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Graph states are entangled states that are useful for several quantum information processing tasks, such
as measurement-based quantum computation and quantum metrology. As the size of graph states realized in
experiments increases, it becomes more essential to devise efficient methods for estimating the fidelity between
the ideal graph state and an experimentally realized actual state. Any efficient fidelity-estimation method, in
general, must use multiple experimental settings, i.e., needs to switch between at least two measurements.
Recently, it has been shown that a single measurement is sufficient if the noise can be modeled as the phase-flip
error. Since the bit-flip error should also occur in several experiments, it is desired to extend this simplest method
to noise models that include phase and bit-flip errors. However, it seems to be nontrivial because their result
strongly depends on properties of the phase-flip error. In this paper, by analyzing effects of the bit-flip error on
stabilizer operators of graph states, we achieve the extension to the depolarizing noise, which is a major noise
model including phase and bit-flip errors. We also numerically evaluate our simplest method for noise models
interpolating between the phase-flip and depolarizing noises.
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I. INTRODUCTION

Graph states [1] are entangled states that are useful
for several quantum information processing tasks, such
as measurement-based quantum computation (MBQC) [2],
quantum metrology [3], and quantum communication [4].
Given this versatility, tremendous theoretical [5–9] and ex-
perimental [10–18] efforts have been devoted to increase the
size of graph states. As the size n of graph states realized
in experiments increases, it becomes more essential to devise
efficient methods estimating the fidelity 〈G|ρ|G〉 between the
ideal n-qubit graph state |G〉 and an experimentally realized
actual state ρ ≡ E (|G〉〈G|) that suffers from some noise E .
This fidelity estimation is also called the verification of graph
states. Several efficient verification methods have been pro-
posed for graph states [19–30]. These methods proceed as
follows: (i) Each qubit of Nc copies of ρ is given to a verifier
one by one. (ii) The verifier randomly chooses a measurement
basis from Nm kinds of measurements and measures the re-
ceived state ρ in this basis, repeating the same procedure for
all copies of ρ. (iii) By processing all measurement outcomes
with a classical computer, the verifier outputs an estimated
value of (or a lower bound on) the fidelity 〈G|ρ|G〉. In most
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cases, to reduce the burden on the verifier as much as possible,
only nonadaptive single-qubit projective measurements and
efficient classical operations are required for the verifier. In
this paper, we consider the same restriction on the verifier.

In the evaluation of verification protocols, two parameters
Nc and Nm are usually considered. So far, several attempts to
reduce the number Nc of copies have been done, and Zhu and
Hayashi finally constructed an optimal verification protocol
[27] such that Nc = �(ε−1 ln δ−1) to guarantee 〈G|ρ|G〉 �
1 − ε with significance level δ. As a remarkable property, the
number Nc in their optimal protocol does not depend on the
size n of the graph state |G〉.

On the other hand, the optimality of the number Nm of mea-
surement settings is less explored. In many practical cases, the
switching of measurement settings could be slow and, in some
cases, it may be demanding or impossible (e.g., see Ref. [31]).
Furthermore, since the measurement error is the most domi-
nant in some state-of-the-art experiments [32], the reduction
of the number of measurement settings should be helpful to
realize verification protocols with high accuracy. Therefore,
it is important to reduce Nm (ultimately to one) under the
assumption that the verifier can perform only nonadaptive
single-qubit projective measurements. However, under this as-
sumption, it has been shown that at least two measurement set-
tings are required for the verification of any bipartite pure en-
tangled state if E is an arbitrary noise [31]. Since bipartite pure
entangled states include a subclass of graph states, their result
prevents the possibility of Nm = 1 for general noises. Even
if adaptive measurements are allowed for the verifier, at least
two measurement settings are still necessary [27]. Indeed, al-
though several verification protocols were proposed for graph
states [19–30], they require multiple measurement bases.
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Recently, by restricting the noise model (i.e., by fixing E),
a verification protocol achieving Nm = 1 has been constructed
[33]. In this protocol, E is assumed to be the phase-flip er-
ror, and they have achieved the optimal number of Nm by
using properties of the phase-flip error. More precisely, from
the commutation relations between Pauli operators and the
phase-flip error, they have shown that measurements of a
single stabilizer operator of |G〉 are sufficient to estimate a
lower bound on the fidelity with high accuracy. Therefore, it
is nontrivial whether Nm = 1 can be achieved for other noise
models including bit-flip errors.

In this paper, we propose a verification protocol achieving
Nm = 1 for graph states in the presence of the depolarizing
noise [see also Eq. (4)]. Since the depolarizing noise is a major
noise model used in several theoretical analyses of quantum
error correction [34–36] and error mitigation [37–39], our pro-
tocol should also be compatible with other methods handling
errors. To construct our protocol, we analyze the effect of de-
polarizing noise on the fidelity 〈G|ρ|G〉. As a well-known fact,
the depolarizing noise on n qubits can be written as a classical
mixture of Pauli noises [40]. We observe that Pauli noises
definitely reduce the fidelity if and only if they do not coincide
with any stabilizer operator of |G〉. From this observation,
we obtain a single measurement from which we can obtain
an approximate value of the fidelity. By using this measure-
ment, we propose a verification protocol for graph states with
the depolarizing noise that satisfies Nc = �(ε−2 ln δ−1) and
Nm = 1. As concrete applications, we apply our verification
protocol to n-qubit fully connected graph states, which can
be converted to n-qubit Greenberger-Horne-Zeilinger (GHZ)
states by local Clifford operations [41], and cluster states.
Since cluster states are resource states of universal MBQC,
and GHZ states can be used to perform quantum sensing
achieving the Heisenberg limit [42] and nonadaptive MBQC
with linear side-processing (NMQC⊕) [43], our protocol can
be used to make these protocols verifiable.

