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Direct searches for general dark matter-electron interactions with graphene detectors:
Part I. Electronic structure calculations
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We develop a formalism to describe electron ejections from graphenelike targets by dark matter (DM)
scattering for general forms of scalar and spin-1/2 DM-electron interactions, and we compare their applicability
and accuracy within the density functional theory (DFT) and tight-binding (TB) approaches. This formalism
allows for accurate prediction of the daily modulation signal expected from DM in upcoming direct detection
experiments employing graphene sheets as the target material. A key result is that the physics of the graphene
sheet and that of the DM and the ejected electron factorize, allowing for the rate of ejections from all forms of
DM to be obtained with a single graphene response function. We perform a comparison between the TB and DFT
approaches to modeling the initial state electronic wave function within this framework, with DFT emerging as
the more self-consistent and reliable choice due to the challenges in the embedding of an appropriate atomic
contribution into the TB approach.
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I. INTRODUCTION

Dark matter (DM) plays a key role in simultaneously ex-
plaining otherwise anomalous physical phenomena that occur
on extremely different astronomical lengthscales [1]. For ex-
ample, it provides the initial density fluctuations that trigger
the formation of cosmic structures and generate the anisotropy
pattern observed in the cosmic microwave background tem-
perature and polarization maps [2]. It bends the light emitted
by distant astrophysical sources, giving rise to spectacular
gravitational lensing events [3], and furthermore, it provides
the mass required to support the flat rotation curves of spiral
galaxies [4].

Despite these remarkable observations, we still do not
know what DM is made of. The leading hypothesis in
astroparticle physics is that DM is made of unidentified, yet-
to-be-discovered particles [1]. While this simple assumption
can collectively explain all phenomena listed above, the hypo-
thetical particles forming our universe’s DM component have
so far escaped detection. This dichotomy between solid grav-
itational evidence and the lack of a microscopic description
makes the search for the “DM particle” a top priority.
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A prominent class of experiments searching for the DM
particle relies on the direct detection technique [5,6]. This
technique is used to seek rare interactions between DM parti-
cles from the Milky Way and detector materials located deep
underground in low background environments. As far as the
DM-material interaction is concerned, DM direct detection
experiments have until recently focused on the search for
nuclear recoil events induced by the scattering of weakly inter-
acting massive particles (WIMPs) in crystals, or liquid noble
gases [7]. Consequently, direct detection experiments have so
far only probed DM particles of mass above about 1 GeV,
as lighter particles would not be able to cause an observable
nuclear recoil. However, the lack of detection of WIMPs has
recently motivated the exploration of alternative experimental
approaches that are better suited to probe DM particles of sub-
GeV mass [8]. It is in this context that DM direct detection
experiments sensitive to DM-induced electronic transitions or
electron ejections in materials play a central role.

Materials that have been proposed to search for sub-GeV
DM particles via DM-electron interactions include liquid ar-
gon [9] and xenon [10–12], semiconductor crystals [13–22],
three-dimensional (3D) Dirac materials [23,24], graphene
[25,26], and carbon nanotubes [27–30], to name a few. In
this context, anisotropic media, particularly materials with
anisotropic Fermi velocities such as graphene and carbon nan-
otubes, are interesting, as the associated rate of DM-induced
electron ejections exhibits an enhanced daily modulation. This
enhancement is caused by the structural anisotropy of the
target material in combination with its relative orientation
to the DM wind. Given that such a daily modulation is not
present in typical experimental backgrounds, it would thus
be a smoking gun for a DM signal. A proposed experiment
to search for DM-induced electron ejections from graphene
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sheets or arrays of carbon nanotubes, which is currently in
the conceptual design stage, is the Princeton Tritium Obser-
vatory for Light, Early-Universe, Massive-Neutrino Yield, or
PTOLEMY [31–33].

PTOLEMY’s experimental design employs a large-area
surface-deposition tritium target coupled to a graphene sub-
strate to detect the cosmic neutrino background via the
observation of single electrons produced in the neutrino ab-
sorption by tritium atoms [31]. The coupling between tritium
and graphene reduces the energy dispersion of the final state
electrons by about an order of magnitude compared to the case
of molecular tritium [32]. A small electron energy dispersion
allows for better discrimination between electrons produced
by neutrino absorption and electrons populating the tail of the
tritium β-decay spectrum [32]. For this experimental setup
to work, it is crucial to experimentally validate the use of
graphene as a substrate for tritium atoms by accurately mea-
suring the electron-graphene interaction properties. In this
intermediate stage of the PTOLEMY experimental program,
when the graphene substrate is stripped of tritium, PTOLEMY
can also operate as a directional MeV-scale DM detector.
The DM-detection regime that does not focus on the cosmic
neutrino capture is explored in this work.

Specifically, two experimental configurations have been
proposed. In the first one, a sample of stacked graphene
sheets is considered (PTOLEMY-G3) [25]. Once an electron
is ejected from one of the graphene sheets, it drifts in an
external electric field until it reaches a calorimeter at the
edge of the detector volume. This configuration allows for
a full reconstruction of the final state electron kinematics.
In a second experimental configuration (PTOLEMY-CNT)
[27–30,33], an array of single- or multiwall metallic car-
bon nanotubes is positioned in vacuum. When an electron
is ejected from one of the nanotubes, it is driven by
an electric field to the detection region and recorded by
a single electron sensor. The idea of adopting graphene
sheets and carbon nanotubes as targets for directional, light
DM detection has recently been further developed by the
“Graphene-Field Effect Transistors (FET)” and “dark-PMT”
projects, respectively [34], as well as by the Andromeda
collaboration [35].

The possibility of using graphene or carbon nanotubes as
directional detectors sensitive to DM-induced electron ejec-
tions motivates an accurate and comprehensive modeling of
DM scattering by electrons bound in this class of anisotropic
materials. In contrast, the rate of DM-induced electron ejec-
tions from graphene sheets [25] and from carbon nanotubes
[27–30] has so far been computed assuming that the ampli-
tude for DM-electron interactions depends on the momentum
transfer only, and that the DM-electron interaction is spin-
independent. This is a rather restrictive assumption, which
can easily be violated, e.g., in models where DM has a non-
negligible magnetic or anapole moment [36]. Furthermore,
current estimates rely on the tight-binding approximation and
have not been validated against first-principles calculations.

The purpose of this work is to extend and improve the for-
malism currently used to model the scattering of DM particles
by electrons bound to graphene sheets. First, we extend the
current formalism to virtually arbitrary DM-electron interac-
tions by using the nonrelativistic effective theory framework

we developed in [36,37], and recently applied by the XENON
group in an analysis of the electron recoil data reported
in [38]. Second, we improve the existing formalism by
performing state-of-the art density functional theory (DFT)
calculations in order to accurately model the electronic prop-
erties of graphene.

We expect that the formalism and findings we present here
will be useful in the design of the PTOLEMY detector, as
well as for the development of the graphene-FET and dark-
PMT projects. However, the relevance of our formalism goes
beyond its application to these experimental concepts, as it
can also be straightforwardly used to study the ejection of
electrons in other experimental settings, where the final state
is a free electron that can be described by a plane wave. We
leave this exploration for future work.

This paper is the first of a two-part series studying DM-
electron scatterings in graphene targets. In this paper (paper
I), we lay the theoretical foundations. In the companion paper
II, we will focus on more explicit experimental setups and sen-
sitivity studies [39]. In addition, the software tools Darphene
and QEdark-EFT, developed for TB and DFT calculations,
respectively, are publicly available [40,41].

This article is organized as follows. In Sec. II we in-
troduce our general formalism for modeling the ejection of
electrons by the scattering of DM particles in two- and
three-dimensional periodic systems. In Sec. III, we describe
the detailed electronic structure calculations we performed
for graphene, both within the tight-binding-approximation
and within DFT. We apply these results to study the daily
modulation of the DM-induced electron ejection rate for a
hypothetical graphene detector in Sec. IV, and we conclude
in Sec. V. We complement this work with Appendixes where
we provide analytic formulas that are useful for evaluating our
general electron ejection rates.

II. RATE OF ELECTRON EJECTION CAUSED BY
GENERAL DARK MATTER-ELECTRON INTERACTIONS

In this section, we derive an expression for the rate of
electron ejection caused by general DM-electron interactions
in periodic systems. In Sec. III, we will perform the detailed
electronic structure calculations that will enable us in Sec. IV
to apply this general expression to the specific, experimentally
relevant case of graphene.

A. General formalism

We are interested in processes in which a DM particle
χ of mass mχ , initial velocity in the detector rest frame v,
and momentum p = mχv is scattered by an electron in initial
state |e1〉. During the interaction, the DM particle transfers
momentum q = p − p′ to the electron, where p′ is the final
DM momentum, and it causes an electronic transition from
|e1〉 to the final state |e2〉. In the notation of [36,42], the rate
R1→2 for this transition is

R1→2 = nχ

16m2
χm2

e

∫
d3q

(2π )3

∫
d3v fχ (v)

× (2π )δ(E f − Ei )|M1→2|2, (1)
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where me is the electron mass, nχ = ρχ/mχ is the local
DM number density, ρχ = 0.4 GeV cm−3 is the local DM
mass density, and fχ (v) is the local DM velocity distribution
boosted to the detector rest frame. For fχ (v), we assume a
truncated Maxwell-Boltzmann distribution, as in the so-called
standard halo model (SHM) [43]. Specifically,

fχ (v) = 1

Nescπ3/2v3
0

exp

[
− (v + ve)2

v2
0

]
× �(vesc − |v + ve|), (2)

and we take v0 = |v0| = 238 km s−1 [43] for the local stan-
dard of rest speed, and vesc = 544 km s−1 [43] for the galactic
escape speed. Following [24], we express the Earth’s velocity
with respect to the galactic center, ve, in a coordinate system
with the z-axis in the v0 + v� direction, v� is the Sun’s pecu-
liar velocity, and ve = |v0 + v�| � 250.5 km s−1 [43],

ve = ve

⎛⎝ sin αe sin β

sin αe cos αe(cos β − 1)
cos2 αe + sin2 αe cos β

⎞⎠,

where αe = 42◦, β = 2π t/day, and t is the time variable.
Finally, we also introduced the normalization constant,

Nesc ≡ erf (vesc/v0) − 2√
π

vesc

v0
exp

(
−v2

esc

v2
0

)
. (3)

The total initial (final) energy Ei (E f ) in Eq. (1) is the sum of
the DM and electronic energies,

Ei = |p|2
2mχ

+ E1, E f = |p − q|2
2mχ

+ E2, (4)

where E1 (E2) is the energy eigenvalue of the electronic state
|e1〉(|e2〉). We denote the corresponding wave functions by ψ1

and ψ2, and their associated Fourier transforms by ψ̃1 and ψ̃2,
respectively. These electron wave functions enter the electron
transition amplitude M1→2, defined as in Eq. (14) of [36] by
the integral

M1→2 =
∫

d3�

(2π )3
ψ̃∗

2 (� + q)M(�, p, q)ψ̃1(�), (5)

where M(�, p, q) is the free-electron scattering amplitude,
and � the initial state electron momentum. Here, we use mo-
mentum conservation to eliminate explicit dependence on the
final state electron momentum from M. Furthermore, since
the scattering of Milky Way DM particles by free electrons

is expected to be nonrelativistic, we use the Galilean invari-
ance of M to write M(�, p, q) = M(q, v⊥

el ), where v⊥
el =

v − q/(2μχe) − �/me, and μχe is the DM-electron reduced
mass. Finally, we expand M at linear order in �/me, and we
write it as follows [36]:

M(q, v⊥
el ) ≈ M(q, v⊥

el )|�=0 + � · ∇�M(q, v⊥
el )|�=0. (6)

This expansion allows us to express the transition amplitude
as

M1→2 =M(q, v⊥
el )|�=0 f1→2(q)

+ me∇�M(q, v⊥
el )|�=0 · f1→2(q), (7)

where we introduce the scalar and vectorial overlap integrals,

f1→2(q) ≡
∫

d3x ψ∗
2 (x) eiq·x ψ1(x), (8)

f1→2(q) ≡
∫

d3x ψ∗
2 (x) eiq·x i∇

me
ψ1(x). (9)

To evaluate the expressions above, we need to specify the
initial and final electron wave functions.

