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Green’s function theory of spatiotemporally modulated loaded wire surface
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In this paper we explore the two-dimensional Green’s function problem above a spatiotemporally modulated
loaded wire media. We suggest a spatiotemporal spectral representation to the space-time domain Green’s
function. Then, we evaluate the spectral representation both by a brute-force numerical integration as well as
in a physics-guided fashion by deforming the integration path along the steepest descent path and encircling
singular points in the complex spectral plane. The latter approach leads in general to three isolated wave
contributions: a refracted ray due to a saddle point contribution, a head-wave-like due to the branch points,
and leaky modes that are associated with pole singularities. This way, we identify different wave species that
are all subject to a synthetic motion that is effectively caused by the spatiotemporal modulation and give rise to
unique nonreciprocal behavior. Lastly, we provide asymptotic closed form expressions for the various waves that
comprise the Green’s function, as well as conditions under which they contribute.
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I. INTRODUCTION

The problem of wave propagation in spatiotemporally
modulated media has gained a lot of attention in recent years.
One important application that originally pushed forward this
research avenue is the possibility to develop magnetless non-
reciprocal wave devices in electromagnetics as well as in
acoustics [1–21]. These designs are based on the creation of
a synthetic sense of motion, that fundamentally enables the
breach of time-reversal symmetry with respect to the wave
subsystem. While the major part of these efforts has been
dedicated to breaking reciprocity in guiding wave structures,
some important focus has been also aimed at the viola-
tion of reciprocity in scattering and radiation [22–26]. For a
comprehensive discussion on the theory and applications of
spatiotemporally modulated media the reader is encouraged
to read Refs. [27,28].

One major analysis aspect of spatiotemporal metastruc-
tures, which has had only a little amount of dedicated
research, is the excitation mechanism, with an emphasis on
the rigorous analytical Green’s function development, and the
physical interpretation of the singular and critical points in the
complex plane of the spectral variable. In this paper we aim to
address this gap. To that end we specifically chose to focus on
the excitation problem of an electrically thin spatiotemporally
modulated wire metasurface by a localized source located
above it. The choice to explore first the excitation dynamics
of a metasurface rather than a bulky metamaterial stems from

*hadady@eng.tau.ac.il

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

the substantially greater practicality of the former, as demon-
strated, for example in [29–44]. Due to the time variation of
the metasurface, a conventional Green’s function construction
as described for example in [45] for time-harmonic prob-
lems is not directly applicable. Instead, here, we perform our
analysis for the spatiotemporally modulated wire metasur-
face problem using a quasifrequency-domain (QFD) approach
based on the well-known harmonic balance analysis. Using
this approach, in the Green’s function spectral construction,
we take into account the interharmonic interactions that com-
prise the temporal dynamics of the metasurface. For the sake
of concreteness, we assume that the metasurface consists of
an infinite wire array, where each one of the wires is loaded
periodically with an inductance and time-varying capacitance
that give rise to the spatiotemporal modulation. In order to
analyze the metasurface excitation dynamics we take a bottom
up approach. We first formulate the excitation of a single
time-modulated wire, and later exploit it together with the
discrete-dipole approximation [46–51] and the proper Green’s
function to describe analytically the plane wave scattering
from an infinite space-time modulated metasurface. This re-
sult is consequently used to construct the Green’s function of
the problem as a spectral integral. Later, we study the singular
and critical points in the complex spectral plane and use them
to identify different waves and phenomena in the system.

The paper is organized as follows. For completeness in
Sec. II, we provide a brief review on stationary capacitively
loaded wire surface. Then, in Sec. III we introduce spa-
tiotemporal modulation to the capacitive loads and provide
a thorough mathematical formulation to solve the scattered
field by an impinging plane wave from the spatiotemporal
metasurface. We augment this analysis in Sec. IV where we
develop a synthesis method, for designing the surface for a
predetermined ratio between the frequency harmonic to the
fundamental frequency, and the angle bias from the spec-
ular reflection due to the synthetic motion. These required
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FIG. 1. Stationary loaded wire grid.

properties determine the desired metasurface parameters.
Based on the derivations in previous sections, in Sec. V
we develop the Green’s function of a line source above the
metasurface as a spectral integral, and explore the physical
interpretation of the singular and critical points in the complex
spectral plane through an asymptotic analysis.

II. STATIONARY LOADED WIRE-GRID
IMPEDANCE SHEET

In the following sections, we turn to analyze wave phe-
nomena in spatiotemporally modulated loaded wire surfaces.
Unavoidably, we will frequently refer to the derivation and the
main results of the corresponding, stationary case. Therefore,
to make the paper self-contained, in this section, we briefly
overview stationary, capacitively loaded wire surfaces. We
mainly follow the analysis in [51] for general wire loading
and stress the more relevant aspects for the spatiotemporal
problem to follow.

Assume that a ẑ polarized electromagnetic wave is imping-
ing a loaded wire surface as shown in Fig. 1. We assume
that the wires are surrounded by a vacuum with permittivity
and permeability denoted by ε0 and μ0, respectively. The
grid points are given by �Rl = lax̂, where a is the unit-cell
dimension, and l denotes its index. The induced current on
each of the wires is given by �I = α �E loc where �E loc is the
local electric field, namely, the electric field at the wire loca-
tion but in the absence of the wire itself, and α is the wire
susceptibility. A ẑ polarized incident plane wave arrives from
the positive y axis,

�E inc = ẑE ie− j�ki ·�r, (1)

where the impinging wave wavevector �ki = −k cos θ iŷ +
k sin θ ix̂. If the wires are periodically loaded by lumped
impedance ZL, with periodicity � � λ, the inverse suscep-
tibility satisfies [51]

α−1(ω) = α−1
0 (ω) + ZL

�
(2)

where α−1
0 (ω) = ηk

4 H (2)
0 (kr0). For example, for serial loading

of lumped capacitors ZL/� = 1/( jωC0). Here η = 120π
,
and k = ω/c are the free space impedance and wavenum-
ber, respectively, ω is the radial frequency, c is the speed of
light in vacuum, r0 is the wire radius, and H (2)

0 denotes the
zeroth-order Hankel function of the second type. It should
be emphasized that there are additional, more accurate, ways

to describe the periodic wire loading [52,53]. However, since
we aim mainly at the fundamental physical effects, we limit
this paper to the relatively simple and intuitive approximation
in Eq. (2), which has been demonstrated to be effective and
sufficiently accurate through full-wave simulations and exper-
iments in various works such as [54]. In light of the lattice
periodicity, the Floquet-Bloch wave solution is expected,

Il = Ae− jki
x la (3)

where ki
x is the x̂ component of the incident plane wave. Then,

the induced current is found by solving the equation for the
boundary conditions

α−1
0 Il = E inc(�rl ) +

∑
l ′ �=l

G(�rl , �rl ′ )Il ′ (4)

where G(�rl , �rl ′ ) = −ηk
4 H (2)

0 (k|�rl − �rl ′ |). We can now calculate
the sum in Eq. (4)

∑
l ′ �=l

G(|�rl − �rl ′ |)Il ′ = Ae− jki
xal

(
−ηk

2

)
S (5)

with

S =
∞∑

m=1

H (2)
0 (kam) cos

(
ki

xam
)
. (6)

Since our structure is periodic and the impinging wave is a
plane wave, the currents on the different wires are identical in
their amplitude and vary only in a linear phase factor as given
in Eq. (3). Therefore, with no loss of generality, we may write
the expression for the current on the wire l = 0.