We also evaluate our protocol for noise models other than
the depolarizing noise. First, we consider the noise model
where the phase-flip or depolarizing noise is randomly ap-
plied. We show that although it is unknown which noise is
applied, our protocol works well for some cluster states. Then
we consider noise models interpolating between the phase-flip
and depolarizing noises. We numerically evaluate how well
our protocol works for these noise models. Lastly, we compare
our protocol with previous protocols.

The rest of this paper is organized as follows: In Sec. II, we
introduce graph states and the depolarizing noise. In Sec. III,
we propose our verification protocol using only a single stabi-
lizer measurement. In Sec. IV, as concrete examples, we apply
our protocol in Sec. III to fully connected graph states and
cluster states. We also evaluate our protocol in noise models
other than the depolarizing noise. In Sec. V, we compare our
protocol with previous protocols. Section VI is devoted to the
Conclusion and Discussion. In Appendices A–D, we give a
proof of Lemma 1, derivation of Eq. (22), proof of Theorem
1, and derivation of Eq. (31), respectively.

II. GRAPH STATES IN THE DEPOLARIZING CHANNEL

In this section, we introduce graph states in the depolariz-
ing channel. To this end, we first define graph states [1]. A

graph G ≡ (V, E ) is a pair of the set V of n vertices and the
set E of edges. The n-qubit graph state |G〉 that corresponds
to the graph G is defined as

|G〉 ≡
⎛
⎝ ∏

(i, j)∈E

CZi, j

⎞
⎠|+〉⊗n, (1)

where |+〉 ≡ (|0〉 + |1〉)/
√

2 with |0〉 and |1〉 being, respec-
tively, eigenstates of the Pauli-Z operator with eigenvalues +1
and −1, and CZi, j is the controlled-Z (CZ) gate applied on the
ith and jth qubits. The stabilizer generators {gi}n

i=1 for |G〉 are
defined as

gi ≡ Xi

⎛
⎝ ∏

j: (i, j)∈E

Z j

⎞
⎠. (2)

Here, Xi and Zj are the Pauli-X and Z operators for the ith and
jth qubits, respectively, and the product of Zj is taken over all
vertices j such that (i, j) ∈ E . For any i and j, two stabilizer
generators commute, i.e., [gi, g j] = 0. The graph state |G〉 is
the unique common eigenstate of {gi}n

i=1 with eigenvalue +1,
i.e., gi|G〉 = |G〉 for any i.

A stabilizer S� is a product of stabilizer generators such that
S� ≡ ∏n

i=1 g�i
i , where � ≡ �1�2 . . . �n ∈ {0, 1}n. It is a tensor

product of n single-qubit operators. More precisely, by using
s ∈ {0, 1} and τi ∈ {I, X,Y, Z}, where I and Y = iXZ are the
two-dimensional (2D) identity operator and Pauli-Y operator,
respectively, it can be written as

S� = (−1)s
n⊗

i=1

τi. (3)

For any �, the equality S�|G〉 = |G〉 can be easily checked
from Eqs. (1) and (2).

The depolarizing channel is represented by the superoper-
ator [40]

E (·) ≡ (1 − p)I (·)I + p

3
[X (·)X + Y (·)Y + Z (·)Z]. (4)

It operates independently on each qubit, where bit-flip (Pauli-
X error), phase-flip (Pauli-Z error), and bit-phase-flip errors
(Pauli-Y error) occur with equal probability p/3. The depo-
larizing channel is a major noise model that is used in several
analyses as explained in Sec. I.

Let
�

�

�

�
|ψ〉 ≡ |ψ〉〈ψ | for any pure state |ψ〉. The density op-

erator ρ ≡ E⊗n(|G〉〈G|) for the graph state in the depolarizing
channel can be written as

ρ = (1 − p)n
�

�

�

�
|G〉 + (1 − p)n−1 p

3

n∑
i=1

3∑
μ=1

�

�

�

�
σμi|G〉

+ (1 − p)n−2
( p

3

)2 ∑
1�i< j�n

∑
1�μ�3
1�ν�3

�

�

�

�
σμiσν j |G〉 + . . .

= (1 − p)n
�

�

�

�
|G〉 +

n∑
m=1

(1 − p)n−m
( p

3

)m

×
∑

1�i1<i2<...<im�n
μ1μ2...μm∈{1,2,3}m

�

�

�

�

(∏m
k=1 σμk ik

)|G〉 , (5)

where σ1i ≡ Xi, σ2i ≡ Yi, and σ3i ≡ Zi.
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We define the fidelity between two states ρ1 and ρ2 as

F ≡
(

Tr
√√

ρ1ρ2
√

ρ1

)2
. (6)

Note that the fidelity is defined as
√

F in Ref. [40]. For ease of
our argument, we use the definition in Eq. (6). Therefore, the
fidelity between the graph state ρ in the depolarizing channel
and the ideal state |G〉〈G| can be written as

F = 〈G|ρ|G〉

= (1 − p)n +
n∑

m=1

(1 − p)n−m
( p

3

)m

×
∑

i1<...<im
μ1...μm

〈G|
(

m∏
k=1

σμk ik

)
|G〉2. (7)

The following lemma is useful for evaluation of Eq. (7).
Lemma 1. Suppose |G〉 is any n-qubit graph state, and σμi

is the μ component of the Pauli operator for the ith qubit.
Then, for any natural number m(� n),

〈G|
(

m∏
k=1

σμk ik

)
|G〉2 = 1, (8)

if and only if one of ±∏m
k=1 σμk ik coincides with a stabilizer

of |G〉. Otherwise, it vanishes.
Although Lemma 1 can be straightforwardly obtained from

basic properties of graph states (e.g., see Ref. [44]), we give a
proof of Lemma 1 in Appendix A for the completeness of our
paper. From Lemma 1,

∑
i1<...<im
μ1...μm

〈G|
(

m∏
k=1

σμk ik

)
|G〉2 (9)

is equal to the number of the stabilizers that are products of
m Pauli operators. Since the number of stabilizers increases
exponentially with n, in general, it would be hard to derive the
exact value of F for large n. However, in Sec. IV A, we show
that F can be represented by a simple formula [Eq. (28)] for
fully connected graph states.

