytical theory; see Sec. V.
First, we begin by analyzing outbreak statistics driven by the
fluctuations in Eqs. (3).

III. LIMIT OF ADIABATIC NOISE

To gain insight into the outbreak distributions generated
from the general Eqs. (3) and temporal fluctuations of the
sort we inferred from RSV data, we first consider limiting
regimes. We start with the limit of adiabatic noise, τ � 1.
Here, the underlying assumption is that, during the epidemic
wave, the rates do not change appreciably. In terms of dy-
namics, the susceptible, infected, and recovered populations
evolve in time according to the mean-field system, Eqs. (1).
However, the parameters β and γ are chosen randomly ac-
cording to some quenched distributions, i.e., Gaussians in our
chosen model, Eqs. (3). For simplicity and illustration of the
adiabatic limit, here we deal with the case where only β varies
and γ is constant, such that σγ =0. To simplify the equations,
we take γ0 =1, which merely specifies the time units and
results in R0 =β.

To find the distribution of the final outbreak size P(x∗
r ), we

have to compute the following integral [52,53]:

P(x∗
r ) =

∫ ∞

−∞
P(x∗

r |β )P(β )dβ. (4)

The conditional probability P(x∗
r |β ) is a Dirac delta function

around the mean-field value of the outbreak at β, namely,
P(x∗

r |β ) = δ(x∗
r − x∗

r ), where the mean-field final outbreak
fraction x∗

r satisfies Eq. (2). Taking a Gaussian distribution
for P(β ) with mean β0 and standard deviation σβ , Eq. (4)
becomes

P(x∗
r ) = 1√

2πσ 2
β

∫ ∞

1
δ(x∗

r − x∗
r (β ))e

− (β−β0 )2

2σ 2
β dβ. (5)

We point out that for the SIR model to make physical sense,
β�0. Therefore, when plugging in an unrestricted Gaussian
in Eq. (5), σβ cannot be too large [54]. Otherwise, other
distributions, e.g., that vanish at β = 0 can be used instead;
yet this does not change the results qualitatively. We also note
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FIG. 2. Outbreak statistics for adiabatic noise. (a) Simulated
PDFs of the final outbreak fraction x∗

r from Eqs. (3) in the
case of time-correlated reaction-rate noise for τ = 100–103 (from
narrowest to widest) with σβ = 0.1β0 and β0 =2. The solid and
dashed lines denote the adiabatic and white-noise predictions,
respectively. (b) Variance of the outbreak PDF (normalized by in-
fection noise) versus R0 =β0/γ0 for τ = 103-105 (bottom to top) and
σβ = 0.04β0. The predicted variance from the adiabatic distribution,
Eq. (6), is shown in solid black, while the small-noise limit, Eq. (7),
is shown with a dashed line. For both panels, γ0 =1.

that since x∗
r (β ) vanishes for β � 1, the lower boundary in the

integral in Eq. (5) can be taken to be 1 without affecting the
distribution.

Changing variables from β to x∗
r , and using the fact that

dβ/dx∗
r = [x∗

r + (1 − x∗
r ) ln(1 − x∗

r )]/[(1 − x∗
r )(x∗

r )2], we
can explicitly perform the integration by plugging instead of
β, − ln(1 − x∗

r )/x∗
r , which is the solution of x∗

r = x∗
r (β ). As a

result, Eq. (5) reduces to

P(x∗
r ) = dβ

dx∗
r

exp

[
−

(
(1/x∗

r ) ln(1 − x∗
r ) + β0

)2

2σ 2
β

]
. (6)

From Eq. (6), we can derive, e.g., the typical fluctuations
around the mean-field given by σa: the standard deviation as-
sociated with the adiabatic outbreak distribution. In particular,
in the limit of small σβ , σa becomes

σa = σβ

dx∗
r (β )

dβ

∣∣∣∣
β=β0

= σβx0(1 − x0)

1 − R0x0
. (7)

Note that for the adiabatic noise limit, we can repeat our
calculation of the outbreak-size distribution and variance for
any distribution of β (or γ ), and not just the Gaussians implied
by Eqs. (3). For instance, if β(t ) varies slowly compared to the
epidemic dynamics, an empirical time series of β(t ) or R0(t )
can be used to build a histogram, which is substituted into
Eq. (4).