We begin by specifying the final-state electron wave func-
tion for the case in which the electron is ejected by the DM
particle. In this case, the state |e2〉 asymptotically approaches
a free particle of momentum k′. Consequently, the wave func-
tion ψ2(x) can be approximated by the plane wave

ψ2(x) → ψk′ (x) = 1√
V

eik′ ·x, (10)

which is normalized to 1 over a finite volume V . For
electrons initially bound in graphene, this plane-wave ap-
proximation has been validated by comparing results from
angular-resolved photoemission spectroscopy (ARPES) mea-
surements with simulated photoemission intensity maps, for
which excellent agreement was found [44]. Within this plane-
wave assumption, we can express the scalar and vectorial
overlap integrals in Eqs. (8) and (9) in terms of the Fourier
transform of the initial state electron wave function,

f1→2 = 1√
V

ψ̃1(k′ − q), (11)

f1→2 ≡ 1√
V

q − k′

me
ψ̃1(k′ − q). (12)

Also, using a plane wave as a final state, we find that the
square of the transition amplitude in Eq. (1) can be written
as

|M1→2|2 = {|M|2 + 2 Re[M∇�M · (q − k′)] + |∇�M · (q − k′)|2} × 1

V
|ψ̃1(k′ − q)|2

≡ Rfree(k′, q, v)︸ ︷︷ ︸
free electrons

× 1

V
|ψ̃1(k′ − q)|2︸ ︷︷ ︸
material properties

, (13)

where we introduced the free-particle response function
Rfree(k′, q, v), for which we give a general expression
in Appendix A. To understand the physical meaning of
Rfree(k′, q, v), it is instructive to take the limit of a free initial
state electron in Eq. (13), and hence replace ψ1(x) with a

plane wave of linear momentum �. In this limit, one finds

|M1→2|2 = Rfree(k′, q, v) × (2π )3δ3(k′ − � − q), (14)

where all information, besides momentum conservation, is
contained in Rfree. This shows that the second factor in
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TABLE I. Interaction operators defining the nonrelativistic effec-
tive theory of spin 0 and 1/2 DM-electron interactions [36]. Se (Sχ )
is the electron (DM) spin, v⊥

el = v − �/me − q/(2μχe), where μχe is
the DM-electron reduced mass, v⊥

el is the transverse relative velocity,
and 1χe is the identity in the DM-electron spin space. In the case of
elastic scattering, v⊥

el · q = 0, which explains the notation.

O1 = 1χe O9 = iSχ · (Se × q
me

)

O3 = iSe · ( q
me

× v⊥
el ) O10 = iSe · q

me

O4 = Sχ · Se O11 = iSχ · q
me

O5 = iSχ · ( q
me

× v⊥
el ) O12 = Sχ · (Se × v⊥

el )

O6 = (Sχ · q
me

)(Se · q
me

) O13 = i(Sχ · v⊥
el )(Se · q

me
)

O7 = Se · v⊥
el O14 = i(Sχ · q

me
)(Se · v⊥

el )

O8 = Sχ · v⊥
el O15 = iO11[(Se × v⊥

el ) · q
me

]

Eq. (13) contributes nontrivially to the squared transition am-
plitude only when the initial state electron is bound within
a material. In this latter case, it encodes all relevant material
properties via the Fourier transform of the initial state electron
wave function. As we will see in the next section, this factor-
ization allows us to express the rate of DM-induced electron
ejection from materials in terms of a single material response
function. This is in contrast with our previous findings for
the cases of atomic ionizations [36] and excitations in crys-
tals [42] where up to five material response functions were
required to evaluate the rate of DM-induced electronic transi-
tions between filled valence and empty conduction bands. One
should also note that the results reported in [36,42] neglect the
directional information of the event rate and assume a sim-
plified treatment of the velocity integral in the transition-rate
formula. By performing this integral exactly, as we do here
via Monte Carlo integration (see Sec. IV), up to five scalar
and two vectorial material response functions are in general
expected to contribute to the DM-induced electronic transition
rate [42].

B. Effective theory expansion of the scattering amplitude

To evaluate our general electron ejection formulas, Eqs. (1)
and (13), we need to specify the coefficients, M(q, v⊥

el )�=0
and ∇�M(q, v⊥

el )�=0, in the nonrelativistic expansion of the
scattering amplitude M in Eq. (7). From these coefficients,
one can in turn obtain an explicit expression for the free-
particle response function Rfree, as shown in Appendix A.
In this work, we calculate these coefficients using effective
theory methods. Specifically, we extract them from the nonrel-
ativistic effective theory of spin 0 and spin 1/2 DM-electron
interactions [36], within which the scattering amplitude can
be written as

M(q, v⊥
el ) =

∑
i

ci FDM,i(q) 〈Oi〉. (15)

Here ci is the dimensionless effective coupling correspond-
ing to the ith operator, Oi, in Table I, angle brackets denote
an expectation value between DM-electron spin states, and
FDM,i(q) is the DM form factor that encapsulates the q-
dependence of the amplitude not captured by the operator Oi

itself [13].1 Possible forms of the DM form factor include

FDM,i(q) =

⎧⎪⎪⎨⎪⎪⎩
1 for short-range interactions,( qref

q

)2
for long-range interactions,( q2

ref +m2
φ

q2+m2
φ

)
for a massive mediator φ,

(16)

where we introduced an arbitrary reference momentum trans-
fer qref . In the context of sub-GeV DM searches, qref is usually
set to αme, where α is the fine-structure constant, since this
is the typical momentum of an electron in the outer atomic
orbitals.

Equation (15) gives the most general expression for the
nonrelativistic amplitude for DM-electron scattering that is
compatible with momentum conservation and Galilean invari-
ance. The formalism we develop in this work, and in particular
the free-particle response function used in the numerical cal-
culations, relies on the expansion in Eq. (15).

C. Benchmark particle physics models

With Eq. (15), we have a general parametrization of the
nonrelativistic scattering amplitude onto which virtually any
fundamental DM particle model can be mapped. In the nu-
merical applications presented in Sec. IV, we focus on four
benchmark models, each of them corresponding to a dif-
ferent linear combination of operators in Table I. These
models—briefly reviewed below—provide interesting exam-
ples of DM-electron interactions, and they demonstrate both
the generality of the effective theory expansion in Eq. (15)
as well as how the mapping from fundamental to effective
coupling constants works in practice.

1. Dark photon model

Our first benchmark model has guided the direct search
for sub-GeV DM particles over the past few years, and is
referred to as the dark photon model. In this framework, the
Standard Model (SM) Lagrangian is extended by a new U (1)
gauge group with gauge coupling gD, and by a massive dark
photon A′ [13,45–49]. The DM ordinary matter interaction
portal opens via a kinetic mixing between ordinary and dark
photons in the interaction Lagrangian, i.e., εFμνF ′μν , where
Fμν (F ′μν ) is the field strength tensor of the ordinary photon
(massive dark photon). The Lagrangian of the dark sector in
this model is given by

LD = χ (iγ μDμ − mχ )χ − 1

4
F ′

μνF ′μν

+ 1

2
m2

A′A′
μA′μ − ε

2
FμνF ′μν, (17)

with the covariant derivative defined as

Dμχ = ∂μχ − igDA′
μχ, (18)

where gD is the gauge coupling corresponding to the dark
U (1) gauge group.

1If the nonrelativistic amplitude M(q) contains a given operator Oi

within two terms with distinct q-dependencies, i.e., two different DM
form factors, one can still use our formalism by replacing ciFDM,i(q)
with the sum c(1)

i F (1)
DM,i(q) + c(2)

i F (2)
DM,i(q) for that particular operator.
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In our general framework, the DM-electron scattering am-
plitude in the dark photon model can be mapped onto the
operator O1 if one relates the coupling constants gD and ε to
the effective coupling c1 as follows:

c1 = 4mχ megDεe

q2
ref + m2

A′
, (19a)

with

FDM,1(q) = q2
ref + m2

A′

q2 + m2
A′

. (19b)

2. Electric dipole interactions

As another less trivial example that illustrates the wide
applicability of our framework, we next consider the case
of electric dipole DM-electron interactions induced by the
interaction Lagrangian

Lint = g

�
iχσμνγ 5χ Fμν, (20)

where g is a dimensionless coupling constant and � is the
energy scale at which the interaction is generated. In [36],
we showed that the scattering amplitude of this model can be
mapped to the operator O11 via

c11 = 16emχ m2
e

q2
ref

g

�
with FDM,11(q) =

(
qref

q

)2

. (21)

3. Magnetic dipole interactions

Similarly, one can assume an interaction portal via mag-
netic dipole interactions between DM and electrons by the
following interaction term in the Lagrangian:

Lint = g

�
χσμνχ Fμν. (22)

As shown in [36], the corresponding scattering amplitude can
be identified with a linear combination of four of the operators
in Table I, with nonzero effective couplings given by

c1 = 4eme
g

�
, with FDM,1(q) = 1, (23a)

c4 = 16emχ

g

�
, with FDM,4(q) = 1, (23b)

c5 = 16em2
emχ

q2
ref

g

�
, with FDM,5(q) =

(
qref

q

)2

, (23c)

c6 = −16em2
e mχ

q2
ref

g

�
, with FDM,6(q) =

(
qref

q

)2

.

(23d)

As one can see, in this case the amplitude M is a linear
combination of “short-range” and “long-range” contributions.

4. Anapole interactions

Finally, we also study anapole interactions, defined by the
interaction Lagrangian

Lint = g

2�2
χγ μγ 5χ ∂νFμν. (24)

Just as before, we compare the scattering amplitude with the
effective operators and find a correspondence to O8 and O9

with the effective couplings

c8 = 8ememχ

g

�2
with FDM,8(q) = 1, (25a)

c9 = −8ememχ

g

�2
with FDM,9(q) = 1. (25b)

D. Application to periodic systems

We continue the development of our formalism by speci-
fying the wave function for the initial state electrons, which
we assume to be bound within a crystal consisting of
periodically repeating atoms. In this case, the electron eigen-
function is characterized by an energy band, i, and a lattice
momentum, k,

ψ1(x) → ψik(x), (26)

and it has the form of a Bloch state, in which

ψik(x + a) = eia·k ψik(x), (27)

with a being an arbitrary lattice vector. We refer to
Appendix C 1 for further details on Bloch’s theorem and
Bloch states. In this work, we consider two different bases
to form the Bloch states of the initial state electrons. For
our tight-binding approximation calculations (Sec. II D 1) we
build the wave functions from linear combinations of atomic
orbitals, and for our DFT calculations (Sec. II D 2) we use
linear combinations of plane waves.