We can assume, without loss of generality, that the graph
states we consider in this paper have no isolated single qubits
because verification of isolated single qubits can be performed
independently of other connected qubits. Each stabilizer of
a connected graph state is a product of at least two Pauli
operators, so the first-order error term (m = 1) in Eq. (7)
vanishes. The second-order error term (m = 2) also vanishes
for any graph state that has no stabilizers consisting of two
Pauli operators, such as a 2D cluster state with n > 4.

Using the identity

|G〉〈G| =
n∏

i=1

gi + Ii

2
= 1

2n

∑
�

S�, (10)

the fidelity can also be written as

F = Tr(ρ|G〉〈G|) = 1

2n

∑
�

Tr(ρS�). (11)

Equation (11) indicates that the fidelity can be estimated ex-
actly from the average of all the stabilizers {S�}�∈{0,1}n , that is,
2n kinds of measurement settings are required. Note that only
a polynomial number of them are chosen uniformly at random
and performed in actual experiments. However, since chosen
measurements vary in each experiment, the estimation of the
fidelity requires the ability of performing any measurement in
the 2n stabilizer measurements.

III. FIDELITY ESTIMATION BY MEASURING
A SINGLE STABILIZER

In this section, we discuss the idea employed in construct-
ing our simplest fidelity-estimation protocol for graph states
in the depolarizing channel. The average of the stabilizer is
given as

Tr(ρS�) = (1 − p)n +
n∑

m=1

(1 − p)n−m
( p

3

)m

×

⎡
⎢⎢⎣ ∑

i1<...<im
μ1...μm

〈G|
(

m∏
k=1

σμk ik

)
S�

(
m∏

k=1

σμk ik

)
|G〉

⎤
⎥⎥⎦.

(12)

Since the first-order error term vanishes in Eq. (7), the fi-
delity can be well approximated by the average of a stabilizer
without the first-order error term when p 	 1. By comparing
Eqs. (7) and (12), for p 	 1, we expect that the fidelity can
be accurately estimated by measuring a single stabilizer for
which the first-order error term vanishes.

Let us investigate the condition under which the first-order
error term in Eq. (12) vanishes. Recall that τi is a single-qubit
operator for the ith qubit of S�. τi commutes with each of X ,
Y , and Z in the case of τi = I , while it commutes with only
one of them and anticommutes with the others in the case of
τi ∈ {X,Y, Z}. We thus obtain

3∑
μ=1

〈G|σμiS�σμi|G〉 =
{

3 (τi = I )
−1 (τi ∈ {X,Y, Z}). (13)

Using this relation, we obtain

n∑
i=1

3∑
μ=1

〈G|σμiS�σμi|G〉 = 3nI − (n − nI )

= 4nI − n, (14)

where nI denotes the number of I in S�. Hence, the condition
for the first-order error term to vanish is

nI = n

4
. (15)

Generalizing the calculation of the first-order error term,
the average of a stabilizer can be calculated, in general, as

Tr(ρS�) =
n∑

m=0

C(m)(1 − p)n−m
( p

3

)m
, (16)
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where C(0) ≡ 1. C(m) (m � 1) is given as

C(m) ≡
∑

i1<...<im
μ1...μm

〈G|
(

m∏
k=1

σμk ik

)
S�

(
m∏

k=1

σμk ik

)
|G〉

=
f (�,m)∑

j=w(�,m,n)

(−1)m− j3 j

(
nI

j

)(
n − nI

m − j

)
, (17)

where f (�, m) ≡ min{m, nI} and w(�, m, n) ≡ max{0, m +
nI − n}. We have assumed

(0
0

) = 1.
C(m) (m � 1) corresponds to the sum of the averages of

S� in the case of m errors. The term
(nI

j

)(n−nI

m− j

)
expresses the

number of cases in which j errors occur among the nI qubits
for which τi = I , while the other (m − j) errors occur on (n −
nI ) qubits for which τi ∈ {X,Y, Z}.

From Eq. (17), the coefficient C(2) is given as

C(2) = 8n2
I − 4(n + 1)nI + n(n − 1)

2
. (18)

By comparing the second-order error terms (m = 2) in
Eqs. (7) and (16), it should be preferable to set C(2) as a
non-negative number for the verification with high accuracy.
Particularly in the case of cluster states, C(2) = 0 is desirable.
However, in the case that the first-order error term vanishes,
substituting nI = n/4 in Eq. (18), we find that the second-
order error term is negative as C(2) = −3n/2.

From Eq. (17), one finds that C(m) is equivalent to the
coefficient of the term xn−mym in the expansion of the polyno-
mial (x + 3y)nI (x − y)n−nI . Then, substituting x = 1 − p and
y = p/3 in (x + 3y)nI (x − y)n−nI , we finally obtain a simple
analytical expression for the average of the stabilizer as fol-
lows:

Tr(ρS�) =
[

(1 − p) + 3
p

3

]nI
[

(1 − p) − p

3

]n−nI

(19)

=
(

1 − 4

3
p

)n−nI

. (20)

It is clear from Eq. (20) that for fixed n and p, Tr(ρS�) is
determined solely by the number of I in S�. The average of
the stabilizer decreases from unity as p increases in Eq. (20)
because the eigenstates of S� with eigenvalue −1 are mixed to
the pure graph state |G〉〈G| by the depolarizing noise. Tr(ρS�)
becomes negative when p > 3/4 in the case of odd n − nI .