I0 = Ei(
ηk
4 H0

(2)(kr0) + 1
jωC0�

)
+ ηk

2 S
. (7)

Up to this point, the derivation is exact. Now, we will focus on
the dense grid approximation, which will be of interest in the
following sections where we explore Green’s function above
a space-time varying dense grid. In the dense grid approxima-
tion, high-order Floquet modes are evanescent, which implies
the mathematical condition a � λ

2 for all the relevant harmon-
ics that non-negligibly excited (for weak modulation these are
typically ±1). Under the described conditions, we may define
the cell-averaged current Js = I0

a ẑ, and approximate by (see
Appendix A)

�J (x) ≈
Ei

a e− jki
xx ẑ

jηk
2π

(
ln a

2πr

)+ 1
jωC0�

+ ηk

2a
√

k2−(ki
x )2

. (8)

The relation between the average current and the tan-
gential component of the scattered magnetic field is
ŷ × �H scat

t (x, y = 0+) = − J
2 x̂. For the case of TE wave,

the impedance of the scattered wave is given by Z =
Zscat

T E
ŷ×�kinc

x ŷ×�kinc
x

(kinc
x )2 with Zscat

T E = η√
1− (ki

x )
2

k2

. The averaged scattered

electric field satisfies

�E scat
t (x, y = 0+) = − ẑ E i

2a e− jkinc
x xZscat

T E

jηk
2π

(
ln a

2πr

)+ 1
jωC�

+ Zscat
T E
2a

. (9)
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With the total field and the surface current, we can write the
effective impedance of the surface

Zg = Etot

Js
≈ j

(
ηka

2π
ln

a

2πr0
− a

ωc�

)
(10)

where �Etot
t = �E inc + �E scat.

III. WIRE SURFACE WITH SPATIOTEMPORALLY
MODULATED CAPACITIVE LOADING

A. General formulation and harmonic balance

Our goal in this paper is to explore the 2D Green’s function
problem above a spatiotemporally modulated wire layer, as
illustrated in Fig. 2. In this section we borrow the analytical
modeling previously developed in [10] for a time-modulated
wire, as well as for the interwire interaction, as our building
blocks. Using these building blocks, we first begin with the
scattering problem due to a single monochromatic plane wave
incidence. This will later be used to construct the spectral
solution for a localized source. Our analysis is based on the
concept of harmonic balance, which can be regarded as a
quasifrequency domain (QFD) technique. The stationary ca-
pacitive loading of the previous section is now modulated in
time,

C(t ) = C0 + δC(cos 
t − ϕ) , m = δC

C0
� 1. (11)

This time-variant capacitance leads to spatiotemporally mod-
ulation, with 
 representing the temporal modulation. The
spatial modulation can be achieved when demanding linear
phase accumulation along the metasurface, i.e., ϕl = l�ϕ.
Without loss of generality, we choose �ϕ > 0. In light of the
harmonic time modulation the local field has the following
frequency dependence:

E loc(ω) =
∞∑

n=−∞
E loc

n δ(ω − ωn) (12)

with ωn = ω0 + n
, and δ(·) denotes Dirac’s delta. Then, for
the current we have

I (ω) =
∞∑

n=−∞
Inδ(ω − ωn). (13)

Here, E loc
n and In denote the nth harmonic complex amplitude

of the local field and of the induced current on the wires,
respectively. By balancing the coefficients of equal harmonics

FIG. 2. Spatiotemporal Loaded wire grid.

we find that for a single wire,

E loc
n =

[
α−1

0 (ωn) + 1
jωnC̃

]
In − m

2

[
e− jϕ

jωn−1C̃
In−1 + e jϕ

jωn+1C̃
In+1

]
,

(14)

where C̃ = C0�. We can now generalize the method of the
previous section of the unperturbed stationary loads. The in-
cident wave is assumed with a single frequency ω0. Since the
intermodulation will give rise to scattered fields at multiple
frequencies ωn, we use the representation in Eqs. (12) and
(13). Due to Floquet-Bloch theorem, the current will be in the
form

Il (ω) =
∞∑

n=−∞
Ane− jl(ki

xa+n�ϕ)δ(ω − ωn). (15)

Like in the LTI, stationary case, we can write Eq. (15) also for
the reference wire at x = 0. The effective incident field for the
wire at x = 0 will be E loc, and is composed of the impinging
plane wave at ω0, and the field radiated by the rest of the wires.
The latter contains multiple frequencies,

E loc = Eiδ(ω − ω0)

+
∑
l ′ �=0

∞∑
n=−∞

Gn(|l ′a|)Ane− j(ki
xa+n�ϕ)δ(ω − ωn), (16)

where Gn(|�r − �r′|) = −ηkn

4 H (2)
0 (kn|�r − �r′|) denoting the two

dimensional Green’s function at the nth harmonic for a source
located at �r′. The dense grid condition is now requiring
(kna � 1), i.e., the grid is dense compared to the wavelengths
of the high harmonics (which are yet assumed significant
enough not to be neglected). Now, we need to calculate the
expressions {An}, by comparing the coefficients of the delta
functions. As opposed to the stationary-loaded-wire-medium
case, where the effective current may be analytically ex-
pressed using Eq. (8), for the spatiotemporally modulated
case, the interaction between the different temporal-frequency
harmonics should be included,

−m

2 jωn−1C̃
An−1 +

[
γ0ωn + 1

jωnC̃
+ 1

2
ηknSn

]
An

+ −m

2 jωn+1C̃
An+1 = Eiδ0n. (17)

Here, δ0n is the delta of Kronecker, and Sn =
∞∑

m=1
H (2)

0 (knam) cos(ki
xa + n�ϕ)m. For a dense grid Sn

can be approximated with

Sn ≈ 1

a
√

k2
n − (ki

x + n�ϕ

a

)2 − 1

2
+ j

π

[
ln

kna

4π
+ γ

]
. (18)

The approximate recursive relation can now be represented
using a tridiagonal matrix of infinite rank,

U A = Ei, (19)

043256-3



MICHAEL KREICZER AND YAKIR HADAD PHYSICAL REVIEW RESEARCH 5, 043256 (2023)

where U , A, and Ei are correspondingly given below⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . . 0 0

. . . b−2 c−2 0 0
0 a−1 b−1 c−1 0 0
0 0 a0 b0 c0 0 0

0 0 a1 b1 c1 0

0 0 a2 b2
. . .

0 0 . . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

A−2

A−1

A0

A1

A2
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

0
0
Ei

0
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

The matrix entries an, bn, cn are

an = − m

2 jωn−1C̃
, (21a)

bn = ηkn

2a
√

k2
n − k2

n,x

+ j

(
ωnL̃w − 1

ωnC̃

)
, (21b)

cn = − m

2 jωn+1C̃
, (21c)

where we defined the effective x̂ component of the wave number for the nth harmonic with kn,x = ki
x + n�ϕ

a , and the wire intrinsic
inductance with L̃w = η

2πc ln a
2πr0

. We assume that for large enough N , the currents of harmonic N + 1 A−(N+1), AN+1, and above,
are negligible. In this case, the infinite matrix can be approximated by a finite (2N + 1) × (2N + 1) square matrix

U {N} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b−N c−N 0

a−N+1
. . .