Assuming a Bloch state of crystal momentum k for the
initial electron wave function and a plane wave of linear
momentum k′ for the final state electron, we can combine
Eq. (13) with Eq. (1) to calculate the transition rate Rik→k′ ,
which is the rate of electron ejections by DM scattering when
the initial electron is in energy band i with crystal momentum
k and the outgoing electron has linear momentum k′. The
energy difference in Eq. (1) now reads

E f − Ei = k′2

2me
+ q2

2mχ

− v · q + � − Ei(k), (28)

where Ei(k) is the energy of an electron in energy band i with
wave vector k, which is negative for bound electrons. � is
the (positive) work function, which corresponds to the energy
difference between the highest occupied electronic state and
the zero-energy unbound free-electron plane-wave state; in
this work, we take the measured value for graphene of � =
4.3 eV [25,44].

Adding the contributions from all occupied initial states
yields

Rany→k′ ≡ 2
∑

i

∫
BZ

NcellVcelld3k
(2π )3

Rik→k′ , (29)

where the factor of 2 accounts for the double occupation of
each electronic state due to spin degeneracy, and BZ stands
for the Brillouin zone. We then sum the contributions from
all final plane-wave states to obtain the total rate of electron
ejections by DM scattering,

R ≡
∫

V d3k′

(2π )3
Rany→k′ . (30)
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Finally, we express the total ejection rate, R, as follows:

R = nχNcell

32π2m2
χm2

e

∫
d3k′

∫
d Ee

∫
d3q

∫
d3v fχ (v)

× δ

(
�Ee + q2

2mχ

− v · q
)

Rfree(k′, q, v) W (k′ − q, Ee),

(31)

where we define the electron’s energy change as �Ee ≡ k′2
2me

+
� − Ee, and we introduce the material-specific response func-
tion

W (�, Ee) = Vcell

(2π )3

∑
i

∫
BZ

d3k
(2π )3

δ(Ee − Ei(k))|ψ̃ik(�)|2.

(32)

As implied by the above δ-function, Ee takes the value of the
initial state electron energy, where Ee = 0 eV for the highest
occupied state and Ee < 0 eV for other bound states. Equa-
tion (31) shows that both free-electron physics and material
properties contribute to the total rate of electron ejections by
DM scattering in a factorizable way, and that this factorization
involves a single material response function. The response
function is normalized to∫

dEed3� W (�, Ee) = Nbands, (33)

where Nbands is the number of occupied initial state electronic
bands, and we use the normalization of ψ̃ik(�) [see Eq. (D3)]
and VcellV1BZ = (2π )3.

In the next two subsections, we express the response
function W by writing ψik as a linear combination of
atomic orbitals and plane waves. Atomic orbitals are of-
ten employed within the tight-binding approximation (see
Sec. III A), whereas plane waves are a standard basis in DFT
electronic structure calculations (see Sec. III B).

1. Atomic orbital basis

Let us now derive a compact expression for the response
function W by expanding the initial state electron wave func-
tion, ψik(x), in a basis of atomic orbitals,

ψik(x) = Nk

n∑
j=1

Ci j (k)� jk(x), (34a)

where j runs over the n atomic orbitals present in each unit
cell, and � jk(x) are the Bloch states corresponding to each
atomic orbital,

� jk(x) = 1√
Ncell

Ncell∑
r=1

eik·R jr ϕ j (x − R jr ). (34b)

Here ϕ j is an atomic wave function on an atom at position
R jr , Ncell is the number of unit cells, and Nk is a normalization
constant defined in Appendix C 1. Within the tight-binding
approximation (introduced below in Sec. III A), the coeffi-
cients Ci j in Eq. (34) are computed by solving the secular
equation [Eq. (C12)] with band energies extracted from mea-
surements, or calculated using a more sophisticated technique
such as DFT.

To evaluate the material response function defined in
Eq. (32), W (�, Ee), we need to calculate the square of the

Fourier transform of ψik(x). Denoting by ϕ̃ j the Fourier trans-
form of ϕ j , for the Fourier transform of ψik we find

ψ̃ik(�) = Nk√
Ncell

n∑
j=1

Ci j (k )̃ϕ j (�)
Ncell∑
r=1

ei(k−�)·R jr . (35)

The lattice sum can be evaluated by using Eq. (A.8) of [50],

Ncell∑
r=1

eik·R jr = 1

Vcell

∑
G

(2π )3δ(3)(k + G) eik·δ j , (36)

where δ j is the location of the atom hosting the jth orbital
in the unit cell that contains the origin of coordinates. For a
given j, δ j = 0 if there exists an r ∈ {1, . . . , Ncell} such that
R jr = 0, and δ j �= 0 otherwise. In Eq. (36), the sum runs over
the reciprocal-lattice vectors G. For each j and r, they satisfy
G · (R jr − δ j ) = 2πm, where m ∈ Z. Another useful identity
to evaluate the squared modulus of ψ̃ik is

(2π )3

∣∣∣∣∣∑
G

δ(3)(k + G)

∣∣∣∣∣
2

= NcellVcell

∑
G

δ(3)(k + G), (37)

where NcellVcell = (2π )3δ(3)(0). Using Eqs. (36) and (35), we
obtain

|ψ̃ik(�)|2 = N 2
k

Vcell

∣∣∣∣∣∣
n∑

j=1

Ci j (k )̃ϕ j (�)ei(k−�)·δ j

∣∣∣∣∣∣
2

×
∑

G

(2π )3δ(3)(k − � + G), (38)

and by combining Eq. (38) with Eq. (32), we obtain the
following expression for the response function W :

W (�, Ee) = N 2
k

(2π )3

∑
i

∣∣∣∣∣∣
n∑

j=1

Ci j (k )̃ϕ j (�)e−iG∗·δ j

∣∣∣∣∣∣
2

× δ(Ee − Ei(k))

∣∣∣∣∣
k=�−G∗

. (39)

Here, we performed the integral over the lattice momentum k,
such that the δ function fixes it to k = � − G∗, where G∗ is the
unique reciprocal-lattice vector that ensures that k lies within
the first Brillouin zone. The other terms of the sum over the
vectors G do not contribute.

To evaluate Eq. (39), one needs to specify the wave func-
tions ϕ j , which we will do in Sec. III A.

2. Plane wave basis

Let us now express the response function W by using plane
waves to write the electron wave function ψik(x) as

ψik(x) = 1√
V

∑
G

ui(k + G)ei(k+G)·x, (40)

where
∑

G |ui(k + G)|2 = 1 for all i and k. From Eq. (40), we
find

ψ̃ik(�) = (2π )3

√
V

∑
G

ui(k + G)δ(3)(k + G − �) (41)
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and

|ψ̃ik(�)|2 =(2π )3
∑

G

|ui(k + G)|2δ(3)(k + G − �), (42)

where we used V = (2π )3δ(3)(0). This result can be directly
inserted into Eq. (32), which leads to the response function

W (�, Ee) = Vcell

∑
i

∫
BZ

d3k
(2π )3

δ(Ee − Ei(k))

×
∑

G

|ui(k + G)|2δ(3)(k + G − �). (43)

In Sec. III B 3, we extract the ui(k + G) coefficients and the
band structure Ei(k) from state-of-the-art DFT calculations.

III. ELECTRONIC STRUCTURE CALCULATIONS FOR
ELECTRON EJECTIONS IN GRAPHENE DETECTORS

The equations derived in the previous section refer to
three-dimensional periodic systems. We are now interested
in applying them to the specific case of graphene, which is
a single-layer material that is periodic in two dimensions. The
“dimensional reduction” can be performed straightforwardly
by means of the replacement specified below,

Vcell

∫
BZ

d3k
(2π )3

−→ Acell

∫
BZ

d2k
(2π )2

, (44)

where Acell is the two-dimensional unit cell of graphene,
while k in the right-hand (left-hand) side is a two-dimensional
(three-dimensional) lattice vector in the first Brillouin zone.

With a general formalism for electron ejections by DM
scattering in graphene detectors in place, we can now focus
on the evaluation of the predicted electron ejection rate. This
crucially depends on the response function W , which is in
turn a function of the initial state electron wave functions.
As a result, numerical evaluation of the predicted electron
ejection rate requires detailed electronic structure calculations
for graphene. In the following, we perform such electronic
structure calculations using two methods: the tight-binding
approximation, and DFT. From this analysis, DFT will emerge
as our recommended framework for electronic structure cal-
culations for DM-electron scattering in graphene-based DM
detectors.

A. Tight binding

To obtain the graphene response function in the tight-
binding (TB) approximation, we need to evaluate Eq. (39).
The missing ingredients at this point are the coefficients Ci j (k)
that yield the contribution of atomic orbital j in band i to the
response function. We separate the π - and σ -electrons and
write the response function as

W (�, Ee) = Wπ (�, Ee) +
3∑

i=1

Wσi (�, Ee). (45)

In the TB approximation, the coefficients are found as
the eigenvectors of the generalized eigenvalue problem in
Eq. (C11). For a detailed review of the TB approximation
in general and for the specific case of graphene, we refer to
Appendixes C 1 and C 2, respectively.

1. π-electrons

In the case of π -electrons in graphene (a hybridization of
the atomic 2pz orbitals of carbon), this eigenvalue problem
can be solved analytically, as described in Appendix C 2.
Therein, the full wave function of the π -electrons is derived
in position and momentum space, which can be found in
Eqs. (C24) and (C33). The eigenvalues Eπ (k) and eigen-
vectors Cπ , required for the response function, are given by
Eqs. (C22) and (C23), respectively. Therefore, the π -electron
contribution to the response function can be written out ex-
plicitly. It can be shown to simplify to

Wπ (�, Ee) = N 2
k

(2π )3
δ(Ee − Eπ (k))|̃ϕ2pz (�)|2

× [1 + cos(ϕk − δ · G∗)]|k=�−G∗ . (46)

Here, the phase ϕk and the normalization constant Nk are
given by Eqs. (C23) and (C29), respectively.

2. σ-electrons

While the procedure for the σ -electrons (a superposition of
the carbon atoms’ 2s, 2px, and 2py orbitals) is conceptionally
identical, the fact that their wave functions involve combina-
tions of three atomic orbitals at two atomic sites means that the
generalized eigenvalue problem of Eq. (C11) involves 6 × 6
matrices, which can no longer be solved analytically. Instead,
we rely on numerical procedures where we use the Eigen
library [51].

The involved six-dimensional matrices H and S are listed
in Eq. (C34) of Appendix C 2. Using the numerical procedures
of the Eigen library, we obtain the eigenvalues or band ener-
gies Eσi (k) as well as the eigenvectors Cσi .

2 Finally this allows
us to evaluate the σ -contribution to the response function,

Wσi (�, Ee) = N 2
k

(2π )3
δ(Ee − Eσi (k))

× |̃ϕ2s(�)
(
Cσi1 + Cσi4e−iδ·G∗)

+ ϕ̃2px (�)
(
Cσi2 + Cσi5e−iδ·G∗)

+ ϕ̃2py (�)
(
Cσi3 + Cσi6e−iδ·G∗)2∣∣

k=�−G∗ . (47)

By adding up the four distributions given by Eqs. (46) and
(47), we obtain the final TB estimate of the graphene response
function.

Finally, we point out that our TB treatment of the electrons
in graphene differs from a previous treatment by Hochberg
et al. [25], particularly with regard to the Bloch wave func-
tions given by Eq. (34). A second crucial difference is our
choice for the atomic wave functions, which we discuss next.
We present a detailed comparison in Appendix E.