Equation (20) can be derived using an alternative approach,
recognizing the tensor structure of both the stabilizer operator
and the depolarizing noise. Using this approach, the average
of a stabilizer under the general noise model

E (·) = (1 − px − py − pz )(·)
+ [pxX (·)X + pyY (·)Y + pzZ (·)Z] (21)

can be derived as

Tr(ρS�) = (1 − 2py − 2pz )nX (1 − 2pz − 2px )nY

× (1 − 2px − 2py)nZ . (22)

Here, nX , nY , and nZ are the numbers of X , Y , and Z in the
stabilizer S�, respectively. Equation (22) reduces to Eq. (20)
when px = py = pz = p/3. We provide a detailed description
of the derivation of Eq. (22) in Appendix B.

Equations (11) and (20) lead to a simple expression for the
fidelity

F = 1

2n

∑
�∈{0,1}n

(
1 − 4

3
p

)n−nI (�)

, (23)

where nI (�) denotes the number of I in the stabilizer S�.
We have shown that C(1) = 0 when nI = n/4 in Eq. (14).

In fact, setting nI = n/4 in Eqs. (19) and (20), we obtain

Tr(ρS�) = (
1 − 4

3 p
)3n/4

= [
(1 − p)4 − 2

3 p2(1 − p)2

+ 8
27 p3(1 − p) − 1

27 p4
]n/4

. (24)

Expanding the final expression and comparing with Eq. (7),
it is clear that there is no first-order error term (m = 1) in
Eq. (24).

From this observation, we expect that the fidelity can be
well estimated by measuring a single stabilizer that satisfies
the condition Eq. (15). In fact, the following theorem holds.

Theorem 1. Let |G〉 be an n-qubit ideal graph state with
n = 4k for some natural number k. Let A be the set of stabiliz-
ers S of |G〉 such that S = (−1)s ⊗n

i=1 τi, where τi ∈ {X,Y, Z}
for 3k kinds of i′s, τi = I for other i′s, and s ∈ {0, 1}. Let
F ≡ 〈G|ρ|G〉 be the fidelity between |G〉 and an n-qubit graph
state ρ [Eq. (5)] in the depolarizing channel with the error
probability p. The fidelity F̃ = (1 − p)4k up to the first-order
error can be approximated by the expectation value Fest ≡
Tr(ρS) = (1 − 4p/3)3k of any single stabilizer S in the set A,
such that

0 � F̃ − Fest <
2

3k
(25)

for 0 � p � 3/4.
Figures 1(a) and 1(b) illustrate examples of the stabilizers

S� in the set A for 2D cluster states. They satisfy the con-
dition wt(�) ≡ ∑n

i=1 �i = 3k and τi = I for arbitrary qubit i
for which �i = 0, namely, S� consists of 3k generators, and
arbitrary qubit unoccupied by a generator is connected to oc-
cupied qubits with an even number of edges. Another example
of such stabilizers is given in Sec. IV for fully connected graph
states.

Our main contribution is to derive Eq. (20), from which
Theorem 1 can be immediately obtained. A rigorous proof
of Theorem 1 is given in Appendix C. Note that Theorem
1 holds for any graph state with n = 4k under the condition
that the graph state has no isolated single qubits, and the set
A is not empty. Theorem 1 implies that as the number n
of qubits increases, the precision of the estimation of F̃ by
Fest improves. When the second-order error term in Eq. (7)
vanishes, the fidelity up to the second-order error is also F̃ .
Consequently, the estimation of F by Fest improves further.
This is the case for 2D cluster states, as we demonstrate it in
the next section.

Based on Theorem 1, our verification protocol runs as
follows:

(1) A quantum computer generates N graph states ρ⊗N in
the depolarizing channel and sends them to a verifier.

(2) The verifier measures S� that satisfies the condition in
Eq. (15) on each received state ρ.
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(a)

(b)

FIG. 1. Schematic diagram of our simplest verification protocol.
A quantum computer generates graph states ρ in the depolarizing
channel and sends each qubit one by one. A verifier just measures a
single stabilizer S�, which has 3n/4 Pauli operators, for each received
state ρ by using only single-qubit Pauli measurements. No quantum
memory is required for the verifier.

(3) The verifier outputs

F̃est ≡
∑N

i=1 oi

N
(26)

as an estimated value of the fidelity, where oi ∈ {+1,−1}
denotes the ith outcome for 1 � i � N .

F̃est converges to Fest in the limit of large N . In fact,
the Hoeffding inequality [45] guarantees that when N =
�2/ε2 ln (2/δ)�, the inequality

|Fest − F̃est| � ε (27)

holds with probability at least 1 − δ. Here, �·� is the ceiling
function.

The measurement of S� in step 2 can be realized by single-
qubit Pauli measurements because S� is a tensor product of
Pauli operators. Furthermore, by sequentially sending qubits
one by one in step 1, no quantum memory is required for the
verifier. To illustrate our protocol, we give concrete examples
in Fig. 1.

FIG. 2. Fully connected graphs with four (left) and eight vertices
(right). The black dots and the solid lines are vertices and edges,
respectively.

While the constraint in our protocol on the number of
qubits, which must be a multiple of 4, may seem restrictive,
we point out that it does not limit its practical applications.
The central goal of our protocol is to verify high fidelity for
graph states. Once high fidelity has been established for a
graph state using our protocol, the number of qubits of the
graph state can be changed by measurements in the Z basis
because measuring a qubit in the Z basis results in breaking
the edges and disconnecting the qubit from the graph.