. . . 0

0 . . . b−2 c−2 0
0 a−1 b−1 c−1 0

0 a0 b0 c0 0
0 a1 b1 c1 0

0 a2 b2
. . . 0

0 . . .
. . . cN−1

0 aN bN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

B. Excitation and energy transfer between harmonics

In the preceding section, we have presented the formulation
of the excitation problem by a plane wave interacting with a
space-time modulated wire grating. In the subsequent discus-
sion, we will delve into the examination of the reflection and
transmission dynamics, followed by the development of the
Green’s function by a 2D current line source. In this section,
we shall analyze the power exchange between the spatiotem-
poral harmonics as dictated by the modulation parameters
and the geometry. To initiate this analysis, we introduce a
series inductance L0, which serves the purpose of obviating
the necessity of employing wires with excessively small and
impractical radius r0, as depicted in Fig. 3. We define the
effective resistance and the effective inductance with

R̃n(ω) = ηkn

2a
√

k2
n − (kn,x )2

, (23a)

L̃ = L

�
+ L̃w. (23b)

Clearly, this definition is only valid when R̃n is a positive real
value, i.e., kn > kn,x. When kn < kn,x it means that there are no
propagating plane waves that are reflected by the wire surface,

instead the spectrum is evanescent. This condition limits us to
slow synthetic motion effect �ϕ < kn−k0

n a. In that case, bn can
be now written with

bn = R̃n + jX̃ (ω) (24)
where X̃ (ω) = ωL̃ − 1

ωC̃
. In order to be able to approximate

the wire surface behavior by that of an RLC circuit, we need
to approximate the constant resistance R̃n( δω

ω0 ) ≈ const. The
quality factor Qn of each harmonic bn can be defined as

Q̃n = 1
R̃n

√
L̃
C̃

. In order to achieve a good separation between
the harmonics and an effective excitation, we focus on the
case of a large quality factor Q̃n 	 1. The analysis will be
near a desired frequency ω0, such that ω0 = ω0 + δω. Let us
define with nr the harmonic n, which has a resonance behav-
ior, i.e., ω0(1 + nr



ω0 ) = 1√

L̃C̃
. Suppose we aim to illuminate

the surface with an impinging wave at ω0, and get a strong
response at the center frequency with harmonic number nr ,
then the inductance needs to be set,

L̃ = 1

C̃
(
1 + nr



ω0

)2 . (25)

For a given C̃, we can now calculate the quality factor for each
harmonic. Let us define the “dominance parameter” Dn with
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Dn = an ( δω

ω0 =0)

bn ( δω

ω0 =0)
. In the next section, we use this parameter to

design a wire grid with desired specifications. We get

Dn =
− m

2 jω0
(

1+(n−1) 


ω0

)
C̃

R̃n + j

[
ω0
(
1 + n 


ω0

)
L̃ − 1

ω0
(

1+n 


ω0

)
C̃

] . (26)

For the resonant harmonic, we can use Qn = 1
ω0(1+n 


ω0 )R̃nC̃
and

get the approximate expression

Dnr ≈ −mQ̃nr

2 j

(
1 + nr



ω0

1 + (nr − 1) 

ω0

)
. (27)

We can see that in order to achieve large Dnr , we must de-
mand Qnr 	 1

m . In that case, the bandwidth satisfies BWnr ≈
ω0(1 + nr



ω0 )/Qnr . Let us now approximate Dn for the case of

n �= nr . As mentioned before, we assume high quality factor
for the resonance, in order to achieve good separation. Also
we use O( R̃n

R̃nr
) = 1, since in our case we need to demand

kn > kn,x in order to reflect a propagating plane wave,

Dn �=nr ≈
m

2
(

1+(n−1) 


ω0

)
(

1+n 


ω0

)
(

1+nr



ω0

)2 − 1(
1+n 


ω0

)
. (28)

We note that in our approximation Dnr is purely imaginary,
and Dn �=nr is purely real. Clearly, for a good separation be-
tween the harmonics we need to demand |Dn �=nr | � 1, which
leads to | aic j

bib j
| � 1 for i, j �= nr and | aic j

bib j
| 	 1 for i or j = nr .

With Cramer’s rule [55] we can approximate the currents

An =

∣∣∣U {N}
n

∣∣∣∣∣∣U {N}
∣∣∣ (29)

FIG. 3. Wire with added constant inductance L0.

where U {N}
n

is the matrix, in which the vector Ei replaces
the column n (see Appendix B). For a tridiagonal matrix, the
determinant satisfies the recurrence relation [55]

fn = bn fn−1 − ancn−1 fn−2,

f−N = |b−N |,
f−(N+1) = 1,

f−(N+2) = 0. (30)

For high quality factor, the denominator of Eq. (29) can be
approximated as

|U {N}| ≈
(

1 − anr cnr−1

bnr bnr−1
− anr+1cnr

bnr+1bnr

) N∏
i=−N

bi (31)

while for to the nominator of Eq. (29), we approximate for
n = nr > 0,

∣∣∣U {N}
nr

∣∣∣ ≈ (−1)nr E i
−1∏

i=−N

bi

nr∏
i=1

ai

N∏
i=nr+1

bi. (32)

(For detailed derivation, see Appendix B). It is of interest
to calculate the current for the fundamental harmonic, i.e.,
for n = 0. The expression is different for the case of nr = 1
and for nr > 1 (we focus on the case of resonance at positive
harmonic number),

∣∣∣U {N}
0

∣∣∣ ≈
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ei

b0

(
1 − anr cnr −1

bnr bnr −1
− anr +1cnr

bnr +1bnr

) N∏
n=−N

bn nr � 2

Ei

b0

(
1 − anr +1cnr

bnr +1bnr

) N∏
n=−N

bn nr = 1
.

(33)

And we get the current for the resonance harmonic and the
fundamental frequency,

Anr ≈
(−1)nr E i

nr∏
n=1

an
bn

b0

(
1 − anr cnr −1

bnr bnr −1
− anr +1cnr

bnr +1bnr

) , (34)

A0 ≈

⎧⎪⎨
⎪⎩

Ei

b0

(
1− a2c1

b2b1

)
1− a1c0

b1b0
− a2c1

b2b1

nr = 1

Ei

b0
nr � 2

. (35)

In order to qualitatively describe the power exchange between
different temporal harmonics we define the interharmonic
transfer ratio by

Tnr =
∣∣∣∣Anr

A0

∣∣∣∣
2

. (36)

The transfer ratio allows us to design and calculate the grid
parameters, which is to be detailed in the next section. It is
important to note that this value represents the ratio between
the energy of a plane wave scattered at the resonant harmonic
and the energy scattered at the fundamental frequency. These
energies both are smaller than the incident wave energy, since
in order to achieve the high quality factor, we needed to design
a surface that has an unmatched impedance, which leads to the
transparent-like behavior of the surface. The larger |nr |, the
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stronger this phenomenon gets. Specifically, we can express
Tnr for any nr by

Tnr =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∣∣∣∣ a1
b1

1− a2c1
b2b1

∣∣∣∣
2

nr = 1∣∣∣∣∣∣
nr∏

n=1

an
bn

1− anr cnr −1
bnr bnr −1

− anr +1cnr
bnr +1bnr

∣∣∣∣∣∣
2

nr � 2
. (37)

C. The scattered plane wave

In this section, we shall use the induced current on the
dense wire grid in order to express analytically the reflected
and transmitted fields. Following the usual approach [see
Eq. (8) and discussion there], here we begin by averaging
the current on the dense wire grid. We use the expression in
Eq. (13),

�Js = ẑ
∞∑

n=−∞
Js,nδ(ω − ωn), (38)

where

Js,n = 1

a
Ane− jkn,xx. (39)

With the synthetic motion effect, we can also define the wave
vector of the nth harmonic of the scattered field,