2This is a good time to point out the dependence of the normaliza-
tion constant Nk on the norm of the eigenvectors C, which is ambigu-
ous. The numerical eigenvalue routine of Eigen that we use for the
σ -electrons (namely GeneralizedSelfAdjointEigenSolver)
solves the problem Ax = λBx such that x∗Bx = 1. In that case, Nk

is trivially equal to 1, as can be seen from Eq. (C9). However, for
the analytic solution of the π -electrons, we had chosen normalized
eigenvectors. In that case, Nk �= 1, but instead given by Eq. (C9).
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3. Atomic wave functions

To evaluate the TB estimates of the graphene response
function given in Eqs. (46) and (47), we need to specify the
atomic orbitals ϕi(x) [or rather their Fourier transforms ϕ̃i(�)]
for the electrons in carbon.

We expand the atomic wave function into a radial and
directional component, ϕnlm(x) = Rnl (r)Y m

l (x̂), where r = |x|
and Y m

l (x̂) are spherical harmonics. Following [52], we de-
scribe the radial part of the atomic orbitals of carbon electrons
as linear combinations of Slater-type orbitals (STOs),

Rnl (r) =
∑

j

Cnl jRSTO(r, Zl j, nl j ), (48a)

with

RSTO(r, Z, n) ≡ a−3/2
0

(2Z )n+1/2

√
(2n)!

(
r

a0

)n−1

e− Zr
a0 . (48b)

We include a more detailed description of these wave
functions, including the values of the different coeffi-
cients and the expressions for the Fourier transforms, in
Appendix D 2.

This choice differs from the previous approach by
Hochberg et al. [25], who use rescaled hydrogenic wave func-
tions to approximate the electron wave functions in carbon
atoms. We comment on this in Appendix E.

4. Limitations

As described in greater detail in Appendix C, we can re-
produce the measured band structure of graphene by adjusting
the overlap and transfer parameters of the TB approximation.
However, in particular the overlap parameter, e.g., the param-
eter s in Eq. (C7), is given by the overlap integrals of atomic
wave functions at neighboring atomic sites. For a given choice
of atomic wave functions, it is therefore possible to compute
s independently of the band structures. This gives rise to the
issue of self-consistency of this approach.

In [25], the authors use hydrogenic wave functions to ap-
proximate the atomic orbitals of carbon. As described in detail
in Appendix D 1, they ensure consistency between the two
independent values of the overlap parameters by rescaling
the effective charge factor Zeff . However, the resulting wave
functions do not resemble the atomic wave functions of car-
bon, as we describe in Appendix D, which is why we chose
to use RHF wave functions. While it is possible to perform
a similar rescaling of the RHF wave functions to establish
consistency with the overlap parameters listed in Table II, this
generally modifies the wave functions to the extent that they
no longer describe electrons in carbon atoms. Therefore, it
seems to be a limitation of the TB approximation to reconcile
the use of realistic atomic wave functions with the overlap
parameters that reproduce the material’s band structure in a
fully self-consistent manner. This issue is not a characteristic
of our specific treatment but rather a general feature of the TB
approximation itself reflecting the phenomenological nature
of this approximation.

TABLE II. Parameters of the overlap and transfer matrices for
the σ -electrons.

S Value H Value (eV)

s 0.129 t −3.033
s′ 0.0087 ε2s −8.868

ε2p 0.0
Sss 0.212 Hss −6.769
Ssp 0.16 Hsp −5.580
Sσ 0.146 Hσ −5.037
Sπ 0.129 Hπ −3.033

B. Density functional theory

Having carefully described the features and limitations
of the tight-binding approach, we now report on our DFT
electronic structure calculations. We start with a brief review
of the main assumptions underlying DFT in Sec. III B 1. In
Sec. III B 2, we provide a general argument supporting DFT
as a framework for electronic structure calculations in the
case of DM-induced electron ejections by graphene targets. In
Sec. III B 3, we describe the details of our specific DFT imple-
mentation in a modified version of the QEdark − EFT code.

1. Assumptions

Density functional theory (DFT) [53,54] (for a review, see
[55]) is a widely used method for calculating the ground-state
electronic properties of materials. It allows for explicit treat-
ment of the chemistry and crystal structure without the need
for empirically determined input parameters, and it provides
well-tested and computationally affordable approximations
for the many-body electron-electron interactions. In addition,
it has been implemented in numerous publicly or commer-
cially available computer codes that are convenient to use.

The theory is based on the Hohenberg-Kohn theorem [53],
which states that, for electrons in an external potential (in
this case provided by the charged atomic nuclei), the total
energy is a unique functional of the electron density, with the
ground-state density being the one that minimizes the value
of this functional. The electronic ground-state charge density
can therefore be obtained variationally.

In practice, the charge density, ne(x), is written as a sum
over the so-called Kohn-Sham wave functions, ψi(x) [54],
of a fictitious auxiliary system in which the electrons are
noninteracting. This mapping enables a convenient computa-
tional solution of the many-body Schrödinger equation at the
expense of an inexact description of the quantum-mechanical
exchange and correlation terms. These have been obtained
numerically using quantum Monte Carlo for the homogeneous
interacting electron gas [56], and a number of well-tested
approximations exist that are appropriate for different mate-
rial systems. An additional widely used and well-established
approximation divides the electrons into valence electrons,
which are treated explicitly within the DFT calculation, and
low-energy core electrons, which are combined with the
nuclei in the external potential. This pseudopotential approx-
imation drastically reduces the computational expense and is
chemically well founded, since the core electrons are not in-
volved in chemical bonding and are only minimally modified
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in the solid. The choice of pseudopotential, and the numeri-
cal and implementational details of the DFT calculation for
graphene performed here, are discussed further in Sec. III B 3.

We note that, while the Kohn-Sham wave functions and
energies do not formally correspond to true single-electron
wave functions and energies (except for the highest occu-
pied level, which provides the ionization energy), in practice
their dispersion is usually in remarkable agreement with
measured photoelectron spectra. The Kohn-Sham band struc-
ture is therefore often treated as a proxy for an effective
single-particle band structure in a periodic solid. Since the
Hohenberg-Kohn theorem describes only the ground-state
electron density, however, this is particularly ill-founded for
unoccupied conduction-band states. The methodology and re-
sults we present here, however, do not rely on any physical
interpretation of the Kohn-Sham wave functions, since our
final electron states are unbound plane-wave states, and, as
we show next, our response function is primarily determined
by the ground-state charge density rather than the ground-state
wave functions.

2. Motivations

An important observation we can draw from our general
electron ejection rate formula is that the graphene response
function W is directly related to the ground-state electron
momentum density, ρe, defined as the Fourier transform of
the electron charge density. Indeed, an explicit second quanti-
zation calculation allows us to write ρe as

ρe(�) =
∑

ii′

∑
G

∫
BZ

d2k
(2π )2

nii′ (k) u∗
i (k + G)ui′ (k + G)

× (2π )2δ(2)(k + G − �), (49)

where

nii′ (k) = 〈a†
ikai′k〉 (50)

is the mean ground-state occupation number density, while
a†

ik and ai′k are second quantization creation and annihila-
tion operators associated with the ψik and ψi′k Bloch states,
respectively.3 In Eq. (49), the i = i′ diagonal term is di-
rectly proportional to the response function W . The i �= i′
off-diagonal term describes band-mixing effects arising from
electron-electron interactions across different bands. While in
general nii′ (k) �= 0 for i �= i′, off-diagonal contributions to ρe

are expected to be subleading in the case of graphene, where
electron-electron interaction and correlation effects induce
variations in the band energies Ei(k) of at most a few %; see,
for example, Fig. 1 in [57].

3Equation (49) for the momentum density ρe can be derived from
the definition

ρe(�) =
∫

d3r
∫

d3r′e−i(r′−r)·� 〈�†(r)�(r′)〉,

where

�(r) = 1√
V

∑
i

∫
BZ

V d2k
(2π )2

ψik(r) aik,

angle brackets denote an expectation value on the ground state, while
ψik(r) is the Bloch wave function for the initial state electron.

This is an important observation because it implies that our
DFT predictions for W are only marginally affected by the
lack of a clear interpretation for the individual Kohn-Sham
states, which, in principle, is one of the limitations of a DFT
approach. These states contribute to W mainly through one
very specific combination, namely the Fourier transform of
the electron charge density, which, by construction, is self-
consistently computed in DFT.

We find this observation to be a solid argument in favor of
DFT as a theoretical framework for computing the graphene
response function W . This conclusion is also corroborated
by the good agreement found between the measured and
DFT-calculated graphene Compton profile [58], which is the
longitudinal projection of the electron momentum density, and
thus closely related to W .

3. Numerical implementation

For the numerical evaluation of the graphene responses in
the DFT framework, the QUANTUMESPRESSO V.6.4.1 [59–61]
code was used, and interfaced with QEDARK-EFT [41], an
extension to the previously established QEDARK [16] package.
Since QUANTUMESPRESSO uses a plane-wave basis with peri-
odic boundary conditions, we simulated the graphene sheet
as a system containing sheets separated by a large but finite
distance, Lz. We checked that this distance is sufficiently high
to mitigate any interlayer interactions and that our results are
insensitive to a further increase in Lz.

For the self-consistent calculations, we used the C.PBE-
N-KJPAW_PSL.1.0.0.UPF pseudopotential provided with the
QUANTUMESPRESSO package, which includes the 2s2 and
2p2 electrons in the valence configuration and treats the 1s2

electrons as core. The minimal suggested energy cutoff for
the plane-wave expansion for this pseudopotential is 40 Ry
(1 Ry = 13.6 eV) for the wave function and 326 Ry for the
charge density. We chose much larger values—2000 Ry for
the wave-function cutoff and 16000 Ry for the charge-density
cutoff—since for the case of dark-matter induced excitations,
we are interested in the high-momentum tails of the electronic
wave functions that are usually unimportant for low-energy
solid-state physics applications.

We used the PBE exchange and correlation functional
[62] with the experimentally measured lattice constant of
a = 2.46 Å, and we sampled reciprocal space with a 16 ×
16 × 1 Monkhorst-Pack k-point grid, which is sufficient to
capture the linearly dispersing Dirac cones at the Fermi level.
Since carbon is a light atom, relativistic effects are minimal
and we did not including spin-orbit coupling.

4. Discretization

As a result of the widely spaced periodically repeating
graphene sheets required by the periodic boundary conditions
of our DFT code, Eq. (43) is discretized, and the expression
evaluated by QEDARK-EFT becomes

W ((�x )n, (�y)m, (�z )o, (EB)l )

=
∑
k,G,i

ωk|ui(k + G)|2
2δ3

�δE
�

(
1 − |(EB)l − Eik|

1
2δE

)

043257-9



RICCARDO CATENA et al. PHYSICAL REVIEW RESEARCH 5, 043257 (2023)

FIG. 1. The partially integrated graphene response function evaluated with TB (left) and DFT (right) as a function of �x and �y. In the left
panel, we also show the contributions of each of the electron bands. We set �z = 91 eV, such that the vector � lies almost in the plane of the
graphene sheet. The stripelike structure of the DFT response is an artifact of the grid sampling in the reciprocal space and is integrated out
when observables are evaluated.

�

(
1 − |kz + Gz − (�z )o|

1
2δ�

)

�

(
1 − |ky + Gy − (�y)m|

1
2δ�

)
�

(
1 − |kx + Gx − (�x )n|

1
2δ�

)
,

(51)

where δE and δ� are the bin size in energy and momentum,
respectively, and � = k′ − q. Subscripts n, m, o, and l denote
the index of the corresponding momentum and energy bin, ωk
are the weights of the reciprocal-lattice k-points, and, follow-
ing the conventions of QUANTUMESPRESSO,

∑
k ωk = 2. The

sum over i runs over four valence bands, and the sum over G
is truncated by

|k + G|2
2me

� Ecut (52)

with the value of Ecut = 27.2 keV.