Next, we can plot the probability distribution function
(PDF) for adiabatic infection-rate noise and explore its qual-
itative features. An example prediction is shown in Fig. 2(a),
with a solid line for fixed values of β0 =2 and σβ = 0.1β0.
The solution from Eq. (6) can be compared to stochastic
simulations of Eqs. (3) for large τ . Note that the agreement
with simulations is quite good. Qualitatively, one of the most
important features that we observe in the PDFs is the high
degree of skewness toward small outbreaks. We can get a
quantitative measure of this skewness by examining the ex-
ponent of Eq. (6), called the action (for reasons explained
in Sec. IV), for two limiting values of the outbreak fraction:
x∗

r =0 and x∗
r =1, i.e., small and large outbreaks. Indeed, the
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PDF [Eq. (6)] can be described effectively as P∼exp[−S/σ 2
β ],

where S = ( ln(1 − x∗
r )/x∗

r + R0)2/2. Importantly, when x∗
r →

0 the action remains finite, i.e., S → (R0 − 1)2/2. On the
other hand, when x∗

r →1, S →∞. Hence, minimally small
outbreaks occur with finite probability for finite R0, while
maximally large outbreaks can never occur when the reaction-
rate noise is finite, which is why the outbreak PDF’s tails are
skewed toward small outbreaks.

In addition to the PDFs, we can examine the variance of
the outbreak PDF for adiabatic noise as a function of R0.
Examples are shown in Fig. 2(b), where we plot simulated
outbreak variances for three large values of τ with γ =1. Here
another interesting qualitative feature emerges: the existence
of a maximum in the outbreak variance for some value of
R0. On the one hand, as σβ → 0, the maximum approaches
R0 =1. On the other hand, as σβ increases, the maximum
variance occurs for an R0 that is an increasing function of
σβ . For example, in Fig. 2(b) we observe a maximum near
R0 =1.1. Notably, the saddle-point equation for the maximum
variance in the adiabatic limit cannot be solved analytically.

In general, we observe good agreement with the predicted
variance of Eq. (6) (solid line) and the small-noise limit
Eq. (7) (dashed line), including the existence of a maxi-
mum, which the former captures. Yet, as R0 →1, eventually
all the simulation results have discrepancy with both adia-
batic predictions. The reason is, as we approach the epidemic
threshold, the SIR dynamics slow down, meaning that even
a large τ may not be “slow” with respect to the underlying
process.

IV. LIMIT OF WHITE NOISE

So far, we have assumed that the dynamics of the noise
is slow compared to the epidemic dynamics of Eqs. (1), but
what happens if it is fast? In this latter limit, τ → 0, instead
of Eqs. (3) we can write

ẋs = −β0(1 + σ1ζβ (t ))xsxi,

ẋi = β0(1 + σ1ζβ (t ))xsxi − γ0(1 + σ2ζγ (t ))xi, (8)

which we denote as the white noise reaction-rate limit. Here,
ζβ and ζγ are white Gaussian noises. To coincide with Eqs. (3)
as τ →0, one must demand that

σ1 =
√

2τσβ/β0, σ2 =
√

2τσγ /γ0. (9)

To study the outbreak-size PDF given Eqs. (8), we follow the
approach detailed in Ref. [15], and construct the equivalent
Fokker-Planck equation for the probability to observe densi-
ties xs and xi at time t (under Itô calculus):

∂P

∂t
= − ∂

∂xs

[
−β0xsxiP

]
− ∂

∂xi

[
(β0xsxi − γ0xi )P

]

+
( ∂2

∂x2
s

+ ∂2

∂x2
i

− 2
∂

∂xs

∂

∂xi

)[1

2
β2

0 x2
s x2

i σ
2
1 P

]

+ ∂2

∂x2
i

[1

2
γ0x2

i σ
2
2 P

]
. (10)

To simplify notation, henceforth, we will assume that
σ 2

2 = f σ 2
1 , with f >0, and again rescale time t → γ0t ,

so β0 is replaced by the basic reproduction number,
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FIG. 3. Scaling of the outbreak-size distribution. (a) The natural
log of simulated PDF values for x∗

r =0.785 (green stars), 0.780
(blue circles), 0.775 (red squares), and 0.770 (magenta diamonds)
from Eqs. (3) versus the reaction-rate noise variance. The slopes
are predictions from the white-noise theory. Other model parameters
are β0 =2, γ0 =1, τ =0.1, and f =0. (b) The final outbreak fraction
plotted as a function of the infected momentum initial condition
multiplied by R0−1, for R0 =1.1 (solid black), R0 =1.5 (dashed red),
and R0 =2 (dotted blue). Other model parameters are γ0 =1 and
f =0.65.