IV. APPLICATIONS

In this section, we first discuss the estimation of the fidelity
for fully connected graph states and cluster states. Particu-
larly, cluster states are important resource states for MBQC,
which allow universal quantum computation. Theorem 1 just
guarantees that our simplest verification protocol outputs the
estimated value that is close to the true value F of the fidelity
only when p is sufficiently small. We numerically show that
Fest becomes precise approximations for any 0 � p � 1/2 in
the case of fully connected graph and cluster states. Then,
we evaluate our protocol for noise models other than the
depolarizing noise.

A. Fully connected graph states

We consider fully connected graphs, in which each of
the vertices is connected with all the other vertices by the
edges, as shown in Fig. 2. Before applying Theorem 1 to fully
connected graph states with n = 4k (k ∈ N) qubits, we first
evaluate the fidelity of fully connected graph states. Accord-
ing to Eq. (23), since nI (�) for all �′s are required to evaluate
the fidelity, it should not be easy to derive it in general. For
fully connected graph states, however, Eq. (23) can be easily
evaluated.

In the case of even wt(�) = ∑n
i=1 �i, i.e., S� is a product

of even g′
is, we obtain nI (�) = n − wt(�), because τi = I for

�i = 0, and τi = X or Y for �i = 1. Meanwhile, nI = 0 in the
case of odd wt(�), because τi = Z for �i = 0, and τi = X or Y
for �i = 1. We thus obtain

2nF =
∑

wt: even

(
n

wt

)(
1 − 4

3
p

)wt

+
∑

wt: odd

(
n

wt

)(
1 − 4

3
p

)n

= 2n−1

[(
1 − 2

3
p

)n

+
(

2

3
p

)n

+
(

1 − 4

3
p

)n]
. (28)
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FIG. 3. Comparison of F (solid lines) and Fest (dashed lines) as
functions of the error probability p for the fully connected graph
states with n = 8, 24, and 96 qubits. The dotted lines represent Flb

in Eq. (42) for n = 8 and 24 qubits.

Here, we have used the following relations:

∑
j: even

(
n

j

)
x j = 1

2
[(1 + x)n + (1 − x)n], (29)

∑
j: odd

(
n

j

)
= 2n−1. (30)

Now we discuss the estimation of the fidelity for fully
connected graph states with n = 4k qubits. In the case of
even k, any stabilizer S� with wt = 3k satisfies the condition
nI = n/4 = k, because τi = I for �i = 0, and τi = X or Y for
�i = 1. Meanwhile, in the case of odd k, any fully connected
graph state with n = 4k qubits has no stabilizers that satisfy
the condition nI = n/4 = k because any stabilizer S� with
wt = 3k has τi = Z for �i = 0, and τi = X or Y for �i = 1.
Theorem 1 can be thus applied to any fully connected graph
state with n = 8k (k ∈ N) qubits.

Figure 3 shows the comparison of F in Eq. (28) and Fest =
(1 − 4p/3)6k for the fully connected graph states with n = 8k
qubits. It demonstrates that the estimation of the fidelity F by
Fest improves as n increases. The upper bound on F − Fest for
0 � p � 3/4 can be derived as

0 � F − Fest

<
1

2

(
1 − 1

8k

)(
1 − 1

4k

)8k−2

+ 1

2

(
2

3

)8k

+ 1

3k
. (31)

The derivation is given in Appendix D. The upper bound in
Eq. (31) monotonically decreases as k increases and converges
to 1/(2e2) in the limit of k → ∞.

The second-order error term F (2) in Eq. (7) is nonzero for
fully connected graph states. Since any stabilizer with wt = 2
consists of two Pauli operators, it can be written as

F (2) =
(

n

2

)
(1 − p)n−2

( p

3

)2
. (32)

The relatively large deviation of Fest from F in Fig. 3 reflects
the presence of F (2).

In the case of fully connected graph states, the other error
terms can also be derived. First, from Eq. (7), we obtain

F =
∑

�∈{0,1}n

(1 − p)nI (�)
( p

3

)n−nI (�)
. (33)

Then, by following the similar argument as used to derive
Eq. (32) and using Eq. (30), we calculate Eq. (33) as follows:

F = (1 − p)n +
�n/2�∑
k=1

(
n

2k

)
(1 − p)n−2k

( p

3

)2k

+ 2n−1
( p

3

)n
, (34)

where �·� is the floor function. Taking the summation over k
as in Eq. (16), we can derive the analytical expression of the
fidelity in Eq. (28) from Eq. (34).

B. Two-dimensional cluster states

We discuss the estimation of the fidelity of 2D cluster
states, which are universal resource states for MBQC. Here,
we focus on the rectangular cluster states with n = q × r
(q, r ∈ N, q �= r) qubits because they suffice for universal
quantum computation in MBQC.

In contrast to fully connected graph states, it should be
difficult to derive a general expression for the fidelity of 2D
cluster states. Meanwhile, the fidelity up to the third-order
error term can be easily obtained. In the case of q, r > 2, the
cluster states have no second-order error terms because they
have no stabilizers that consist of two Pauli operators. As for
the third-order error terms, the four generators on the corners
of the corresponding rectangular are the only stabilizers that
consist of three Pauli operators. Thus, the fidelity up to the
third-order error can be written as

F ′ = (1 − p)n + 4(1 − p)n−3
( p

3

)3
. (35)

The fidelity of the cluster state with 2 × 4 qubits up to the
third-order error is given as

F ′ = (1 − p)8 + 8(1 − p)5
( p

3

)3
. (36)

Since F has no second-order error terms in both cases, it is
expected that F can be well estimated by Fest. Figure 4 shows
the comparison of the fidelity F and Fest for the cluster states
with 2 × 4 and 3 × 4 qubits. The stabilizers that satisfy the
condition nI = n/4 are shown in Figs. 1(a) and 1(b). Here,
F is evaluated numerically by taking the average of all the
stabilizers. It also demonstrates that the estimation of F by Fest

improves as n increases. Compared with Fig. 3, the deviation
of Fest from F is smaller than that for the fully connected graph
states.