C. Comparison of response functions

In Figs. 1–4, we present different ways to visualize the
graphene response function obtained with the TB and DFT
methods. In these figures, we integrate the response function
defined in Eq. (32) over all energies Ee or an interval in Ee to
obtain a function of momentum � only.

In Fig. 1, we depict the response function as a function
of �x and �y with �z ≈ 0. Both for TB and DFT, we find the
characteristic hexagonal shape of the first Brillouin zone of
graphene. In the case of TB, we also depict the individual
contributions of the π and σ electrons. Note that the distor-
tions of the DFT version originate in the finite grid sampling
in reciprocal space and are washed out once we integrate over
� to obtain an observable.

In Fig. 2, we show the response function with respect to
the angle between the initial state electron momentum and

the orientation of the graphene sheet. The response function
is integrated over all-electron energies as well as only over
electrons within 5 eV of the Fermi level in order to understand
the patterns observed in daily modulation plots for dark matter
candidates of various masses. We can see that the DM parti-
cles carrying lower kinetic energies will be able to interact
preferably with electrons that have their momenta pointing
in θ ∼ 40◦, whereas DM candidates with higher energy will
be able to access electrons with momenta pointing in all
directions.

In Fig. 3, we show the contribution of various electron-
binding energies to the integrated response function for both
TB and DFT. Both approaches show a similar dependence of
the momentum contribution integrated over all directions for
the selected energy intervals.

To facilitate a quantitative comparison of the two ap-
proaches, we show the response function as a function of
momentum �⊥ (perpendicular to the sheet) and �‖ (in-sheet
momenta) in Fig. 4 using a log-scale on the y-axis.

Furthermore, the lower panel depicts the ratio of the W
functions obtained by DFT and TB. We can see that for low
momenta, � � 15 keV, both response functions lie within a
factor of 2 of each other. However, for larger momenta, the
TB approximation predicts significantly larger values.

Overall, Figs. 1–4 demonstrate that TB and DFT pre-
dict the same qualitative features of the graphene response
function. A more quantitative comparison reveals relative de-
viations between the two approaches that typically do not
exceed a factor of 2. As mentioned above, the exception here
is the case of large momenta, where we found larger devia-
tions between the two methods. The response matrix at large
momenta can be sensitive to the electron density close to the
atomic nuclei, where the electron orbitals resemble the atomic
orbitals the closest. This makes a qualitative comparison or
assessment for large momenta difficult as these contributions
are smoothed out in the DFT approach.
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FIG. 2. W (�, Ee) integrated between Emin < 0 and 0 and over the azimuthal angle of �, φ for TB (left) and DFT (right). The first row is for
Emin = −5 eV, including only electrons accessible to low mass DM. The second row has Emin = −20 eV and also includes electrons accessible
to heavier DM. As in Fig. 1, the distorting effect of the finite sampling of the reciprocal space can be seen for the case of DFT. When evaluating
the final state observables, these distortions are washed out.

FIG. 3. Graphene response function and its dependence on the initial state momentum integrated over various regions of initial state energy
and all directions. This plot shows how much different electron energies (that are accessible to different DM candidate masses) contribute to
the momentum distribution of the target for TB (left) and DFT (right) simulations.
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FIG. 4. Comparison of the partially integrated response function
as a function of the initial electron momentum, �, between DFT
(blue) and TB (red). The solid lines illustrate the response function
for momenta perpendicular to the graphene sheet. The dashed lines
show the dependence of W on momenta parallel to the graphene
sheet, where we average over the in-plane directions. The lower panel
shows the ratio. As indicated by the gray band, for momenta below
∼15 keV, the two predictions are within a factor of 2. Above, the TB
approximation predicts a significantly higher response function.

IV. CASE STUDY: DAILY MODULATION
OF THE ELECTRON EJECTION RATE IN

A GRAPHENE DETECTOR

After our comparative study of the electronic structure cal-
culations of graphene targets in Sec. III, we now present and
compare the expected electron ejection rates that we obtain

using both TB and DFT. We focus on a hypothetical experi-
mental setting where the electron ejected by an incoming DM
particle is recorded independently of the direction of ejection.
We refer to the companion paper (paper II [39]) for detailed
sensitivity studies of different settings for graphene-based DM
detectors that are currently in a research and development
stage.

Figure 5 (left) shows a comparison of the time-averaged
TB and DFT rates as a function of the DM particle mass for
DM-electron interactions described by the operators O1 (both
contact and long-range interactions) and O3 (contact only) in
Table I.

In the case of O1, we find that the electron ejection rates
predicted by TB and DFT differ by less than a factor of 2
for most DM masses, and up to a factor of 3 at very low
masses. Generally, we find that DFT predicts higher rates
at low masses, whereas TB predicts higher rates at high
masses.

In the case of O3 contact type interactions, the quantitative
comparison for low masses (mχ � 20 MeV) is similar to O1.
We find larger deviations for heavier masses, however, with
the TB approach predicting an O(10) larger rate at mχ = 100
MeV. For this particular operator, large momentum transfers
are favored, and these become kinematically more accessible
for larger masses. The difference in rate therefore originates in
the graphene response function at large momentum �, where
TB predicts a higher response than DFT as seen in Fig. 4. The
structure of O3 therefore suppresses the contribution of the
response function at low momentum, where we have better
agreement between the two approaches. Here, the different
treatment of the electron density close to the atomic nuclei
plays an important role and obstructs a qualitative compari-
son. While this is the case of the largest deviation between
TB and DFT that we present, one should also note that O3

is an extreme but instructive case that does not arise from
relativistic DM models at leading order [37].

FIG. 5. Calculated total time-averaged rate (left) and daily modulation curves (right) of DM-induced electron ejections from graphene
obtained with DFT (blue) and TB (red). On the left, we show the rate per coupling squared for O1 contact type interaction (solid), O1 long-range
type interaction (dashed), and O3 contact type interaction (dash-dotted). The upper panel to the left gives the total rates as a function of DM
mass, and the lower panel gives the ratio of the DFT to TB rates. On the right, we show the daily modulation curves for O1 contact type
interaction, where the solid, dashed, and dash-dotted curve is for 5, 10, and 100 MeV, respectively.
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FIG. 6. Daily modulation pattern for graphene sheets obtained
with DFT. The colors in each panel correspond to the interaction
types indicated in the legend, and the top left, top center, top right,
bottom left, bottom center, and bottom right corresponding to DM
masses of 2, 5, 10, 20, 50, and 100 MeV, respectively. Note that the
y-axis differs between the top and bottom plots. Note that for DM
masses around 10 MeV, the modulation pattern is similar for all the
considered interactions, indicating that the expected result is largely
model-independent.

Again comparing the DFT and TB computational frame-
works, Fig. 5 (right) shows the expected daily modulation in
the rate of DM-induced electron ejections for three values of
the DM particle mass, and for the interaction operator O1.
In all cases, the expected electron ejection rate is divided by
the corresponding time-averaged rate in order to cancel out
the O(1) differences between the DFT and TB rates reported
in the left panel of Fig. 5. From Fig. 5 (right), we conclude
that irrespective of the chosen computational framework, the
largest relative rate is found when the direction of the DM
wind is perpendicular to the graphene sheet. This is due to
the fact that the electrons are more spatially constrained in
the out-of-plane direction, giving rise to higher momentum
contribution to the electron wave function and thus increasing
the total interaction rate (as discussed further in paper II). The
strong daily modulation we find for the rate of DM-induced
electron ejections demonstrates that graphene is well suited
for establishing a daily modulation signal characteristic of the
directionality of the DM wind.

In Fig. 6 we show the daily modulation pattern of elec-
tron ejections from graphene for various DM masses and
interaction types, now focusing on DFT as a computational
framework as the corresponding results from TB are quali-
tatively similar. The daily modulation pattern is similar for
most of the DM masses and interactions with a maximum at
around time = 0 h (when the DM wind is perpendicular to
the graphene sheet) and a minimum at around time = 12 h [as
for Fig. 5 (right)]. However, for mχ = 2 MeV, the maximum
is shifted to two peaks around time = 4 h and time = 20 h.
This is a consequence of the 2 MeV DM particle only being
able to eject electrons with Ee close to 0, corresponding to
the top two panels in Fig. 2. The location of the peaks around

FIG. 7. Graphene band structure as calculated from TB and DFT.
In the case of DFT, the Dirac cone crossing at K-symmetry points
was used to determine a precise value for the Fermi energy of the
graphene sheet. We include the valence bands and the conduction
band for the π -electrons. Further conduction bands are not shown
here, but they can be found in Fig. 10 for TB.

time = 4 h and time = 20 h is due to the DM wind aligning
with the peak at θ ∼ 30◦ and � ∼ 4 keV.

V. SUMMARY AND CONCLUSION

In this paper, we have investigated two solid-state-physics
approaches to modeling DM interactions with graphenelike
targets, namely TB and DFT. Below, we summarize the main
features of the two methods and the arguments that led us
to identify DFT as the preferred framework for modeling the
scattering of DM particles by electrons bound in graphene.

Both DFT and TB capture the main characteristics of the
band structure of graphene, such as the Dirac cone at the K-
symmetry point of the Brillouin zone and valence-band energy
distributions (Fig. 7), and they predict a response function that
reflects the symmetry of the reciprocal space underlying the
graphene lattice (Fig. 1). The two computational frameworks
also predict a qualitatively similar daily modulation pattern in
the total rate of electron ejections. However, the two methods
generally predict electron ejection rates that differ by an O(1)
factor with TB (DFT) predicting higher rates for high (low)
DM masses.

The two approaches employ a different set of approxima-
tions that limit their predictivity and region of validity. To
effectively perform DFT calculations, one usually chooses a
radial cutoff to the pseudopotential and smoothes the core-
electron wave functions closer to the atomic nucleus. This
approximates the electronic structure below that cutoff and
suppresses some of the high-momentum contributions to the
electronic wave function. The total event rate is therefore

043257-13



RICCARDO CATENA et al. PHYSICAL REVIEW RESEARCH 5, 043257 (2023)

suppressed when higher-energy excitations (of tens of eV) are
considered [63].

On the other hand, DFT is able to provide a self-consistent
calculation of the ground-state electron density, which is the
indirect quantity of interest for the DM interactions consid-
ered in this work. Indeed, an important result of this work is
our demonstration that in cases where the outgoing electrons
can be treated as a plane wave, the DM and electronic con-
tributions to the DM-induced electron ejection rate factorize.
The five crystal response functions identified previously in
our work [42] then simplify into a single-crystal response that
is directly proportional to the “diagonal part” of the Fourier
transform of the ground-state electron density.

The TB approach has the advantage of easier imple-
mentability and computational affordability. In its usual
low-energy applications, the detailed form of the atomic basis
wave functions is not explicitly considered. However, since
for the case of DM-electron scattering we are interested in the
explicit form of the electronic wave functions, one needs to
embed the atomic wave functions into this framework.

This proves problematic since these atomic wave func-
tions are required to satisfy the overlap integrals of TB that
reproduce the experimentally observed band structure. The
TB approach assumes that a wave function satisfying these
relations exists, but it does not allow us to calculate its form
directly. One possible approach for modeling it is to use the
hydrogenic wave functions and adjust their parameters such
that they would satisfy the imposed overlap integrals (as em-
ployed in [25]). These modified hydrogenic wave functions,
however, differ significantly from those of real carbon atoms
bound within the graphene lattice, which is limiting their
predictive powers and makes the atomic contribution to the
total electronic momenta unreliable.