�kn = x̂

(
ki + n�ϕ

a

)
+ ŷ

√
k2

n −
(

ki
x + n�ϕ

a

)2

. (40)

Then, the corresponding reflection angle reads sin θ r
n =

ki
n,x/kn. The scattered tangential magnetic field for the nth

harmonic satisfies ŷ × �H scat
n,t (y = 0+) = �Js,n/2. The scattered

electric field is calculated similarly to that of a stationary
surface. However, we note that the synthetic motion due to
the spatiotemporal modulation of the wires implies effectively
a different incident wave for each excited harmonic, with a
different angle of arrival. The effective incident wave, for the
low and high harmonics, will be derived with our definition of
�kn. We can now calculate the scattered field from the grid,

�E scat
n

(
y = 0+) = −Zscat

T E ,n

ẑAne− jkn,xx

2a
(41)

where Zscat
T E ,n = η/

√
1 − k2

n,x/k2
n . In order to obtain the total

field, we need to add the incident electric field to the scattered
electric field. We can also substitute the expressions for the
TE impedance. This leads to the total electric field for the nth
harmonic,

Etot
n

(
y = 0+) =

⎛
⎜⎝δ0nE i − ηknAn

2a
√

k2
n − k2

n,x

⎞
⎟⎠e− jkn,xx. (42)

The surface impedance of the spatiotemporally modulated
wire grid is the ratio between the total field and the current.
The surface impedance takes the form of a diagonal matrix
whose elements are given by

Zn = a

Ãn

⎛
⎜⎝δ0n − ηknÃn

2a
√

k2
n − k2

n,x

⎞
⎟⎠, (43)

where Ãn can be thought of as the impedance that relates the
nth harmonic of the current of the reference wire, and the
impinging electric field. Namely, Ãn = An/Ei.

IV. SYNTHESIS OF SPACE-TIME MODULATED
METASURFACE

Let us now use the dominance definition, to calculate the
current at the center frequency of the resonance harmonic
Anr ( δω

ω0 = 0). We start with a design goal for a certain energy
transfer ratio from the fundamental harmonic Tnr . We use the
approximations for the dominance Dn, for n = nr (27) and
n �= nr (28). Since the approximations for Tnr in (37) is differ-
ent for nr = 1 and nr > 1, the analysis is split accordingly. We

start with nr = 1. We use cn
an

= 1+(n−1) 


ω0

1+(n+1) 


ω0
, and the expressions

for Dn. The fact that D1 is purely imaginary and D2 is purely
real (for large quality factors) can be used,

Tnr=1

(
δω

ω0
= 0

)
= |D1|2

1 + |D2|2|D1|2 1(
1+2 


ω0

)2

. (44)

D1 can now be calculated, and after that the needed quality
factor Qnr . We define T1 = Tnr=1 ( δω

ω0 ). The expression for D1

can be written as

|D1| =
√√√√ T1

1 − |D2|2 1(
1+2 


ω0

)2 T1
. (45)

And with Eq. (27), we calculate Q1 as

Q̃1 = 2|D1|
m
(
1 + 


ω0

) . (46)

Let us now repeat the analysis with nr > 1. Here we can write

Tnr

(
δω

ω0
= 0

)

=
|Dnr |2

nr−1∏
n=1

|Dn|2

1 + |Dnr |2
∣∣∣∣Dnr−1

1+(nr−2) 


ω0

1+nr



ω0
+ Dnr+1

1+(nr−1) 


ω0

1+(nr+1) 


ω0

∣∣∣∣
2 . (47)

When again we used the fact that Dnr is purely imaginary, and
Dn �=nr is approximately purely real. We get Dnr ,

|Dnr |

=

⎡
⎢⎢⎢⎢⎣

Tnr

nr−1∏
n=1

|Dn|2 −
∣∣∣∣Dnr−1

1+(nr−2) 


ω0

1+nr



ω0
+Dnr+1

1+(nr−1) 


ω0

1+(nr+1) 


ω0

∣∣∣∣
2

Tnr

⎤
⎥⎥⎥⎥⎦

1
2

.

(48)

And with Eq. (27), we calculate Qnr as

Q̃nr = 2|Dnr |
m

1 + (nr − 1) 

ω0

1 + nr


ω0

. (49)

We wish to conclude this section with a numerical example.
Let us explore two cases that only differ in their energy
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TABLE I. The two different cases, which differ from each other
only with the transfer ratio.

Tnr [dB] θ i 


ω0 �ϕ m

Case I 12 π

10 0.3 π

20 0.25
Case II 6 π

10 0.3 π

20 0.25

transfer ratio Tnr . The relevant parameters for these two
cases are provided in Table I. In Case I, we take a rela-
tively high transfer ratio Tnr = 12 dB, while in Case II, we
have a relatively small transfer ratio Tnr = 6 dB. The param-
eters common to both cases are a = 0.1λ0, m = 0.25, and
θ i = π/10. The quality factors for the high transfer ratio
are Q1 = 36 (nr = 1) and Q2 = 60 (nr = 2), whereas for the
low transfer ratio, we have Q1 = 13 (nr = 1) and Q2 = 28
(nr = 2). Accurate solutions are obtained by directly invert-
ing the matrix U , while approximate solutions are derived
using the method presented earlier. The excited currents in
these cases, normalized by the induced current on the cor-
responding stationary metasurface are shown in Fig. 4. The
continuous lines represent the approximate solutions, which
show good agreement with the discrete circles representing
the more accurate solutions obtained by matrix inversion. For
Case I, at nr = 1 in Fig. 4(a), we obtain C̃ = 3.1 × 10−16Fm
and L̃ = 4.3 × 10−5H/m. For nr = 2, in Fig. 4(b), we have
C̃ = 2.3 × 10−16Fm and L̃ = 4.3 × 10−5H/m. For Case II,
at nr = 1 in Fig. 4(c), we find C̃ = 3.1 × 10−15Fm and
L̃ = 1.1 × 10−5H/m. For nr = 2, in Fig. 4(d), we obtain
C̃ = 4.9 × 10−16Fm and L̃ = 2 × 10−5H/m. Figure 5 illus-
trates the transfer ratio calculated numerically for both cases,
demonstrating our ability to select analytically the wire load-
ing required to achieve certain design goals.

FIG. 4. Currents for the fundamental harmonic (blue) and the
resonance harmonic (red), normalized with the current of the station-
ary media. Continuous line represents approximate calculation and
circles represents the exact solution (a) T = 12 dB, nr = 1; (b) T =
12 dB, nr = 2; (c) T = 6 dB, nr = 1; (d) T = 6 dB, nr = 2.

FIG. 5. Ratio between the currents of the resonance harmonic
to the fundamental frequency. The continuous line represents ap-
proximate calculation and the circles represent the exact solution.
(a) T = 12 dB, nr = 1; (b) T = 12 dB, nr = 2; (c) T = 6 dB, nr =
1; (d) T = 6 dB, nr = 2.

V. EXCITATION BY A LOCALIZED SOURCE—THE 2D
GREEN’S FUNCTION

In this section, our objective is to calculate the 2D Green’s
function above a spatiotemporal modulated wire grid and de-
rive a spectral integral representation for it. Figure 6 illustrates
the problem setup. To accomplish this, we first decompose the
line source field into a spectrum of plane waves. Subsequently,
each of these plane waves interacts with the spatiotemporal
modulated wire grid using the theory derived in previous
sections. To simplify our analysis and obtain relatively concise
expressions, we focus on the case of high quality factor for
the resonant harmonic. Lastly, we asymptotically evaluate the
resulting spectral integral and extract insights regarding the
different wave creatures propagating in this particular spa-
tiotemporally modulated platform.