C. Fidelity estimation for cluster states in the presence of either
phase-flip or depolarizing noise

So far, we have restricted the noise model and fixed E
to the depolarizing channel. This restriction can be justified
in the case where we can specify the noise model based on
knowledge of how the cluster state provided to a verifier
is generated in an experiment. In this subsection, we relax
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FIG. 4. Comparison of F (solid lines) and Fest (dashed lines) as
functions of the error probability p for the rectangular cluster states
of 2 × 4 and 3 × 4 qubits. The dotted lines represent Flb in Eq. (44).

this restriction and consider the possibility of estimating the
fidelity of a 2D cluster state by measuring a single stabilizer
in the presence of either phase-flip or depolarizing noise. It
may be useful in the case where the phase-flip or depolarizing
noise is randomly applied. It may also be useful in cases where
the noise model cannot be determined between the phase-flip
and depolarizing noises due to a lack of knowledge about the
experimental setups.

We first consider the cluster state of 2 × 4 qubits. In the
presence of the phase-flip error, the fidelity of an n-qubit graph
state can be estimated by measuring a single stabilizer S� that
satisfies wt(�) = n/2 [33]. Then, the stabilizer

S� = g1g3g5g7 = X1Z2X3I4X5Z6X7I8 (37)

satisfies both the conditions wt(�) = n/2 and nI = n/4, where
the indices of qubits in Eq. (37) correspond to those in
Fig. 1(a). Thus, the fidelity can be estimated by measuring
it in the presence of either phase-flip or depolarizing noise.

Extending the above argument, the fidelity of a large cluster
state with n = 4q × 2r qubits can be estimated by measuring
a single stabilizer. For example, choosing generators every
4 × 2 qubits analogously to Eq. (37) as shown in Fig. 5, the
stabilizer obtained as their product satisfies both the condi-
tions wt(�) = n/2 and nI = n/4.

FIG. 5. Cluster state of n = 4q × 2r qubits. The fidelity of it in
the presence of either the phase-flip or the depolarizing noise can be
estimated by a stabilizer that is a product of the generators indicated
by the red circles.

FIG. 6. Comparison of F and Fest for the (2 × 4)-qubit cluster
state in the presence of the noise model in Eq. (21) as functions of
the parameter δ. We set p = 0.15.

Furthermore, the fidelity of the same cluster state can be
estimated by measuring the same stabilizer even in the pres-
ence of a more general noise model Eq. (21) with px = py =
p/3 − δ and pz = p/3 + 2δ. This noise model interpolates the
phase-flip and depolarizing noises; it reduces to the depolar-
izing (phase-flip) noise when δ = 0 (δ = p/3).

From Eq. (22), the average of a stabilizer under this noise
model can be obtained as

Tr(ρS�) =(1 − 4
3 p − 2δ

)wt(�)(
1 − 4

3 p + 4δ
)nZ

, (38)

where nX + nY = wt(�) and nZ = n − nI − wt(�). Thus, set-
ting wt(�) = n/2 and nI = n/4 in Eq. (38), Fest for the
stabilizer Eq. (37) is

Fest (δ) = (
1 − 4

3 p − 2δ
)n/2(

1 − 4
3 p + 4δ

)n/4
. (39)

The above expression interpolates Fest = (1 − 4p/3)3n/4 for
the depolarizing noise (δ = 0) and Fest = (1 − 2p)n/2 for the
phase-flip noise (δ = p/3) [33].

Figure 6 shows a comparison of the fidelity F (δ) and
Fest (δ) for the (2 × 4)-qubit cluster state in the presence of the
noise Eq. (21) with px = py = p/3 − δ and pz = p/3 + 2δ.
From ∂Fest/∂δ � 0 in the case of 0 � 2δ � 1 − 4p/3, Fest (δ)
monotonically decreases, as shown in Fig. 6. When 0 � p �
1/2, therefore, Fest (δ) is a lower bound on F (δ) for any δ as

Fest (0 � δ � p/3) � Fest (δ = 0) = (
1 − 4

3 p
)3n/4

� F̃ = (1 − p)n < F (δ), (40)

where we use Theorem 1 in the second inequality. Conse-
quently, a lower bound on the fidelity of a large cluster state
with n = 4q × 2r qubits can also be estimated by measuring
the stabilizer specified in Fig. 5 when 0 � p � 1/2.

V. COMPARISON WITH PREVIOUS PROTOCOLS

Several verification protocols exist for graph states that
work for any type of error [19–21,24–28]. The lower bound
of the fidelity obtained in some of them becomes loose in
general. It has been shown that the necessary number of
measurement settings can be improved to n from 2n by using
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the union bound [24], where the obtained lower bound of the
fidelity is given as

Flb = 1 −
n∑

i=1

{
1 − Tr

[
ρ

(
I⊗n + gi

2

)]}
(41)

in the limit of large N .
For any n-qubit fully connected graph state, using

Tr(ρgi ) = (1 − 4p/3)n, the lower bound Flb is calculated as

Flb = 1 − n

2
+ n

2

(
1 − 4

3
p

)n

(42)

� 1 − 2

3
n2 p (p 	 1). (43)

For any n = q × r (q, r � 2)-qubit cluster state, the lower
bound Flb is calculated as

Flb = 1 − n

2
+ 1

2

[
2(q + r − 4)

(
1 − 4

3
p

)4

+ 4

(
1 − 4

3
p

)3

+ (q − 2)(r − 2)

(
1 − 4

3
p

)5
]

(44)

� 1 − 2

3
[5n − 2(q + r)]p (p 	 1). (45)

Flb becomes loose as n increases in both types of graph states,
which is in sharp contrast with the fact that Fest becomes tight
as n increases. Figures 3 and 4 show that our estimated value
Fest is close to the true value F = 〈G|ρ|G〉 even when the
number n of qubits and p are large. Meanwhile, the deviation
of Flb from F increases as p increases as shown in Figs. 3 and
4.