Another approach is to use the Roothaan-Hartree-Fock
wave functions fit to describe unbound carbon atoms instead
of hydrogenic wave functions as the atomic basis. While this
atomic basis does describe the individual carbon atoms better
than the hydrogenic wave functions, they do not satisfy the
overlap integrals given by the structure of the graphene lattice,
creating an inconsistency in the implementation of the theory.
To satisfy these relations, one would have to significantly

distort the shape of the atomic orbitals, spoiling the original
fit describing the carbon atom.

The problem underlying the form of the atomic orbitals
within TB, together with the robust predictive powers of the
ground-state electron density of DFT, have led us to recom-
mend DFT as the framework of choice for graphenelike DM
detector modeling. We will further expand this topic and use
DFT to obtain predictions for various possible detector setups
and DM candidates in the associated paper II.

The research software DARPHENE and an updated version
of QEDARK-EFT used to obtain the TB and DFT results,
respectively, will be made publicly available [40,41]. The
research presented in this paper made use of the follow-
ing software packages, libraries, and tools: ARB [64], BOOST

[65], EIGEN [51], LIBPHYSICA [66], OBSCURA [67,68], QUAN-
TUMESPRESSO [59–61], WebPlotDigitizer [69], and Wolfram
Mathematica [70]. Part of the computations were enabled by
resources provided by the Swedish National Infrastructure
for Computing (SNIC) at the National Supercomputer Centre
(NSC).
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APPENDIX A: EXPANDED MATRIX ELEMENT

In this Appendix, we explicitly give the free-particle re-
sponse function Rfree from Eq. (13). To avoid making the
expressions too large, we split Rfree into three separate terms,

Rfree =|M|2 + 2meRe

[
M(∇�M∗)�=0 · q − k′

me

]
+ m2

e

∣∣∣∣(∇�M)�=0 · q − k′

me

∣∣∣∣2, (A1)

where q is the momentum transfer, me is the electron mass, k′ is the final state electron momentum, and � is the initial state
electron momentum. The individual terms can then be expressed as
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where v⊥
el = v − q

2μχe
− �

me
, with v being the DM initial velocity in the detector rest frame and μχe is the DM-electron reduced

mass. ci’s are the effective couplings, and jχ is the DM spin, which we typically set to 1/2,
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Furthermore, to rewrite the above equations, one can use the
following relations:(

q
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2me
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v⊥
el |�=0 = v − q

2μχe
, (A8)

where �Ee is the energy transferred to the target electron.

APPENDIX B: THE LATTICE STRUCTURE
OF GRAPHENE

Graphene is a two-dimensional hexagonal lattice of carbon
atoms as illustrated in the left panel of Fig. 8. The distance
between two neighboring carbon atoms is

aCC = 1.42 Å. (B1)

The two lattice vectors, which can also be seen in the left panel
of Fig. 8, are

a1 = a

⎛⎜⎝
√

3
2
1
2

0

⎞⎟⎠, a2 = a

⎛⎜⎝
√

3
2

− 1
2

0

⎞⎟⎠, (B2a)

such that

a ≡ |a1| = |a2| =
√

3 aCC ≈ 2.46 Å. (B2b)

The same figure also shows the vectors Ni, pointing to a
carbon atom’s three closest neighbor atoms,

N1 = aCC

⎛⎝1
0
0

⎞⎠ =
⎛⎝ a√

3
0
0

⎞⎠, (B3a)
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2
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The lattice vectors bi of the reciprocal lattice, illustrated in the
right panel of Fig. 8, are

b1 = b
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1
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⎞⎟⎠, b2 = b

⎛⎜⎝
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with

b ≡ |b1| = |b2| = 4π√
3a

. (B4b)
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FIG. 8. The honeycomb lattice of graphene (left) and the reciprocal lattice (right), together with their respective lattice vectors ai and bi.
The red (blue) shaded area is the unit cell (Brillouin zone) of the (reciprocal) lattice.

The figure also shows the three high-symmetry point in the
first Brillouin zone (BZ) (shaded in blue) in k-space,
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APPENDIX C: THE TIGHT-BINDING APPROXIMATION

1. General review

In this Appendix, we review the tight-binding approxima-
tion. In particular, we emphasize how the energy dispersion
Ei(k), appearing in Eq. (28), and wave-function coefficients
Ci j (k) of Eq. (34) are evaluated in general using this technique
[71]. The translational symmetry of a lattice should also be
reflected in the wave functions. In particular, the electron wave
function �(x) has to satisfy Bloch’s theorem,

Ta�(x) ≡ �(x + a) = eik·a�(x). (C1)

Here, we introduced the translation operator Ta along one of
the lattice vectors a, and the lattice momentum k.

One way to write down a generic wave function satisfy-
ing Bloch’s theorem can be obtained using the tight-binding
approximation. A tight-binding Bloch function � jk(x) is an
approximation to the system’s wave functions which is de-
fined by summing up the wave functions of the jth atomic
orbital of isolated atoms at their respective lattice site,

� jk(x) = 1√
N

N∑
k=1

eik·Rk ϕ j (x − Rk ), j = 1, . . . , n. (C2)

This way, Bloch functions sum up the wave functions ϕ j (x)
of N unit cells weighted with a lattice-site-dependent phase
which ensures that Eq. (C1) is satisfied. Note that, even if the
isolated atomic wave functions ϕ j (x) are normalized, the over-

laps between neighboring wave functions generally render the
Bloch functions as non-normalized.

The actual electron wave functions of the material are lin-
ear combinations of the Bloch functions, mixing the different
atomic orbitals (but not different lattice momenta),

�ik(x) = Nk

n∑
j=1

Ci j (k)� jk(x), (C3)

where the constant Nk ensures that the wave function �ik(x)
is normalized.

Using Schrödinger’s equation, the energy values of these n
states are

Ei(k) = 〈�i|H|�i〉
〈�i|�i〉 (C4a)

=
∫

d3x �∗
ik(x) H �ik(x)∫

d3x �∗
ik(x)�ik(x)

. (C4b)

Substituting Eq. (C3), the energy eigenvalues can be ex-
pressed as

Ei(k) =
∑n

j=1

∑n
j′=1 C∗

i j (k)Ci j′ (k)〈� j |H|� j′ 〉∑n
j=1

∑n
j′=1 C∗

i j (k)Ci j′ (k)〈� j |� j′ 〉 (C5a)

≡ C†
i (k) · H(k) · Ci(k)

C†
i (k) · S(k) · Ci(k)

. (C5b)

Here, we defined the coefficient vectors

Ci(k) =

⎛⎜⎝Ci1(k)
...

Cin(k)

⎞⎟⎠, (C6)

as well as the transfer integral matrix H(k) and the overlap
integral matrix S(k). Their components are defined as

[H(k)]i j = 〈�i|H|� j〉, (C7)

[S(k)]i j = 〈�i|� j〉. (C8)

As already seen in Eq. (C5), the normalization of �ik(x)
can be written in terms of the coefficient vector Ci(k) and the
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overlap matrix S(k),

〈�i|�i〉 = N 2
k C†

i (k) · S(k) · Ci(k)

⇒ Nk = [C†
i (k) · S(k) · Ci(k)]−1/2. (C9)

The entries of the coefficient vector Ci(k) are obtained
using the variational principle by minimizing the energy
eigenvalues Ei(k), i.e.,

∂Ei(k)

∂C∗
i j

= 0. (C10)

This equation is equivalent to the following general eigenvalue
problem:

[H − Ei(k)S] · Ci(k) = 0. (C11)

Nonvanishing eigenvectors can only be found if the secular
equation applies,

det[H − Ei(k)S] = 0. (C12)

For a fixed k, this polynomial of degree n can be solved for
the n eigenvalues, i.e., the energy dispersion Ei(k). Further-
more, the eigenvectors determine the electron wave functions
�ik(x).

Finally, the entries of the transfer integral matrix H(k) and
the overlap integral matrix S(k) are often fixed to specific
values, which ensure that the correct band structure of the
material of interest is reproduced. These values are obtained
either experimentally or from first-principles calculations.

2. Tight-binding approximation for graphene

We will apply the results of the previous section to the case
of graphene. As illustrated in Fig. 8, the unit cell of graphene
consists of two carbon atoms, denoted A and B. The relevant
atomic orbitals of the carbon atoms on these locations are 2s,
2px, 2py, and 2pz (the 1s orbitals form a low-energy core state
and do not contribute to the valence-band levels). In graphene,
the first three orbitals combine or hybridize and form the
so-called σ -bands and the 2pz orbitals hybridize to form the
π -bands. As a result, there are n = 2 (6) π (σ ) -bonding
atomic orbitals in each unit cell, and Eq. (C12) constitutes
a two- (six-) dimensional eigenvalue problem for the π (σ )
band. As we will describe in detail, the energy dispersion and
wave function for the π electrons can be expressed analyti-
cally, whereas the σ electrons require numerical methods to
solve the six-dimensional secular equation.

π -electrons. The π -electrons are a hybridization of the
atomic 2pz orbitals of carbon. To compute the corresponding
energy bands by solving Eq. (C12), the main step is to eval-
uate the transfer integral and overlap integral matrices H(k)
and S(k), which we defined in Eqs. (C7) and (C8). In this
case, they are 2 × 2 matrices. Starting with the former, we
substitute Eq. (C2) into Eq. (C7). The diagonal entries read

HAA = 〈�A|H|�A〉

= 1

Ncell

Ncell∑
k,k′=1

eik·(Rk−Rk′ )〈ϕA(Rk′ )|H|ϕA(Rk )〉. (C13)

If we only take the terms into account for which Rk = Rk′ and
neglect subdominant contributions with Rk �= Rk′ , we find

HAA ≈ ε2p with ε2p ≡ 〈ϕA,k|H|ϕA,k〉. (C14)

By analogy, HBB = ε2p. For the off-diagonal components, we
can do a similar (nearest-neighbor) approximation,

HAB = 〈�A|H|�B〉

= 1

Ncell

Ncell∑
k,k′=1

eik·(Rk−Rk′ )〈ϕA(Rk′ )|H|ϕB(Rk )〉. (C15)

Next, we only involve the contributions of the three nearest
neighbors of each atom A,

≈ 1

Ncell

Ncell∑
k′=1

3∑
k=1

eik·[(Rk′ +Nk )−Rk′ ]

× 〈ϕA(Rk′ )|H|ϕB(Rk′ + Nk )〉, (C16)

where the three vectors Nk are given by Eq. (B3). We define
the parameter t ≡ 〈ϕA(Rk′ )|H|ϕB(Rk′ + Nk )〉, which is iden-
tical for all k due to the rotational symmetry of the 2pz wave
function. This leaves us with

HAB = t ×
3∑

k=1

eik·Nk . (C17)

The other off-diagonal is simply HBA = H∗
AB. In summary,

the full transfer integral matrix for the π -electrons in the
nearest-neighbor approximation is given by

H ≈
(

ε2p t f (k)
t f (k)∗ ε2p

)
. (C18)

The function f (k) is defined as

f (k) ≡
3∑

k=1

eik·Nk . (C19)

The square of this function can be evaluated as

| f (k)|2 = 3 + 2
3∑

k=1

cos(ak · k) with a3 ≡ a2 − a1.