FIG. 6. The polar coordinate system.
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A. Spectral representation and the source field

We assume that a line source is located above the wire
surface at y = y0, x = 0 (in the following numerical examples
we set y0 = λ0/3). The current density of the line source
can be expressed formally by �Js = ẑIsδ(y − y0)δ(x), where
δ denotes Dirac’s delta function. We utilize the theory of
electromagnetic wave propagation in plane stratified media to
analyze this excitation problem. Since the problem exhibits
shift invariance in the z coordinate, Maxwell’s equations are
simplified,

x̂
∂Ez

∂y
− ŷ

∂Ez

∂x
= − jωμ(x̂Hx + ŷHy), (50a)

ẑ

(
∂Hy

∂x
− ∂Hx

∂y

)
= jωεẑEz + ẑJz. (50b)

We expand the field using the Fourier kernel,

�(x, kx ) = 1√
2π

e− jkxx. (51)

The spectral field via the transformation pair,

Ẽz(kx, y) =
∞∫

−∞
E (x, y)�∗(x, kx )dx, (52a)

Ez(x, y) =
∞∫

−∞
Ẽ (kx, y)�(x, kx )dkx. (52b)

Maxwell’s equations (50) then reduce to

∂Ẽz

∂y
= − jωμH̃x, (53a)

kxẼz = −ωμH̃y, (53b)

−∂H̃x

∂y
− jkxH̃y = jωεẼz + J̃z. (53c)

We can write a set of equations for the tangential components,

∂Ẽz

∂y
= − jωμH̃x, (54a)

−∂H̃x

∂y
− jωε

(
1 − k2

x

k2

)
Ẽz = J̃z, (54b)

which immediately leads to the second-order differential
equation for the electric field,

∂2Ẽz

∂y2
+ k2

y Ẽz = jωμIs√
2π

δ(y − y0) (55)

with k2
y = k2 − k2

x . The solution to the inhomogeneous equa-
tion (55) can be expressed as the solution to the corresponding
homogenous (source free) equation in two separate domains,
y > y0 and y < y0 that are subject to the following two
boundary conditions at y = y0, ∂Ẽz

∂y (y0
+) − ∂Ẽz

∂y (y0
−) = jωμIs√

2π

and Ẽz(y0
+) − Ẽz(y0

−) = 0. This leads quickly to the exact
solution of the inhomogeneous equation,

Ẽz = ωμIse− jky|y−y0|

2
√

2πky

. (56)

This solution is basically the spectral plane wave decomposi-
tion of the electric field excited in free space by a 2D, current
line, source.

B. The scattered field—Spectral representation

Equation (56) provides the spectral plane wave amplitudes
required to construct the line source field. Using the linearity
of the problem, we can cast the scattered field by the spa-
tiotemporal modulated grid simply by applying the scattering
theory developed in the previous sections for each of the
impinging plane waves that construct the source field. Then,
we will integrate over the spectral parameter in order to go
back to the physical space domain.

By Eq. (56), the impinging wave amplitude on y = 0, for a
plane wave with spectral parameter kx, reads

Ẽ i
z = − ωμIs

2ky

√
2π

e− jkyy0 . (57)

Once the impinging plane wave is known, including its direc-
tion of arrival, that is encoded by the spectral parameter kx, we
can directly apply the result in Eq. (41) in order to obtain the
scattered field amplitude, for the spectral parameter kx, for any
frequency harmonic n, and taking into account the synthetic
motion effect by the spatiotemporal modulation of the grid.
This reads

Ẽ scat
n (�r) = Isη

2k0knÃne− jk0,yy0 e− j(kn,xx+kn,yy)

a
√

32πkn,yk0,y

. (58)

The sum over the spectral components constructs the scattered
field by the 2D point source,

E scat
n (�r) = Isη

2k0kn

8πa

∞∫
−∞

Ãne− jk0,yy0 e− j(kn,xx+k0,yy)dkx

kn,yk0,y
(59)

and the sum over the index n, i.e., the time harmonics multi-
plied by their proper time dependency, yields the total field in
space and time. Here,

kn,x = kx + n
�ϕ

a
, (60a)

kn,y =
√

k2
n − k2

n,x. (60b)

Regarding the last steps in the derivation, we note that al-
though the frequency response seems to have some analogy to
nonlinear Raman medium due to the multiple time harmonics
that are excited [56,57], here the system is linear time variant
(LTV) and therefore the principle of superposition in time
strictly applies. One possible way to consider that is by assum-
ing a strong pump signal that modulates a nonlinear medium
in time, and much weaker signals that are manipulated by this
effective time-varying medium. With respect to these weak
signals the systems is linear time variant.

We now compare three different calculations, to examine
our analysis. In the following we focus on scenarios with nr =
1 since it leads to more efficient power delivery. We evaluate
the excited field by the local 2D wire source in three different
ways:

(1) By a quasifrequency domain (QFD) full-wave simu-
lation of a finite spatiotemporal wire grid with 401 wires. For
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FIG. 7. Case I. The real part of the scattered electric field for
the resonance harmonic, normalized with the absolute value of the
scattered stationary field for n = 0 at the origin. (a) QFD simulation
for the resonance harmonic. (b) QFD simulation for the fundamental
frequency. (c) Integration over the exact currents for the resonance
harmonic. (d) Integration over the exact currents for the fundamental
frequency. (e) Integration over the approximated currents for the
resonance harmonic. (f) Integration over the approximated currents
for the fundamental frequency.

this simulation, an harmonic balance approach combined with
a simple version of the method of moments was utilized. See
details in [10].

(2) By a direct integration of Eq. (59), with the exact
currents, which previously calculated via the inverse of the
matrix U {N} for a large N (we used N = 3). In order to
avoid singularities in our integration near kx = k0, we deform
our integration contour, with kx → kx + j 2ε

π
arctan kx, where

ε � π
2 k0 (in our case, we have chosen ε = 0.001π

2 k0).
(3) By a direct integration as in the previous paragraph,

but with the approximated currents from Eqs. (34)–(35).
The results obtained by the aforementioned three calcu-

lation approaches are depicted in Fig. 7 for Case I, and in
Fig. 8 for Case II, with the corresponding parameters given
in Table I. In both cases, a good agreement between the
calculations is seen. This establishes the accuracy of the spec-
tral representation and in particular, the approximations for
the induced current on the wires as discussed in detail in
the preceding sections above. At this point, we are ready to
analyze asymptotically the spectral integral. This is done in
the following section.

C. The physical interpretation of the singular and critical points
in the complex spectral plane

After confirming numerically the sufficient accuracy of the
direct spectral integration over the approximate current in
Eqs. (34)–(35), we can now turn to analyze the contribution
of each critical point in the complex spectral plane to the
different wave creatures that are excited and propagated in

FIG. 8. Case II. The real part of the scattered electric field for
the resonance harmonic, normalized with the absolute value of the
scattered stationary field for n = 0 at the origin. (a) QFD simulation
for the resonance harmonic. (b) QFD simulation for the fundamental
frequency. (c) Integration over the exact currents for the resonance
harmonic. (d) Integration over the exact currents for the fundamental
frequency. (e) Integration over the approximated currents for the
resonance harmonic. (f) Integration over the approximated currents
for the fundamental frequency.

our system. These critical points are branch points, poles, and
stationary points. Interestingly, we reveal peculiar differences
between the two cases shown in Table I, of high and low
transfer ratio.