VI. CONCLUSION AND DISCUSSION

We proposed a verification protocol for graph states as-
suming the depolarizing channel. A remarkable feature of our
verification protocol is that the fidelity of an n-qubit graph
state can be estimated by just measuring a single stabilizer
S� that satisfies the condition nI = n/4, where nI denotes the
number of identity operators in S�. Consequently, it requires
only one measurement setting. Furthermore, we showed that
the estimation improves as the number n of qubits increases.
We also derived a simple analytic expression for the average
of a stabilizer in the depolarizing channel. We applied our
protocol to fully connected graph states and cluster states,
demonstrating its usefulness. Furthermore, we evaluated our
protocol for other noise models other than the depolarizing
noise and compared it with the previous protocols. Our pro-
tocol should be useful even when it is unknown whether the
actual physical noise model is the phase-flip or depolarizing
noise.

We note the scope of applications of our protocol in the
presence of the depolarizing noise. Our protocol, which es-
timates the fidelity of the graph state under the depolarizing
noise, is specifically useful in the situation where we have
almost no information about the actual physical noise channel
for the following reason. For a single-qubit state, the depo-
larizing noise introduces a probabilistic mixture of the ideal
state and the maximally mixed state with probability 4p/3

[see Eq. (4)]. From Ref. [46], this noise model is valuable
when knowledge about the underlying noise channel is quite
limited. In essence, the depolarizing noise is used as a repre-
sentative model due to the lack of detailed information about
the specific noise model.

Introducing the step of estimating the parameter p could
indeed be an approach. In the approach, to obtain an estimated
value of the fidelity, Eq. (7) has to be calculated with the
estimated value of p, which increases the required time for
the estimation. On the other hand, our protocol can directly
estimate the fidelity without calculating Eq. (7). More con-
cretely, when state preparations and/or measurements are the
most time consuming, it should be important to evaluate the
required number of samples (i.e., the sample complexity) to
determine the required time. The purpose of the verification
is to obtain F̃est such that |F − F̃est| � ε̃ with probability at
least 1 − δ. Under the condition that the target state is the
160-qubit fully connected graph state, the error probability
p is 0.002, the desired accuracy is ε̃ = 0.1, and the desired
confidence level is 1 − δ = 0.99, the sample complexity of
our method is N = 45 630 from Eqs. (27) and (31). On the
other hand, an approach based on the estimation of p first
prepares |+〉 in the depolarizing channel and then measures
it in the X basis. Since the target state is the fully con-
nected graph state, the fidelity Eq. (7) becomes Eq. (28).
Therefore, p has to be estimated with the accuracy at least
ε′ = 0.000824205 to achieve ε̃ = 0.1. Note that we obtain
ε′ = 0.000824205 by numerically solving F (160, 0.002) +
0.1 = F (160, 0.002 − ε′), where F (n, p) ≡ [(1 − 2p/3)n +
(2p/3)n + (1 − 4p/3)n]/2. From the Hoeffding inequality
[45] and the fact that the probability of obtaining the mea-
surement outcome +1 is 1 − 2p/3, the sample complexity is
8 774 450. Since our method uses 160 qubits in a single repeti-
tion, we assume that the approach based on the estimation of p
uses |+〉⊗160 rather than |+〉 in each repetition. As a result, we
can reduce the sample complexity to 8 774 450/160 � 54 840,
but it is still larger than our sample complexity 45 630. In con-
trast, with respect to the experimental overhead, the approach
based on the estimation of p outperforms our method in the
sense that the approach based on the estimation of p does not
require entangled states to estimate the fidelity. We leave the
more thorough comparison as a future work.

As a future work, it would also be interesting to extend
our results to correlated noises such as the global depolarizing
noise

E (ρ) = (1 − p)ρ + p
I⊗n

2n
, (46)

where ρ is any n-qubit state and p is the error probability.
Since this error model is observed in actual experiments such
as the quantum supremacy experiment in Ref. [32], by doing
so, we can make our results more practical.
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APPENDIX A: PROOF OF LEMMA 1

Proof. Using Eq. (1), the expectation value
〈G|(∏m

k=1 σμk ik )|G〉 can be written as

〈G|
(

m∏
k=1

σμk ik

)
|G〉 = 〈+|⊗nU †

CZ

(
m∏

k=1

σμk ik

)
UCZ |+〉⊗n,

(A1)

where UCZ ≡ ∏
e∈E CZe. Given that CZ is a Clifford operator,

U †
CZ (

∏m
k=1 σμk ik )UCZ is also a tensor product of Pauli operators

with a sign + or –. A tensor product of Pauli operators aver-
aged by |+〉⊗n yields +1 if it is a tensor product of X and/or I
and zero otherwise. Thus, we obtain 〈G|(∏m

k=1 σμk ik )|G〉2 = 0
or 1. For 〈G|(∏m

k=1 σμk ik )|G〉 being nonzero, there must exist
s ∈ {+1,−1} and the set A ⊆ {1, 2, . . . , n} such that

U †
CZ

(
m∏

k=1

σμk ik

)
UCZ = s

⎛
⎝∏

i∈A

Xi

∏
j∈Ā

I j

⎞
⎠, (A2)

s

(
m∏

k=1

σμk ik

)
= UCZ

⎛
⎝∏

i∈A

Xi

∏
j∈Ā

I j

⎞
⎠U †

CZ , (A3)

where Ā is the complement of A. When 〈G|(∏m
k=1 σμk ik )|G〉 is

nonzero, thus,
∏m

k=1 σμk ik or −∏m
k=1 σμk ik coincides with one

of the stabilizers of |G〉.