R0 = β0/γ0. Next, we employ the WKB approximation
P(xs, xi )∼exp[−S(xs, xi )/σ 2

1 ], which is the expected scaling-
form for solutions to Eq. (10) in the limit of small noise and
large deviations [55–59], and which we observe in simula-
tions of Eqs. (3). Figure 3(a) shows several examples of the
expected scaling with noise variance for different values of
the final outbreak size. Indeed, the logarithm of the proba-
bility tends to straight lines as 1/σ 2

1 is varied, with slopes
that change with the outbreak size. Using this insight, we
substitute the exponential ansatz into Eq. (10) and arrive, in
the leading order in σ1 � 1, at a Hamilton-Jacobi equation,
∂S/∂t +H =0, with

H = xi
[
pi(R0xs − 1)−R0xs ps

]+ 1
2 x2

i

[
R2

0x2
s (ps − pi )

2+ f p2
i

]
.

(11)

In this formalism, H is called the Hamiltonian, S is the action,
while ps =∂xs S and pi =∂xi S are the conjugate momenta, just
as in analytical mechanics [55,57,58].

To compute probabilities for different outbreak sizes, we
need to find the action S, given by S =∫

psdxs + ∫
pidxi −∫

Hdt , which can be calculated given the Hamilton’s equa-
tions: ẋs =∂ps H , ẋi =∂pi H , ṗs =−∂xs H , and ṗi =−∂xi H . We
can simplify the action computation by noting that, first,
since we are interested in outbreaks that emerge from ini-
tially small levels of infection xi(t =0)�0, the “energy” of
outbreaks is zero, H (xi =0)=0. As Hamiltonian (11) has
no explicit time dependence, it is a constant of motion,
namely, H (t )=0. Second, we can rewrite the Hamiltonian as
H = psẋs + piẋi−(1/2)R2

0x2
s x2

i [ps − pi]
2−(1/2) f x2

i p2
i , using

ẋs and ẋi. Third, by substituting the zero-energy condition into
ṗi, we find that ṗi = −(1/2)R2

0x2
s xi[ps − pi]

2 − (1/2) f xi p2
i .

Thus, Eq. (11) simplifies to H (t ) = psẋs + (d/dt )(xi pi ). In-
tegrating both sides of this equation with respect to time
over the full course of an outbreak yields 0 = ∫

psdxs +
xi(t → ∞)pi(t → ∞) − xi(t =0)pi(t =0). As the fraction of
the population infected goes to zero both at short and long
times (assuming no reinfection), we derive the useful fact that∫

psdxs =0. As a consequence, the action associated with an
outbreak in the white-noise limit is simply an integral over the
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infected momentum:

S =
∫

pidxi. (12)

A. Phase-space trajectories for outbreaks

To compute the outbreak-size distribution, we need to
solve Hamilton’s equations and substitute the resulting tra-
jectories into Eq. (12). To do so, we must understand the
phase-space structure of outbreak paths. First, we recall that
in the mean-field system, Eqs. (1), the outbreak dynamics
follow a heteroclinic trajectory, which starts at t =0 at a fixed
point (xs =1, xi =0) and ends at the final state (xs =x0, xi =
0) as t →∞. In our Hamiltonian system, this corresponds
to a special trajectory with ps = pi = 0, with initial condi-
tion (xs, xi, ps, pi )= (1, 0, 0, 0) for t =0. However, in general,
there are an infinite number of related xi =0 initial condi-
tions with nonzero momenta, which one can find by solving
ẋs =0, ẋi =0, ṗs =0, and ṗi =0, given xs =1 and xi =0. It
is straightforward to show that the general fixed-point initial
conditions are

(xs, xi, ps, pi )t=0 = (1, 0, δ(R0 − 1)/R0, δ), (13)

where δ ≡ pi(t =0) is a free parameter.
As pointed out in Ref. [15] for the case of demographic

noise, if we propagate each of the possible initial conditions
forward in time, they tend to unique final outbreak values;
namely, one x∗

s (x∗
r ) for each δ. Examples are shown in

Fig. 3(b), where we plot the outbreak fraction as a function
of δ for three different values of R0. A simple algorithm for
generating the outbreak distribution numerically for a fixed
value of R0 is to (1) pick a δ, (2) propagate forward with
Hamilton’s equation given Eq. (11) (assuming some small
perturbation from the chosen fixed point), (3) compute the
integral in Eq. (12) from the resulting trajectory, and (4) repeat
for another value of δ. Each δ results in a unique x∗

s and S(x∗
s ).