First, note that kn,y in Eq. (60) involves two, generally
asymmetric, branch points, kx = ±kn − n�ϕ/a, for each
frequency harmonic n. In particular, for n = 0, k0,y the branch
points become symmetric and located at kx = ±k0. The
branch points for the n = 0 harmonic can be eliminated
by introducing a transformation to the complex w angle
plane [45]. Specifically, we define kx = k0 sin w. Then,
k0,y = ky = k0 cos w, and contains no branch point in the
complex w plane. Under this transformation, the integration
path termed the Sommerfeld integration path (SIP), takes the
form shown in Fig. 9.

Let us now define the following polar coordinates transfor-
mation: x = R sin θ, y = R cos θ − y0, where θ is the angle of
specular reflection by a stationary uniform impedance surface
(i.e., if the angle of incidence equals to the angle of reflection)
as it can be seen in Fig. 6. We can now use Eq. (34) and write
the integral in Eq. (59) by

E scat
1 (�r) = − Isηk0

4π

∫
SIP

e− j[k0,y (w)y0+k1,x (w)x+k1,y (w)y]dw
b0
a1

− c0
b1

− a2c1b0
a1b1b2

(61)

where a1, a2, b0, b1, b2, and c0, c1 are given in Eq. (21), and
are all functions of w. This integral has the canonical form of

I =
∫

SIP

f (w)e− jq(w)dw, (62)
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FIG. 9. The complex angle plane w. The Sommerfeld integration
path (SIP) is shown by the blue line. The branch points, in green
circles [of k1,y(w)] and in pink circles [of k2,y(w)], are shown to
be asymmetrically located due to the synthetic motion. The branch
cuts (not drawn) originate from the branch points and extending to
infinity. Two poles are also shown by black crosses, located slightly
off the real axis, correspond to strong excitations, leaky but not
guided modes. These solutions contribute asymptotically only for
grazing angle observer, and only under certain modulation condi-
tions. Interestingly, as shown below, in the asymptotic evaluation
of the spectral integral, due to the synthetic motion it occurs that
a pole may contribute asymptotically for a certain observer but not
contribute for another observer symmetrically located around the
source.

where w is the complex integration variable, and f (w) and
q(w) represent the amplitude and phase functions that are
assumed to be slowly varying. In Eq. (61), q represents the
phase term in the squared brackets. For remote observer, q
asymptotically grows with the distance. In order to explore
the analytic properties of the integral we first have to identify
the singular points of the integrated, i.e., branch points and
poles. We note that although we focus on nr = 1, the integrand
also depends on b2(w) [which is associated with the second,
n = 2, harmonic—see Eq. (21)], and therefore, in light of the
definition of kn,y in Eq. (60), we have two sets of branch points
to consider. We also note that, unlike the stationary case, here
the branch points affect also q(w), since k1,y(w) has a branch
point. This phenomenon, along with the resonance of b1, leads
to a much stronger influence of the branch point in k1,y(w)
than the one in k2,y(w). This can be explained by the fact
that the high Q implies large imaginary part of k2,y since the
resonance is in the n = 1 harmonic rather than the n = 2 one.
Consequently, when the square root in k2,y nullifies, yet the
value of b2 remains practically unchanged. Note that the nu-
merical calculation below takes both branch cut contributions
into account, as opposed to the analytic asymptotic evaluation
that is also provided below. We also note that the branch
points do not depend on the quality factor, so they are the
same for both cases shown in Table I. The branch points

are: wb = arcsin
kn−n �ϕ

a
k0

, π − arcsin
kn−n �ϕ

a
k0

, − arcsin
kn+n �ϕ

a
k0

,

−π + arcsin
kn+n �ϕ

a
k0

. Using the parameters we assume above
for the cases in Table I, the branch points due to k1,y(w) are
π
2 ± 0.31 j, −π

2 ± j, and due to k2,y(w) are π
2 ± 0.44 j, −π

2 ±
1.37 j for π

2 ± 0.44 j, −π
2 ± 1.37 j. Next, we turn to find the

pole locations. This calculation is somewhat more compli-
cated but can be simplified using the approximation that the
poles are near the point wp0 that satisfies b0(wp0) = 0. Specif-
ically, we find that wp0 = ± arccos jη

2a(ω0L̃− 1
ω0C̃

)
, since c0

b1(w) �
1 near wp0 (because of the high quality factor). Therefore,
we can write wp = wp0 + δwp, substitute in the denominator
of Eq. (61) and demand equality to zero. This leads to the
following perturbational expression for the poles:

wp ≈ ± arccos jη

2a
(
ω0L̃− 1

ω0C̃

) + a1c0

b1(wp0 )
[
1− a2c1

b1 (wp0 )b2 (wp0 )

]
η sin wp0

2acos2wp0

.

(63)

For the parameters given in Table I, this approximate calcu-
lation gives wp = 1.59 + 0.13 j, −1.62 − 0.14 j, whereas a
brute force numerical search for the poles gives wp = 1.58 +
0.13 j, −1.62 − 0.12 j. Figure 9 depicts the singular points,
i.e., branch points, and poles, on the w plane.

Remark 1. As discussed below, we define the correspond-
ing cuts of the plotted branch points lie strictly on the wr =
±π/2, and therefore we consider the SIP trajectory to be lo-
cated slightly in the interior for the stripe defined by −π/2 �
wr � π/2.

We now aim to find the saddle point ws of the integrand
in Eq. (61). At the saddle point, the phase term derivative
with respect to the spectral variable nullifies, i.e., we demand
q′(w) = 0, where

q′ = −k0y0 sin w + k0xw sin θ − k1,x (w)k0y cos w

k1,y(w)
, (64)

where k1,x(w) and k1,y(w) are given in Eq. (60) with kx =
k0 sin w. Without loss of generality, we narrow ourselves to
the case of positive phase accumulation �ϕ > 0. We use
the intermediate value theorem to show that for every ob-
servation point (x, y) there is a real valued saddle point
in the visible range at the nominal frequency, i.e., −k0 <

k0,x < k0 (−π
2 < w < π

2 ). Specifically, we note that obviously
q′(w = π

2 ) = −y0, q′(w = −π
2 ) = y0. Next, since we nar-

rowed ourselves to the case of slow synthetic motion, i.e.,
�ϕ < (kn − k0)a, the square root in Eq. (64) (i.e., the k1,y

term) is real and positive. Therefore, there must exist a w

value in the visible range, which fulfils the saddle point con-
dition of q′ = 0. However, the physical picture alters for fast
synthetic motion, which is outside the scope of the current
paper. Returning to slow synthetic motion; for the case where
the saddle point value is far from nullifying the square root
in Eq. (64), we can approximate the saddle point location
using the assumption of small deviation δw from the spec-
ular angle θ . To that end we first assume a small correction
over the specular reflection, i.e., ws = θ + δws. Next we use
the following Taylor approximations sin(θ + δw) ≈ sin θ +
δw cos θ, cos(θ + δw) ≈ cos θ − δw sin θ . Clearly, for n =
0, δws = 0. We can express approximately the spectral wave
vectors components, with a second-order Taylor expansion, in
order to easily calculate the stationary point (see Appendix C).
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Thus, we get the small deviation from the specular angle for the resonance harmonic,

δws =
[
y0 sin θ − R sin θ cos θ + k1,x (θ ) cos θ

k1,y (θ ) (R cos θ − y0)
]

{
−y0 cos θ − Rsin2θ −

[
k0cos2θ−k1,x (θ ) sin θ

k1,y (θ ) + (k1,x (θ ))2k0cos2θ

(k1,y (θ ))3

]
(R cos θ − y0)

} . (65)

In the following numerical calculations for the Green’s func-
tion, despite having this approximation for the saddle point
location, we in fact solve numerically the equation q′(w) = 0.
Nevertheless, the approximation in Eq. (65) is of importance
since it highlights quantitatively important physical observa-
tions. First, in asymptotic terms, the saddle point provides the
angle of the ray that leaves the source, impinges the reflect-
ing layer, and approaches the observer. The introduction of
an effective synthetic motion yields asymmetric scattering,
which is evident by the asymmetry of δws with respect to θ

in Eq. (65). Second, by observation in Eq. (65), as well as in
Fig. 10, it is seen that the asymmetric scattering effect caused
by the saddle point contribution (“reflected ray”) is negligible
right on the boundary since the saddle point location is nearly
symmetric there. This effect becomes dominant at moderated
distances ∼1 − 2λ0 (see the bluish asymmetric finite angular
sectors in Fig. 10).