(C20)

For the overlap matrix, the previous steps can essentially
be repeated to find

S ≈
(

1 s f (k)
s f (k)∗ 1

)
, (C21)

where s ≡ 〈ϕA(R j )|ϕB(R j + Nk )〉.
Energy bands of π -electrons. Given the explicit form of the

two matrices, we can show that the corresponding eigenvalues
solving the secular equation in Eq. (C12) are given by

Eπ (k) = ε2p ± t | f (k)|
1 ± s| f (k)| . (C22)

This energy dispersion is visualized in Fig. 9 for k ∈ BZ,
as well as along the path between the high-symmetry points
given by Eq. (B5), which is also indicated in the figure. To
reproduce the band structure of graphene to a good degree,
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FIG. 9. Energy bands of the π -electrons in graphene evaluated in the tight-binding approximation; see Eq. (C22).

we used the parameters ε2pz = 0 (by convention), s = 0.129,
and t = −3.033 eV [71].

Since t is negative, the “+” solution is lower energy and
corresponds to the bonding or valence π -band, whereas the
“−” solution is the antibonding or conduction π∗-band. The
bands are degenerate at the high-symmetry point K.

Next, we turn our attention towards the Ci(k) coefficients.
The normalized eigenvectors corresponding to the eigenvalues
of Eq. (C22) are obtained by solving Eq. (C11). For the π -
electrons, we find

Cπ = 1√
2

(
1

±eiϕk

)
, (C23a)

with ϕk = − arctan
Im f (k)

Re f (k)
. (C23b)

Hence, the π -electron wave functions can be written as

�πk(x) = Nk√
2Ncell

×
Ncell∑
k=1

[
eik·RA

k ϕ2pz

(
x − RA

k

)
+ eiϕk+ik·RB

k ϕ2pz

(
x − RB

k

)]
. (C24)

As opposed to the treatment in [25], we do not perform a
nearest-neighbor approximation on this level, as it is not well-
defined here. Instead it is necessary to sum over all N unit
cells. However, the nearest-neighbor approximation can be
applied when computing the norm of �πk(x),

〈�π |�π 〉 = N 2
k

2Ncell

Ncell∑
k,k′=1

[
eik·(RA

k′ −RA
k )
〈
ϕ2pz

(
x − RA

k

)∣∣ϕ2pz

(
x − RA

k′
)〉+ eik·(RB

k′ −RA
k )
〈
ϕ2pz

(
x − RA

k

)∣∣ϕ2pz

(
x − RB

k′
)〉

eiϕk

+ e−ik·(RB
k −RA

k′ )
〈
ϕ2pz

(
x − RB

k

)∣∣ϕ2pz

(
x − RA

k′
)〉

e−iϕk + e−ik·(RB
k −RB

k′ )
〈
ϕ2pz

(
x − RB

k

)∣∣ϕ2pz

(
x − RB

k′
)〉]

. (C25)

Next, we perform the sum over k′ using the nearest-neighbor approximation (but also taking next-nearest neighbors into account).
In addition to the neighboring contributions, the first and last lines contain terms with Rk = Rk′ , each contributing with Ncell to
the final sum. Hence, we find

〈�π |�π 〉 ≈ N 2
k

2Ncell

{
2Ncell +

Ncell∑
k′=1

3∑
k=1

[
eik·(RA

k′ +ak−RA
k′ )s′ + eik·(RA

k′ +Nk−RA
k′ )seiϕk + e−ik·(RA

k′ +Nk−RA
k′ )se−iϕk + e−ik·(RB

k′ +ak−RB
k′ )s′]

(C26)

= N 2
k

[
1 +

3∑
k=1

[s cos(k · Nk + ϕk ) + s′ cos(k · ak )]

]
. (C27)

Here, s′ denotes the overlap integral of the atomic orbitals at next-to-nearest-neighboring sites. We find that the two leading
terms are consistent with the general expression of Eq. (C9),

〈�π |�π 〉 ≈ C†
π (k) · S(k) · Cπ (k) = 1 + s

3∑
k=1

cos(k · Nk + ϕk ), (C28)
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and hence

Nk =
[

1 + s
3∑

k=1

cos(k · Nk + ϕk )

]−1/2

. (C29)

Next, we shift our attention from position space to momen-
tum space. The Fourier-transformed Bloch wave functions are

�̃k(�) = 1√
Ncell

Ncell∑
k=1

ei(�+k)·Rk ϕ̃ j (�), (C30)

where � is the conjugate momentum to x. Therefore, the π -
electrons’ wave functions in momentum space read

�̃πk(�) = Nk√
2Ncell

ϕ̃2pz (�)
Ncell∑
k=1

[
ei(�+k)·RA

k + ei(�+k)·RB
k +iϕ�

]
.

(C31)

Using RB
i = RA

i + N1, we can write this as

= Nk√
2N

ϕ̃2pz (�)(1 + ei(�+k)·N1+iϕ� )
Ncell∑
k=1

ei(�+k)·RA
k . (C32)

For the evaluation of the exponential sum, we can follow the
steps outlined in Sec. II D 1 and use the identity in Eq. (36). In
the end, we find

�̃πk(�) = Nk√
2N

ϕ̃2pz (�) A−1
uc

∑
G

(2π )2δ(2)(�‖ + k − G)

× {1 + ei[ϕ�+(�+k)·δ]}. (C33)

σ -electrons. The σ -electrons are in a superposition of the
carbon atoms’ 2s, 2px, and 2py orbitals. Hence, the transfer
and overlap matrices are 6 × 6 matrices, which we can express
in terms of four 3 × 3 submatrices,

S ≈
(
SAA SAB

SAB SBB

)
, (C34a)

H ≈
(
HAA HAB

HAB HBB

)
. (C34b)

The submatrices are diagonal,

SAA = SBB =
⎛⎝1 0 0

0 1 0
0 0 1

⎞⎠, (C34c)

HAA = HBB =
⎛⎝ε2s 0 0

0 ε2p 0
0 0 ε2p

⎞⎠, (C34d)

with ε2s = −8.87 eV and ε2p = 0. The off-diagonal matrices
are given by

SAB =
⎛⎝ Sss Sspx Sspy

−Sspx Spx px Spx py

−Sspy Spx py Spy py

⎞⎠, (C34e)

with entries

Sss = Sss

[
eik1aCC + 2e−ik1aCC/2 cos

(√
3k2aCC

2

)]
, (C34f)

FIG. 10. Energy bands of the π - and σ -electrons obtained using
the tight-binding approximation. Solid lines show the valence bands,
dashed lines are the conduction bands.

Sspx = Ssp

[
−eik1aCC + e−ik1aCC/2 cos

(√
3k2aCC

2

)]
, (C34g)

Sspy = −i
√

3Sspe−ik1aCC/2 sin

(√
3k2aCC

2

)
, (C34h)

Spx px = −Sσ eik1aCC + (3Sπ − Sσ )

2
e−ik1aCC/2 cos

(√
3k2aCC

2

)
,

(C34i)

Spx py = i
√

3

2
(Sσ + Sπ )e−ik1aCC/2 sin

(√
3k2aCC

2

)
, (C34j)

Spy py = Sπeik1aCC + (Sπ − 3Sσ )

2
e−ik1aCC/2 cos

(√
3k2aCC

2

)
.

(C34k)

The other off-diagonal submatrix is given by the conjugate
matrix, i.e., SBA = S†

AB.
The off-diagonal submatrices HAB and HBA are obtained

by replacing S → H and S → H . The numerical parameters
are given in Table II.

The energy bands of the σ -electrons are obtained by solv-
ing the secular equation, i.e., Eq. (C12). Since we are dealing
with 6 × 6 matrices, we use the numerical functionality of
the EIGEN library [51]. The resulting energy bands for the
σ -electrons are depicted in Fig. 10. The same EIGEN function
that computes the eigenvalues of the matrices in Eq. (C34),
i.e., the energy bands of the σ -electrons, by solving the
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secular equation also result in the six-dimensional eigenvec-
tors Cσi (k) and therefore the wave functions according to
Eq. (C3),

�σik(, x) = Nk

6∑
j=1

Cσi j (k)� jk(x) (i = 1, 2, 3). (C35a)

The six Bloch wave functions are given by

�1k(x) = 1√
Ncell

Ncell∑
k=1

eik·RA
k ϕ2s

(
x − RA

k

)
, (C35b)

�2k(x) = 1√
Ncell

Ncell∑
k=1

eik·RA
k ϕ2px

(
x − RA

k

)
, (C35c)

�3k(x) = 1√
Ncell

Ncell∑
k=1

eik·RA
k ϕ2py

(
x − RA

k

)
, (C35d)

�4k(x) = 1√
Ncell

Ncell∑
k=1

eik·RB
k ϕ2s

(
x − RB

k

)
, (C35e)

�5k(x) = 1√
Ncell

Ncell∑
k=1

eik·RB
k ϕ2px

(
x − RB

k

)
, (C35f)

�6k(x) = 1√
Ncell

Ncell∑
k=1

eik·RB
k ϕ2py

(
x − RB

k

)
. (C35g)

Finally, the Fourier transform of the wave function is given
by

�̃σik(�) = Nk√
Ncell

Ncell∑
k=1

×{ϕ̃2s(�)
[
Cσi1ei(�+k)·RA

k + Cσi4ei(�+k)·RB
k
]

+ ϕ̃2px (�)
[
Cσi2ei(�+k)·RA

k + Cσi5ei(�+k)·RB
k
]

+ ϕ̃2py (�)
[
Cσi3ei(�+k)·RA

k + Cσi6ei(�+k)·RB
k
]}

(C36)

= Nk√
Ncell

Ncell∑
k=1

ei(�+k)·RA
k

× {ϕ̃2s(�)
[
Cσi1 + Cσi4ei(�+k)·δ]

+ ϕ̃2px (�)
[
Cσi2 + Cσi5ei(�+k)·δ]

+ ϕ̃2py (�)
[
Cσi3 + Cσi6ei(�+k)·δ]}. (C37)

Here, we again used RB
j = RA

j + δ. Just like in the case of the
π -electrons, we use Eq. (36) to express the exponential sum
in terms of a sum over the reciprocal-lattice vectors G,

�̃σik(�) = Nk√
N

A−1
uc

∑
G

(2π )2δ(2)(�‖ + k − G)

× {ϕ̃2s(�)
[
Cσi1 + Cσi4ei(�+k)·δ]

+ ϕ̃2px (�)
[
Cσi2 + Cσi5ei(�+k)·δ]

+ ϕ̃2py (�)
[
Cσi3 + Cσi6ei(�+k)·δ]}. (C38)

APPENDIX D: ATOMIC WAVE FUNCTIONS

The evaluation of the graphene response function requires
a specific form of the atomic wave functions of carbon ϕi(x)
[and its Fourier transform ϕ̃i(�)]. We present results for two
particular choices. As proposed by Hochberg et al. [25], we
start by approximating the wave functions of carbon with
hydrogenic wave functions with a rescaled Zeff factor. We
improve upon this choice by using Roothaan-Hartree-Fock
(RHF) wave functions for the ground states of carbon [52]. In
this Appendix, we summarize the explicit wave functions both
in position and momentum space and present a comparison.