The slopes of the lines in Fig. 3(a), were computed in
just this way, and correspond to numerical solutions for the
outbreak paths and associated S(x∗

s ) for the chosen values of
x∗

r = 1−x∗
s . Similarly, by sweeping over values of δ we can

compute the full white-noise PDF for any x∗
r . Examples are

plotted in Fig. 2(a) (dashed line) for infection-rate fluctuations
( f =0) and in Fig. 4(a) for different combinations of infection
and recovery noise ( f =0). For all Figs. 2(a), 3, and 4(a), the
white-noise WKB theory and simulations agree well, which
demonstrates the accuracy of our general approach. In fact, by
combining the method presented with the results of Ref. [15],
we have a complete algorithmic solution for generating the
outbreak PDF of the SIR model with general and multicom-
ponent white noise, which we return to in Sec. V.

B. Outbreak variance

In the general case of noise in both β and γ , it seems that
Hamilton’s equations cannot be solved analytically in a simple
manner—apart from constructing a power-series expansion
in the momentum initial-condition parameter δ. The primary
reason for this, in contrast to Ref. [15], is that for the reaction-
rate noise discussed in this paper, there is no conservation
of momentum. Therefore, we proceed to first calculate the
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FIG. 4. Outbreak statistics for white noise. (a) The simulated
white-noise PDFs from Eqs. (8) for σ1 = 0.1 and f = 0.1, 1, 2,
and 5 (from narrowest to widest) with β0 =2. White-noise predic-
tions for each combination are shown with curves overlaying the
simulation results. (b) Variance of the outbreak PDF (normalized by
noise variance) for white reaction-rate noise versus R0 =β0/γ0. The
noise combinations are blue circles (σ1 =0.1, f =0.1), red squares
(σ1 =0.1, f =1), green diamonds (σ1 =0.1, f =5), magenta trian-
gles (σ1 =0.2, f =0.1), and black hexagrams (σ1 =0.04, f =1). The
black curve shows the white-noise predictions. In both panels, γ0 =1.

variance of the outbreak-size distribution, which is related to
the lowest order contribution to Eq. (12) in δ. A complete
solution for the case of recovery-only fluctuations (not just
lowest order in delta) is given in Appendix B.

For the variance calculation, we attempt to find the action
in the vicinity of the mean-field final outbreak fraction 1 − x0.
First, let us assume pi � 1 to be verified a posteriori. Equat-
ing H = 0 yields ps = (1 − 1/(R0xs))pi, i.e., ps � 1 as well.
Second, we show that pi(t ) remains small during the entire
epidemic duration as long as the initial momentum δ is small.
Writing the Hamilton’s equation for ṗi = −∂xi H , and using
Eq. (11) we have ṗi = −(1/2)(1 + f )xi(t )p2

i . The solution of
this differential equation is

pi(t ) � δ{1 + [(1 + f )/(2R0)] ln(xs)δ}, (14)

where pi(0) = δ is the initial condition, and we have used
the fact that in the leading order in δ � 1, xr = ∫

xidt =
ln(xs)/R0. This is legitimate as the action will have a δ2

dependence (see below) so we can substitute in O(δ2) terms
their mean-field O(δ0) approximation.

To compute δ, we can use Hamilton’s equations for ẋs, and
ẋr = −ẋs − ẋi, and compute ẋr/ẋs = dxr/dxs. This yields a
differential equation, which can be solved with initial condi-
tions xr (t = 0) = 0 and xs(t = 0) = 1, assuming that during
the epidemic duration, pi(t ) is almost constant within O(δ).
Using Eq. (14) and that when the outbreak ends x∗

r = 1 − x∗
s ,

and assuming x∗
s − x0 ∼ O(δ) (to be confirmed a posteriori),

we find

δ � 2(1 − R0x0)

(1 + f )(1 − x0)x0(2 − R0(1 + x0))
(x∗

s − x0). (15)