APPENDIX B: DERIVATION OF EQ. (22)

In this Appendix, we derive Eq. (22) and provide an alter-
native derivation of Eq. (20). For convenience, we express the
general noise model Eq. (21) as

E (·) =
∑

μ=0,1,2,3

pμσμ(·)σμ, (B1)

where p1 = px, p2 = py, p3 = pz, and p0 = 1 − px − py −
pz, σ0 = I , σ1 = X , σ2 = Y , and σ3 = Z .

Using the cyclic property of trace and the anticommuting
property of the Pauli matrices, we can derive the following
relation:

Tr[σνE (·)] =
∑

μ=0,1,2,3

pμTr[σμσνσμ(·)]

= fνTr[σν (·)], (ν = 0, 1, 2, 3). (B2)

Here, fν is given as

fν = p0 +
∑

μ=1,2,3

pμ(−1)1+δμ,ν (B3)

in the case of ν = 1, 2, 3, and f0 = 1. Using the above rela-
tion, we obtain

Tr

[(
n⊗

i=1

τi

)
E⊗n(·)

]
= Tr1 · · · Trn

[(
n⊗

i=1

τi

)
E⊗n(·)

]

= f nX
1 f nY

2 f nZ
3 Tr

[(
n⊗

i=1

τi

)
(·)
]
. (B4)

Thus, Eq. (22) can be obtained as

Tr(S�ρ) = Tr

[(
(−1)s

n⊗
i=1

τi

)
E⊗n(|G〉〈G|)

]

= f nX
1 f nY

2 f nZ
3 Tr

[(
(−1)s

n⊗
i=1

τi

)
(|G〉〈G|)

]

= f nX
1 f nY

2 f nZ
3 〈G|S�|G〉

= f nX
1 f nY

2 f nZ
3 , (B5)

where f1 = 1 − 2py − 2pz, f2 = 1 − 2pz − 2px, and f3 =
1 − 2px − 2py. For the depolarizing noise, setting px = py =
pz = p/3, we obtain

Tr(S�ρ) = (
1 − 4

3 p
)n−nI

, (B6)

where we use nX + nY + nZ = n − nI .

APPENDIX C: PROOF OF THEOREM 1

Proof. Let X ≡ (1 − p)4 and Y ≡ (1 − 4p/3)3, then F̃ =
X k and Fest = Y k . Using X � Y for p ∈ [0, 1], and X − Y =
[(p − 22/27)2 + 2/729]p2,

0 � F̃ − Fest = X k − Y k

= (X − Y )(X k−1 + X k−2Y + · · · + XY k−2 + Y k−1)

� k(X − Y )X k−1

� kp2

(
−1

2
p + 2

3

)
(1 − p)4(k−1) (C1)

� kp2
0

(
−1

2
p0 + 2

3

)
(1 − p0)4(k−1) � 2

3
kp2

0 <
2

3k
.

(C2)

Here, the right-hand side of Eq. (C1) takes its maximum value
at p0, which is given by

p0 = 16k + 1 − √
256k2 − 352k + 97

6(4k − 1)
. (C3)

The last inequality in Eq. (C2) can be obtained from the
inequality p0 < 1/k.

APPENDIX D: DERIVATION OF EQ. (31)

F − Fest for the fully connected graph states with n = 8k
qubits can be written as

F − Fest = 1
2

{[(
1 − 2

3 p
)n − (1 − p)n

]
−[(1 − p)n − (

1 − 4
3 p
)n]}

+ 1
2

(
2
3 p
)n +

[
(1 − p)n − (

1 − 4
3 p
)6k
]
. (D1)
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Note that F − Fest � 0 holds because F � F̃ from Eq. (7),
and F̃ � Fest from Eq. (25). From the inequalities(

2
3 p
)n �

(
2
3

)n
, (D2)

(1 − p)n −
(

1 − 4

3
p

)6k

<
1

3k
, (D3)

it is necessary to evaluate the upper bound of the terms
inside the bracket {·} on the right-hand side of Eq. (D1).
Note that Eq. (D3) holds due to Theorem 1. Let s ≡ 1 − p,
t ≡ 1 − (2/3)p, and u ≡ 1 − (4/3)p. For 0 � p � 3/4, it can
be evaluated as

(t n − sn) − (sn − un)

= (t − s)(t n−1 + t n−2s + · · · + sn−1)

− (s − u)(sn−1 + sn−2u + · · · + un−1)

� (t − s)ntn−1 − (s − u)nsn−1 = p

3
n(t n−1 − sn−1)

= p

3
n(t − s)(t n−2 + t n−3s + · · · + tsn−3 + sn−2)

� n(n − 1)

9
p2t n−2

= n(n − 1)

9
p2

(
1 − 2

3
p

)n−2

�
(

1 − 1

n

)(
1 − 2

n

)n−2

.

(D4)

We use the relation (t n−1 − t n−isi−1) − (sn−1 − sn−iui−1) �
0 for integer i ∈ [1, n], which can be easily proved by in-
duction, for the first inequality. We also use the fact that
p2(1 − (2/3)p)n−2 takes the maximum value at p = 3/n for
0 � p � 3/4 for the final inequality. Combining Eqs. (D2)–
(D4), we obtain Eq. (31). The right-hand side of Eq. (D4)
converges to 1/e2 due to the relation

lim
n→∞

(
1 − 2

n

)n

= 1

e2
. (D5)

Therefore, the upper bound in Eq. (31) converges to 1/(2e2).
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