The wave function of the atomic state (n, �, m) in position
space is given by

ϕnlm(x) = Rnl (r)Y m
l (x̂), (D1)

where Y m
l (x̂) are spherical harmonics, and Rnl (r) is the radial

component of the wave function.
Regardless of the choice of form for the radial component,

the corresponding Fourier-transformed wave function in mo-
mentum space ϕ̃i(�) for a given position space wave function
ϕi(x) is defined as

ϕ̃i(�) =
∫

d3x ϕi(x)e−i�·x, (D2)

which fixes the normalization of the wave function to∫
d3x |ϕi(x)|2 = 1,

∫
d3�

(2π )3
|̃ϕi(�)|2 = 1. (D3)

For the evaluation of the graphene response function using
the TB approximation, the required wave functions are those
of the atomic orbitals 2s and 2p in the environment of a carbon
atom. Additionally for the 2p orbitals, the crystal structure
of graphene gives rise to the 2px, 2py, and 2pz orbitals. The
corresponding wave functions are given by

ϕ2pi (x) = R2p(r)Yi(x̂) with (D4a)

Yi(x̂) ≡
√

3

4π

xi

r
. (D4b)

Similarly, the relevant momentum wave functions can be
written as

ϕ̃nlm(�) = χnl (�)Y m
l (�̂), (D5)

and hence for the 2pi states we find

ϕ̃2pi (�) = χ2p(�)Yi(�̂). (D6)

1. Hydrogenic wave functions

We list the hydrogenic wave functions proposed in [25] to
approximate the ground-state wave functions of carbon atoms.
In position space, the wave functions are given by

ϕ2s(x) =

√√√√(Z2s
eff

)3
56πa3

0

(
1 − Z2s

effr

a0

)
e−Z2s

eff r/(2a0 ), (D7a)

ϕ2px (x) =

√√√√(Z2px/y

eff

)5
32πa3

0

r

a0
e−Z

2px/y
eff r/(2a0 ) sin θ cos ϕ, (D7b)
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FIG. 11. Comparison of the hydrogenic and the RHF wave functions for the 2s and 2p orbitals of carbon. The left (right) panel shows the
radial wave function Rnl (r) [χnl (�)] in position (momentum) space. Note that the values of Zeff for the hydrogenic wave functions were tuned
to reproduce the overlap integrals of graphene; see Eq. (D8).

ϕ2py (x) =

√√√√(Z2px/y

eff

)5
32πa3

0

r

a0
e−Z

2px/y
eff r/(2a0 ) sin θ sin ϕ, (D7c)

ϕ2pz (x) =

√√√√(Z2pz
eff

)5
32πa3

0

r

a0
e−Z2pz

eff r/(2a0 ) cos θ. (D7d)

Following [25], the effective charge Zeff parameters are deter-
mined to reproduce the overlap integrals for graphene listed
in Table II,

Z2s
eff = 4.59, Z

2px/y

eff = 5.49, Z2pz

eff = 4.02. (D8)

While this improves the self-consistency of the TB formalism,
the resulting wave functions are not close to those of the more
accurate Roothaan-Hartree-Fock wave functions for carbon
atoms, as seen in Fig. 11.

The momentum space wave functions required to describe
the electrons in graphene can be approximated as

ϕ̃2s(�) =
√

8π
(
Z2s

eff

)5/2
a3/2

0

a2
0|�|2 − (Z2s

eff/2
)2[

a2
0|�|2 + (Z2s

eff/2)2
]3 , (D9a)

ϕ̃2px (�) ≈
√

8π
(
Z

2px/y

eff

)7/2
a3/2

0

a0�x(
a2

0|�|2 + (Z2px/y

eff /2)2
)3 ,

(D9b)

ϕ̃2py (�) ≈
√

8π
(
Z

2px/y

eff

)7/2
a3/2

0

a0�y(
a2

0|�|2 + (Z2px/y

eff /2)2
)3 ,

(D9c)

ϕ̃2pz (�) ≈
√

8π
(
Z2pz

eff

)7/2
a3/2

0

a0�z(
a2

0|�|2 + (Z2pz

eff /2)2
)3 , (D9d)

where only the expression for ϕ̃2s(�) is exact.

2. Roothaan-Hartree-Fock wave functions

Instead of rescaled hydrogenic wave functions, we rec-
ommend using Roothaan-Hartree-Fock (RHF) wave functions
that can be found in [52]. The radial part of the RHF wave
function is given in Eq. (48) as a linear combination of

Slater-type orbitals (STOs). We repeat the expression here for
convenience,

Rnl (r) =
∑

j

Cnl jRSTO(r, Zl j, nl j ). (D10a)

An STO is defined as

RSTO(r, Z, n) ≡ a−3/2
0

(2Z )n+1/2

√
(2n)!

(
r

a0

)n−1

e− Zr
a0 . (D10b)

Finally, the RHF coefficients Cnl j as well as the parameters
nnl and Znl for carbon are tabulated in [52], and summarized
in Table III for convenience.

Moving on to momentum space, the wave function is ob-
tained via Eq. (D1). Using the plane-wave expansion of the
exponential, we can write the radial part of the wave function
in Eq. (D2) as the spherical Bessel transform of Rnl (r),

χnl (�) = 4π il
∫

dr r2Rnl (r) jl (�r), (D11)

where jl (x) is the spherical Bessel function.

TABLE III. Coefficients of RHF wave functions as defined in
Eq. (48) for the 2s (left) and 2p (right) orbital of carbon. Values taken
from [52].

2s
nl j Zl j Cnl j

1 8.4936 −0.071727
1 4.8788 0.438307
3 15.466 −0.000383
2 7.05 −0.091194
2 2.264 −0.393105
2 1.4747 −0.579121
2 1.1639 −0.126067
2p
nl j Zl j Cnl j

2 7.05 0.006977
2 3.2275 0.070877
2 2.1908 0.230802
2 1.4413 0.411931
2 1.0242 0.350701
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Evaluating this expression for the RHF wave function given in Eq. (48) yields

χnl (�) =
∑

j

Cnl j

[
2πa0

Zl j

]3/2

2nl j−l

[
ia0�

Zl j

]l (nl j + l + 1)!√
(2nl j )!

2F1
(

1
2 (2 + l + nl j ), 1

2 (3 + l + nl j ), 3
2 + l,−( a0�

Zl j

)2)
�
(

3
2 + l

) , (D12)

where 2F1(a, b, c, z) is the hypergeometric function.

Using these expressions, we can evaluate all relevant
atomic orbitals for the graphene response function by apply-
ing Eq. (D6).

When we compare the hydrogenic to the RHF wave func-
tions in Fig. 11, we find the hydrogenic wave functions to be
a poor match to the RHF wave functions, which are accepted
as a good description for the atomic carbon ground-state wave
functions. Instead, we conclude the necessity of using actual
carbon atomic wave functions. This conclusion becomes even
more robust when comparing the graphene response functions
computed with TB and DFT.

APPENDIX E: COMPARISON OF OUR TB TREATMENT
TO HOCHBERG ET AL.

The first study of graphene targets for sub-GeV DM
searches was published by Hochberg et al. [25]. Therein, the
authors chose a semianalytic approach to describe the elec-
tron wave functions in graphene based on the tight-binding
(TB) approximation. In reproducing their results, we noticed
a number of deviations to our TB treatment of the electron
wave functions in graphene.

(i) The modeling of the Bloch wave functions in the above-
mentioned work does not satisfy Bloch’s theorem given in
Eq. (C1). This also gives rise to a different normalization
factor Nk.

(ii) While the hydrogenic wave functions proposed in [25]
give overlap integrals in agreement with the TB theory, they
differ significantly from more accurate RHF atomic wave
functions of carbon atoms, as shown in Appendix D.

(iii) After a careful evaluation of the formula for the DM
induced electron ejection rate, we find an extra factor of 1/2
coming from normalizing to the number of unit cells instead
of the number of carbon atoms in the system.

In this Appendix, we review how we improved the TB
treatment of graphene wave functions and how the updated
electron ejection rate compares to the one presented by
Hochberg et al.4

1. Bloch states and their normalization

The “Bloch states” proposed in [25] are given by

�Ak(x) = ϕA(x), (E1a)

�Bk(x) =
3∑

k=1

eik·Nk ϕB(x − Nk ). (E1b)

Compared to the expression of Eq. (C2), these states, while
capturing the nearest-neighbor approximation, do not for-

4We note that we were able to reproduce the signal energy spectra
reported in [25] by accounting for all differences.

mally correspond to Bloch wave functions. Consequently,
they do not satisfy Bloch’s theorem or rigorously describe a
periodic system; see Eq. (C1).

One consequence of this choice of Bloch states is a deviat-
ing normalization factor Nk. As an example, using the Bloch
states by Hochberg et al., it is possible to compute the exact
normalization factor for the π -electrons,

N� =
[

2 + s
3∑

k=1

cos(� · Nk + ϕ�) + s′
3∑

k=1

cos(� · ak )

]−1/2

.

(E2)

While this factor correctly normalizes the electron wave func-
tions involving the Bloch states of (E1), it deviates from
our respective expression for the π -electrons in Eq. (C29).
Furthermore, our normalization constant is consistent with
Eq. (C9), i.e., the general expression for the normalization
constant for Bloch wave functions as given by Eq. (C2).
Similar arguments hold for the σ -electrons.

2. Atomic wave functions

In [25], Hochberg et al. propose to describe the atomic
wave functions of carbon by using hydrogenic wave functions
with a rescaled Zeff factor. The rescaling ensures that the
overlap integrals of the wave functions are consistent with the
TB parameters that reproduce the band structure of graphene
listed in Table II. For completeness, we list these wave func-
tions in Appendix D 1.

In contrast, we model the carbon wave functions using
Roothaan-Hartree-Fock (RHF) wave functions [52], which we
summarize in Appendix D 2. By comparison, we find that the
rescaled hydrogenic wave functions are a poor approximation
for the required ground-state wave functions of atomic elec-
trons in carbon, as can be seen in Fig. 11.

While the RHF wave functions are a better description of
carbon electrons, it should be noted that their overlap integrals
are not consistent with the overlap parameters for graphene in
Table II. A rescaling of the RHF wave functions similar to
the approach by Hochberg et al. is possible, but it spoils the
accurate description of electrons in atomic carbon. However,
this seems to be a general feature of evaluating electron wave
functions in the TB approximation.

3. Electron ejection rate

In [25], the total rate of DM-induced electron ejections in
graphene is given as

R = 2
ρχ

mχ

NCAuc

∑
i

∫
d2�

(2π )2

∫
d3vg(v)vσi(�), (E3)
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where

vσi(�) = σ e

μ2

∫
d3k f

(2π )3

d3q
4π

|FDM(q)|2|�̃i(�, q − k f )|2

× δ

(
k2

f

2me
− Ei(�) + � + q2

2mχ

− q · v

)
. (E4)

Here, we use the notation of Hochberg et al. This needs to
be compared to our Eqs. (31) and (32). Here, we use the
replacement Eq. (44) for two-dimensional targets, and further
identify

Rfree → 16πm2
em2

χ

μ2
eχ

σ e|FDM(q)|2 (E5)

to facilitate the comparison. We find agreement between
our expressions with one exception. Instead of the num-
ber of carbon atoms NC , we find that the electron ejection
rate is proportional to the number of unit cells Ncell. Hence
our expressions for the electron ejection rates differ by a
factor of 2.

In Fig. 12, we compare the energy spectrum for a DM
particle of 100 MeV mass using the TB approach presented
by Hochberg et al. and compare it to the improved version
presented in this work. Note that the interaction model used by

FIG. 12. Comparison of the energy spectrum between our TB
results and the results by Hochberg et al. (spectrum digitized from
Fig. 1 of [25]). The solid lines show the total spectrum, whereas the
dashed (dotted) lines show the contributions of the π - (σ -) electrons.
For this figure, we used the SHM parameters from [25] in order
to facilitate the comparison (Hochberg et al. use v0 = 220 km/s as
opposed to our choice of v0 = 238 km/s).

Hochberg et al. corresponds to O1 interactions in our general
framework. We find that our predicted spectrum is about one
order of magnitude lower than the one presented in [25].
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