This confirms a posteriori that δ � 1, under the assumption
that the final susceptible fraction is close to its mean-field
counterpart, i.e., x∗

s − x0 � 1.
Finally, to compute the integral in Eq. (12), it is more

convenient to change variables to xs, see Eq. (14). Thus, we
write

∫
pidxi = ∫

pi(dxi/dxs)dxs. Here, the Jacobian can be
found using the Hamilton’s equations: dxi/dxs =1/(R0xs)−
1−[(1+ f )/(R0xs)(1−xs+ln xs/R0)]δ, where again we have
used mean-field results for the O(δ) terms, namely,
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xi = 1 − xs + ln(xs)/R0. Putting it all together, and using
Eqs. (14) and (15), we can perform the integration in Eq. (12)
over xs from 1 to x∗

s , which yields the action, in the leading
order in x∗

s − x0 ∼ δ:

S = (x∗
s − x0)2

2v2
+ O

(
(x∗

s − x0)3
)
,

v2 = (1 + f )(x0 − 1)R0x2
0[2 − R0(1 + x0)]

2(1 − R0x0)2
. (16)

Indeed, having obtained a δ2 dependence of the action cor-
roborates our assumptions a posteriori. Here, v=v(R0) is the
(rescaled) variance of the outbreak-size distribution; namely,
remembering that we have sought the outbreak-size PDF as
P(x∗

s )∼exp[−S(x∗
s )/σ 2

1 ], its variance in the limit of white
reaction-rate noise, σ 2

w, is

σ 2
w = σ 2

1 v2. (17)

We can test our predictions for the outbreak variance in the
white-noise regime by performing stochastic simulations of
Eqs. (8) with different values of R0 and different combina-
tions of noise. Results are shown in Fig. 4(b). First, one
can see an interesting behavior where the variance receives
a maximum at R0 � 1.33, similar to the adiabatic regime
shown in Fig. 2(b). Here, however, the maximum variance
occurs for an R0 that is independent of the noise amplitude
and noise combination, unlike adiabatic noise. The reason for
the maximum appearing around 1.33 is that for this value of
R0 the mean outbreak fraction is approximately obtained at
x∗

r � 0.5, which maximizes the variance possibility. In ad-
dition, we note that the predicted outbreak variance in the
white-noise regime only depends on R0 and the total variance
of the reaction-rate noise, σ 2

1 + σ 2
2 . For example, in Fig. 4(b)

we show the predicted scaling collapse to a single function of
R0 of the simulated outbreak variance resulting from different
combinations of noise (i.e., different values of f ). In general,
we would expect infection-rate and recovery-rate noise to
produce additive variance (since the two noise sources are
independent), but the fact that their prefactor dependence on
R0 is identical is interesting. On the other hand, one can check
that this symmetry between infection and recovery noise dis-
appears for higher-order statistics, e.g., by repeating the above
calculation to O(δ3) for the third central moment.

C. Dynamics for small fluctuations

In addition to the outbreak statistics, one can evaluate how
the populations evolve in time during the course of an epi-
demic. In the case of adiabatic noise, the populations follow
the mean-field dynamics with constant parameters, drawn for
each outbreak from a Gaussian (or any other) distribution. In
the case of white noise, the picture is more involved. Yet, as in
Sec. IV B, one can gain insight by looking at small-fluctuation
corrections to the mean field due to noise, which correspond
to small δ. At lowest order in δ, we have shown that pi ≈δ

and ps ≈δ(1 − 1/(R0xs)). Substituting these momenta into the
Hamilton’s equations for xs and xi, we arrive at

ẋs ≈ −R0xsxi(1 + δxi ),

ẋi ≈ R0xsxi(1 + δxi ) − xi(1 − δ f xi ). (18)

(a) (b)
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FIG. 5. Variance of the final outbreak size versus the inverse of
the correlation time (left) and N (right). (a) The variance (rescaled by
the predicted adiabatic-limit) as function of τ−1 for σβ = 0.04β0 and
β0 = 2.0, 1.5, and 1.2 (top to bottom). The lines are the white-noise
predictions. The inset shows the crossover time, Eq. (19) versus R0.
(b) The variance versus N−1 for τ = 10, 1 and 0.1 (top to bottom)
with β0 = 2.0 and σβ = 0.1β0. The lines are the white-noise pre-
dictions, which are the sum of the variances from reaction-rate and
demographic noise. For both panels, γ0 =1.