Once the saddle point is known, we seek next to find the
steepest descent path (SDP), along which the integrand is
not oscillatory, instead, it is monotonically increasing up to
a maximal value at the saddle point and then monotonically
decreasing to zero, passing between two valleys in the com-
plex w plane. This will be useful in the numerical calculation
of the deflected ray field that travels from the sources, hits
the spatiotemporally modulated surface, and reflected to the
observer. In order to find the SDP, we follow the standard
recipe that is described for example in [45]. On the SDP, by
definition, q(w) = q(ws) − js2, with s ∈ (−∞,∞) denoting
a real variable along the path. As s goes from −∞ to +∞, the
integrand in Eq. (59) exhibits a Gaussian like behavior, with a
fast decaying integrand away from the stationary point.

The synthetic motion by the spatiotemporal modulation
creates asymmetry in the complex w plane not only in the
saddle point location (as discussed above) but also in the
branch points and pole locations. To demonstrate that we shall
now explore six different observation point locations in space;
three of which [(a)–(c)] with a positive angle θ , and additional

FIG. 10. δws for a continuum of observation points (x, y).
(a) Calculation by Eq. (65) with parameters given in Table I
Case I. (b) As in (a) but for Case II. The difference between the
cases is visually negligible. However, in both cases the asymmetric
scattering contribution by the saddle point is evident.

three [(d)–(f)] that are mirror-symmetrically located about
the y axis with negative θ (see Fig. 6). These observation
locations in cartesian coordinates normalized with respect to
the wavelength λ0, i.e., (x, y)/λ0, are: (a),(d) (±3, 2), (b),(e)
(±3, 0.3), and lastly, (c),(f) (±6, 0.15). For each observation
point we calculate the total spectral integral, as well as the
three isolated integration components by which it is com-
posed, i.e., an integration along the SDP, integration around
the branch cuts, and lastly pole residues if required. The
analysis is done for the two cases of energy transfer ratio T1

[see Eq. (36)] between the fundamental and first harmonics,
with parameters given in Table I.

In Figs. 11 and 12 we bring the map of the integration path
as well as the singular points. We clearly see the asymmetry
in the complex plane and the SDP path between observers that

FIG. 11. Case 1 (high transfer ratio). The complex plane, in-
cluding the SDP path, branch points, in the complex plane for six
observation points listed by [(a)–(f)] in the text.
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FIG. 12. As in Fig. 11 but with parameters corresponding to
Case 2 (low transfer ratio).

are located symmetrically about the y axis (with positive and
negative θ ).

As opposed to the spectral representation in LTI layered
media that is on-plane homogenous (normal to the layers
axis), here, the phase term also contains branch point sin-
gularities. Nevertheless, the SDP should obviously remain
continuous. Otherwise, Cauchy principle that is used in order
to connect the SDP integration, the branch cut integrations,
and poles integrations with the original SIP integral, will not
be applicable. To address this issue, we uniquely define the
branch cut of k1,y such that the square root results a posi-
tive or negative real part in the upper Riemann sheet, in a
manner that the SDP will not cross the branch cut trajecto-
ries. This is demonstrated in Figs. 11 and 12 where the SDP
trajectories are shown with the singular points on the complex
w plane. Note that the map shown in Fig. 11(a) is exceptional
compare to the maps shown in Figs. 11(b)–11(f) in the branch
cut form that originates from different upper Riemman sheet
definition. For (a) we chose Re{k1,y} < 0 on the upper sheet,
while for Figs. 11(b)–11(f) we chose the opposite definition.
By this choice, the SDP trajectory does not cross branch cut
singularities and thus remains continuous. The same is true
for Fig. 12. This choice also determines whether or not the
branch cut contribution should be included in the spectral

FIG. 13. Integration path of the branch cut numerical
integration—low positive θ . (a) k1,yy(w). (b) q(w). Here we
can calculate the integral directly, following the path around the
branch cut.

integral (for detailed discussion in this context, see e.g., [45]).
To explain that, recall Remark 1 above about the location of
the SIP path and the branch cuts, and note the complex plane
map in Fig. 11(a). At infinity, the SDP and SIP can be directly
connected without crossing of a branch cut. Therefore, the
SIP integral is simply given by the SDP integral (no pole
is encircled in this case). In contrast, in Figs. 11(b)–(f) the
SDP can be connected to the SIP without branch cut crossing
only by encircling of the upper branch cuts on wr = +π/2
[Figs. 11(b) and 11(c)], or the lower branch cuts on wr =
−π/2 [Figs. 11(d)–(f)]. Another important numerical point
should be discussed in the context of the branch cut contri-
butions. Note that our upper sheet definition by dictating the
sign of the real part of the square root implies that both in the
upper, and lower, Riemman sheets the integrand may diverge.
However, when we connect the SIP path with the SDP path
the branch cut encircling integration, at infinity, we have to
make sure that the connecting paths are within a valley of the
integrand in the complex w plane, and thus their contributions
are vanishingly small. This situations that corresponds, for
example, to the parameters in Case I and observation point
b in Table I is illustrated in Fig. 13. In (a) the real part of
k1,y(w) is shown to highlight the branch cut discontinuities,
and in (b) the imaginary part of the phase function Im{q(w)}
is shown. Note that Im{q(w)} < 0 implies exponential decay
of the integrand as w → ∞, while Im{q(w)} > 0 implies
exponential divergence. In the case shown in Fig. 13(b), the
two sides of the upper branch cut at wr = π/2 are located
in a valley, and the connection of the integration paths is
trivial. The situation is more challenging for example with the
parameters of Case I observation point (d). This is illustrated
in Fig. 14. In (a) the real part of k1,y(w) is shown to highlight
the branch cut discontinuities, and in (b) the phase function
q(w) is shown. In this case, between the lower branch cut
at wr = −π/2 and the SDP trajectory at infinity, there is a
divergence of the integrand. The numerical resort in this case
is to integrate around the branch cut along a thicker path, as
shown in Fig. 14(b); a path that goes around the branch cut
from one valley to another valley.

In Table II we bring a numerical comparison between the
direct numerical solution of the integral in Eq. (59), where
the current is calculated by Eq. (34), and the sum of the
isolated components: SDP integral, branch cut integral, and
pole residues.
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TABLE II. Comparison of the exact integral calculation to the sum of the SDP, branch cut and pole contributions.