Examining Eqs. (18), we see that for small fluctuations, the
noise effectively changes the mean-field model parameters
with state-dependent boosts, which are linear in xi at low-
est order in δ; namely, noise produces updated parameters
R̃0 =R0(1 + δxi ) and γ̃ =1 − δ f xi where R̃0 and γ̃ are the
effective reproduction number and recovery rate that must go
into the mean-field system [Eqs. (1)] to account for noise. Re-
calling that δ=0 gives the mean-field dynamics, we see that
for outbreaks larger than the mean-field (δ>0), the dynamics
behave as if the reproduction number grows with the number
of infected and the recovery rate decreases with the number of
infected. The opposite is the case for outbreaks less than the
mean field (δ<0).

V. CROSSOVER WITH CORRELATION TIME
AND SYSTEM SIZE

Now that we have analyzed the outbreak distribution and
dynamics in limiting cases (including Appendix B), we next
address when the various limiting regimes apply. In particu-
lar, we examine the crossover behavior of the stochastic SIR
model as a function of the reaction-rate noise correlation time
and population size; the latter has been assumed infinite so
far. We use as our metric the variance of the outbreak-size
distribution since it is the lowest order statistic not captured
by mean-field theory.

First, we remain in the N →∞ limit and try to understand
how small (large) τ has to be to produce effectively white
(adiabatic) outbreak statistics. To do so, we plot in Fig. 5(a)
the variance of the outbreak-size PDF found from simulating
Eqs. (3) versus the (inverse) correlation time τ for three values
of R0 and fixed σβ . Note that the outbreak variance is normal-
ized by the adiabatic limit, Eq. (7), so each simulation series
approaches unity for small τ−1. In addition to the adiabatic
limit, for comparison we plot predictions for white noise,
Eq. (16), with lines. In the latter case, the τ dependence comes
from the definition of the white-noise variance, Eq. (9).

Figure 5(a) has several important features. First, we point
out that the outbreak variance has a maximum in the adiabatic
limit, meaning that for fixed infection-rate noise variance,
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the SIR model dynamics is most sensitive to slow noise.
This effect is observed in other population models as well
[53,60,61]. For the SIR model, the primary reason is that
even relatively small fluctuations in β can bring an epidemic
closer to the R0 =1 threshold. If the noise is slowly varying, in
particular, the effect is felt over the full time-course of the epi-
demic wave, resulting in a potentially much smaller outbreak
than the mean field. As mentioned in Sec. III, this produces
highly skewed PDFs with significant probabilities for small
outbreaks, and hence large outbreak variance. In contrast, in
Fig. 5(a) we can see that the white-noise predictions (the lines)
are accurate for quite large values of τ . In fact, for each value
of R0 =2, 1.5, and 1.2 (from top to bottom), we can see that
the white noise prediction remains valid for correlation times
on the order of the recovery time, τ ∼γ −1

0 =1.
In general, the crossover point in τ between white and

adiabatic-noise regimes has some R0 dependence: the smaller
R0, the larger τ can be for the white-noise results to be valid,
since effectively as the epidemic gets closer to threshold the
dynamics slows down, making even slowly-varying noise po-
tentially fast. An estimate for the crossover time, τc, can be
found by solving σ 2

a =σ 2
w, which yields

τc = R2
0

2v2

σ 2
a

σ 2
β

= R0(x0 − 1)

(1 + f )(2 − R0(1 + x0))
, (19)

where we have used Eqs. (7) and (16), valid for small noise.
Evidently, τc depends only on R0 and not, e.g., on the noise
variance for small noise. The crossover time is plotted in the
inset of Fig. 5(a), which for the typical model parameters of
R0−1 ∼ O(1) remains near the recovery timescale (or unity
in our chosen units).

Now that we have an estimate for crossover times, we can
situate the inferred RSV contact-rate fluctuations and deter-
mine what regime they fall into. By plugging in the median
and quartile inferred parameter values given in Sec. II A into
Eq. (19), and using Eqs. (7) and (16), we find that the ratio
of the noise correlation time to the crossover time, τ/τc, falls
between 0.1−0.2. As the τ estimates are substantially smaller
than the crossover times, we expect the outbreak-size statistics
to be well approximated by the white-noise theory. Hence, our
analytical results can be used to make quantitative estimates
for future RSV outbreak size probabilities, assuming parame-
ters remain relatively similar to the 2019-2020 epidemic.

The second crossover that we consider is that of finite
system size, namely: how large does a population have to
be before demographic noise becomes irrelevant compared
to reaction-rate noise? For this exploration, we perform a
discrete time stochastic simulation (with small time steps) of
the discrete state reactions defined for the SIR model in Sec. II
[above Eqs. (1)], while the reaction rates fluctuate according
to the OU processes in Eqs. (3). In Fig. 5(b), we plot the
outbreak-size variance as a function of N−1 for three values of
the correlation time τ = 10, 1, and 0.1 (from top to bottom).
The curves are the expected total white-noise variance, σ 2

w,tot,
which is a sum of reaction-rate and demographic noise

σ 2
w,tot = (σ 2

1 + σ 2
2 )(x0 − 1)R0x2

0[2 − R0(1 + x0)]

2(1 − R0x0)2

+x0(1 − x0)(R2
0x0 + 1)

N (R0x0 − 1)2
. (20)

The demographic term [second line of Eq. (20)] was calcu-
lated in Ref. [15]. Note that here we have assumed that the
total variance is the sum of the variances from the independent
noise sources [62] and that all of the noise amplitudes are
relatively small: σ 2

1 , σ 2
2 , N−1 �1.

In Fig. 5(b), we can see that for large system sizes the
variance becomes flat with respect to changes in N and
approaches approximately the expected white-noise limit,
Eq. (16)—especially for the two smaller values of τ where the
white-noise approximation is more appropriate. On the other
hand, the crossover can occur for quite large system sizes,
e.g., N ∼105 for τ =0.1 and N ∼104 for τ =1, meaning that
demographic noise tends to persist if the reaction-rate noise is
fast, but disappears quickly with N if the noise is slow; notice
that the top series with τ =10 has almost no N dependence.

VI. CONCLUSIONS

Temporal fluctuations in the parameters that control con-
tagion dynamics are inevitable, and have been shown in
many epidemic data analyses. Motivated by this, we ana-
lyzed the effects of fluctuating infection and recovery rates on
the outbreak-size distribution in the canonical SIR model. The
SIR reaction rates were modeled with OU noise, allowing us
to extract the outbreak statistics as a function of the noise
standard deviations and correlation times. Our simple choice
was demonstrated by performing a model inference of the
2019-2020 RSV season in the U.S., where we observed sig-
nificant temporal fluctuations in infectious contact rates.

In terms of analytical results, we found solutions for the
outbreak-size distribution in the adiabatic and white noise
regimes and showed that the distributions can be highly
skewed with significant probabilities for large fluctuations
away from mean-field predictions. Interestingly, we discov-
ered that the outbreak variance is generally maximized for a
value of the basic reproductive number that depends on the
correlation time of the noise, which in the white-noise limit
is independent of where noise resides (infection or recovery).
In addition, we compared the typical fluctuations emerging
from demographic and reaction-rate noise and determined the
population sizes, correlation times, and reproductive numbers
that place noisy SIR systems in the various limiting regimes.
Altogether then, our paper illustrated a rich interplay between
noise and outbreak dynamics—depending sensitively on fun-
damental noise characteristics and population size.

We expect that our results can be used to estimate the
uncertainty in future outbreak sizes (e.g., the variance) due
to contact-rate noise in, for instance, seasonal diseases if
the noise and outbreak timescales are short compared to the
seasonal time scale. Many control theories and policies for
epidemics are based on mean-field analyses. As such, our
results could provide more accurate analytical tools for dis-
ease control that account for and leverage uncertainty. More
broadly, we predict that our Hamiltonian approach can be
applied to a wider range of application systems, since the
underlying contagion dynamics of the SIR model are common
to many processes that are based upon population dynam-
ics. As in the epidemic context discussed in this paper, we
conjecture that observables such as the transient peak power
in class-b laser systems [8] or the prevalence of rumors in
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complex social networks [10] can be described in terms of
one-parameter families of outbreak distributions when the
dynamics are subjected to relatively small noise.

Currently, the theory presented pertains to well-mixed
populations in which individuals come into contact with a
contagion with homogeneous rates. In actuality, the contact
rates within a population can be highly heterogeneous and/or
spatially distributed and, therefore, an important extension
of our paper includes the generalization of the outbreak-size
distribution to complex network topology. Another common
assumption that we used, which is only an approximation,
was the implicit exponential waiting times for both the in-
fection and recovery processes. Future work should include
generalization to gamma and other more realistic waiting-
time distributions. Finally, our work has relied substantially
on small-noise assumptions allowing us to focus on the
dominant, exponential contribution to the outbreak-size dis-
tribution. Corrections to this approach, which would include
next-order contributions for larger noise amplitudes, are an
important avenue for future analysis.

The numerical code we have used is available upon request.
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APPENDIX A: RSV DATA ANALYSIS

We implement a time-discrete version of an SIR model to
carry out Bayesian parameter inference on the hospitalization
data for the 2019-2020 season of RSV in the U.S. [44]. At day
d , the daily model updates follow the dynamics

id = βd Sd−1 Id−1, (A1a)

Sd = Sd−1 − id−1, (A1b)

Id = Id−1 + id − γ Id−1 (A1c)

Rd = Rd−1 + γ Id−1, (A1d)

where (Sd , Id , Rd ) are the susceptible, infected, and recovered
fractions (Sd + Id + Rd = 1), respectively, and id is the frac-
tional incidence. The parameters βd and γ refer to the daily
contact and recovery rates, respectively.

In our inference model, the dynamics of βd are given by a
daily discretized version of the OU process,

β1 =N (β0, σβ ), (A2)

βd =βd−1−α(βd−1−β0)+N (0, 2ασβ ), d >1, (A3)

where N (μ, σ ) is a normal random variable with mean μ and
variance σ 2.

The parameter inference process is done by tying the daily
discretized statistical model to the number of daily hospital-
izations contained in the data Hd by the Poisson observation

process

Hd = Pois(η · N · id ), (A4)

where η is the hospitalization rate and N denotes the total pop-
ulation. With this model, we do Bayesian parameter inference
using the platform Stan via the R package rstan [46,47];
R code for the model inference is available upon request.

APPENDIX B: ACTION FOR WHITE-NOISE
FLUCTUATIONS IN RECOVERY

In addition to small fluctuations in the outbreaks, we can
gain further analytical insight into the outbreak distribution
for white noise by looking at other limiting-case scenarios.
One such scenario is when the recovery-noise dominates over
infection noise, namely, f �1 while σγ �1. In this limit, the
Hamiltonian reduces to

H = xi[pi(R0xs − 1) − R0xs ps] + 1
2 f x2

i p2
i . (B1)

As in Sec. IV B, given the simpler Hamiltonian Eq. (B1), the
H =0 condition can be combined with Hamilton’s equations
for ẋs and ṗi, to give pi as an explicit function of xs and the
initial condition δ ≡ pi(t =0):

pi(xs) = 2δ

2 − f δ ln(xs)/R0
. (B2)

Similarly, if we substitute Eq. (B2) and the zero-energy condi-
tion into ẋi and divide by ẋs, we get the following differential
equation for xi as a function of xs:

dxi

dxs
= −1 + 1

R0xs
− 2 f xiδ

R0xs

(
2 − f δ ln(xs)/R0

) . (B3)

Next, we can solve for xi(xs) by separating the fraction of the
population infected into a product of two functions that de-
pend on xs, i.e., xi(xs)=u(xs)v(xs). By substituting the product
form into Eq. (B3), setting u dv/dxs =−1 + 1/(R0xs) and
conditioning u(xs =1)=1 and v(xs =1)=0, we find

u(xs)= 1

4

(
f δ

R0
ln(xs) − 2

)2

, v(xs)=
∫ xs

1

1 − R0x′
s

R0x′
su(x′

s)
dxs′ , (B4)

where the integral in Eq. (B4) can be expressed in terms
of incomplete exponential integrals, though the formula is
cumbersome. As xi(t →∞)→0, Eq. (B4) gives us a condition
for the final outbreak 1 − x∗

s , namely, given R0 and δ, we can
solve v(x∗

s ) = 0 for the unique value of x∗
s .

The final step for calculating the action associated with a
given outbreak in the limit of recovery-only fluctuations is to
differentiate xi(xs)=u(xs)v(xs) and substitute Eqs. (B2) and
(B4) into Eq. (12). The result is the following limiting-case
action:

S =
∫ x∗

s

1

2δ
(

− 1 + 1

R0xs

)
(

f δ ln(xs)/R0 − 2
) dxs, (B5)

where, as mentioned, the boundary condition for the integral
(the final outbreak size) can be determined numerically from
the condition v(x∗

s ) = 0.
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