Direct SDP Branch cut Pole Relative Err

Case I(a) –95 +8j –95 +8j 0
Case I(b) –98+55j –97+67j 1–11j 0.002
Case I(c) –85+4j –81 –4–4j 0.006
Case I(d) –94-59j –88-62j –6+2j 0.009
Case I(e) –51+68j –51+68j 0 0
Case I(f) –40+46j –40+46j 0 0
Case II(a) –96 +11j –96 +11j 0
Case II(b) –91+88j –93+98j –13j 0.02
Case II(c) –99+41 –16–25j –4–5j –80+73j 0.02
Case II(d) –116–54j –109–56j –7+2j 0
Case II(e) –40+92j –42+91j 1 0.02
Case II(f) –73+22j 2–34j 0 –75+54j 0.02

We can see a very good agreement between the two cal-
culations, as it is evident by error obtained when summing up
the three contributions SDP, branch cut, and poles to the direct
spectral integration. The asymmetry of the singular points and
the SDP for mirror observer locations is so evident by noting
that in certain conditions the branch cut or pole contributions
exist for observer location at a certain point, but do not exist at
all, for observer that is located in the symmetric location point.
This happens for instance in Case I(a) vs Case I(d) for the
branch cut contribution. Regarding the poles, for the selected
parameters, they pop up on the upper Riemann sheet under
very specific conditions, with high angle θ (nearly grazing
incidence—i.e., source and observer are located very close
to the surface compare to the distance between them), and
with low energy transfer rate. For the pole contribution, we
can get an analytical expression, using the Cauchy residue
theorem [45],

E scat
1,p = − jIsηk0H

2

e− j[k0,yy0+k1,xx+k1,yy]

b′
0

a1
+ c0b′

1

b2
1

− a2c1
a1

[
b′

0b1b2−b0(b′
1b2+b1b′

2 )
b2

1b2
2

] ,
(66)

As we can see in Table II in Case II(c) and Case II(f),
when grazing the surface, the pole has a critical effect. When

comparing to Cases I(c) and I(f), we see that there is no con-
tribution by pole singularity in these cases. This is interesting
since Cases I and II are identical, except for the transfer ratio
between the first and fundamental harmonics, T1, which is
12 dB in Case I and 6 dB in Case II.

It is then of interest to estimate, per a given source and
observer heights, y0 and y, respectively, the distance xp after
which the pole is captured between the SDP and the SIP. As a
first approximation, we estimate the derivative of q in Eq. (64)
by substituting y = 0 (which makes sense since we are dealing
with grazing angles),

q′ = −k0y0 sin w + k0x cos w = 0. (67)

This leads to a close form zeroth-order approximation for the
stationary point ws = arctan x

y0
. By plugging in the expression

for q(w) we get

qs =

⎧⎪⎨
⎪⎩

k0y2
0

x + [k0 + n �ϕ

a

]
x θ > 0

− k0y2
0

x + [−k0 + n �ϕ

a

]
x θ < 0

. (68)

We can now demand Re{q(wp)} = qs, where wp is given in
Eq. (63). We get an estimation for the distance in which the
pole becomes effective,

xpol =

⎧⎪⎪⎨
⎪⎪⎩

y0
− cos wp,r cosh wp,i±

√
(cos wp,r cosh wp,i )2+4(sin wp,r cosh wp,i−1)

2(sin wp,r cosh wp,i−1) θ > 0

y0
− cos wp,r cosh wp,i±

√
(cos wp,r cosh wp,i )2−4(sin wp,r cosh wp,i+1)

2(sin wp,r cosh wp,i+1) θ < 0

. (69)

For the case of high transfer ratio, we get xpol = 13.6λ0 for
θ > 0. An interesting phenomenon is that for θ < 0 there is no
distance in which a pole contribution emerge—the result for
xpol is complex. For the case of low transfer ratio we get xpol =
3.9λ0 for θ > 0 and xpol = −5.9λ0 for θ < 0. This provides a
quick explanation why in Table II there is no pole contribution
in some of the cases.

D. Asymptotic evaluation

In this section we present method for asymptotic evalua-
tion of the expressions from the previous section, and their
limitations. We focus on the SDP integral and the branch
cut contribution [we have already evaluated analytically the
pole contribution in Eq. (66)]. We evaluate asymptotically
the integral along the SDP. For the integral in Eq. (62) with
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FIG. 14. Integration path of the branch cut numerical
integration—high negative θ . (a) k1,yy(w). (b) q(w). Here the
integration can not follow closely to the branch cut, since q has high
positive imaginary part, which leads to diverging of the integration.

|qψ | 	 1, the SDP contribution can be approximated by [45]

ISDP ≈ e− j π
4

√
2π

ψq′′(ws)
f (ws)e− jψq(ws ). (70)

Where ws is the saddle point. We note that this approximation
assumes that f is slowly varying near the saddle point, which
is true only far from the singularities in the complex plane.
Therefore, this approximation is only valid for large enough θ .
We use the algebra from Appendix C to calculate the second
derivative of q. In this approximation, since we used second-
order Taylor expansion, the second derivative does not depend
on δws,

q′′(θ ) = − y0k0 cos θ − k0Rsin2θ

−

⎡
⎢⎣

k2
0 cos2θ−kn,x (θ )k0 sin θ

kn,y (θ ) +
(kn,x (θ ))2k2

0 cos2θ

(kn,y (θ ))3

⎤
⎥⎦(R cos θ − y0). (71)

We can now write the approximate expression

E scat
1,SDP(�r) = Isη

2k2
0k1 cos ws

8πak1,y(ws)k0,y(ws)

×
√

2π

q′′(ws)
Ãn(ws)e− j π

4

× e− j[k0,y (ws )y0+kn,x (ws )R sin θ+kn,y (ws )(R cos θ−y0 )]

(72)

where ws = θ + δws. When comparing the results from
Table II for Case I(a), which represent high positive θ we get a
relative error of 0.03. We can now move to the approximation
for the branch cut contribution. We focus on the branch cut
of k1,y, since as mentioned before, the contribution due to the
branch cut of k2,y is negligible. We note that for the Canonical
case where q is regular, the expression for the branch cut
contribution is given by [45]

Ib = 2
√

π

|ψq′(wb)| 3
2

√
w − wb f ′(wb)e− jψq(wb)e j 3

2 arg {− jq′(wb)}.

(73)

In our case, unfortunately, q involves branch cut singularities.
Nevertheless, we can use the fact that asymptotically most
of the contribution from the branch cut integration is caused
by the integration in the close vicinity of the branch point.
Therefore, we can approximate the integral with

E scat
1,branch(�r) ≈ − Isηk0

4π

a1(1− jk1,y (w)y)e− j[k0,y (w)y0+kn,x (w)x]

b0 (w)
b1 (w)

(
b1(w)− a1c0

b0 (w) −
a2c1
b2 (w)

) . (74)

Therefore, we define a new f with

f (w) = − Isηk0a1

4π

(1 − jk1,yy)
b0
b1

(
b1 − a1c0

b0
− a2c1

b2

) . (75)

We can now apply the ordinary method to get the approximate
branch cut contribution (see Appendix D)

E scat
1,branch =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Isηa1y(k0 sin wb+ �ϕ

a )
√

cos wbe− j[k0y0 cos w+(k0 sin w+ �ϕ
a )x]e j 3

2 arg {− j(−y0 sin wb+x cos wb)}
2
√

πb0|−y0 sin wb+x cos wb|
3
2
√

k1+(k0 sin wb+ �ϕ

a )
θ > 0

jIsηa1y(k0 sin wb+ �ϕ

a )
√

cos wbe− j[k0y0 cos w+(k0 sin w+ �ϕ
a )x]e j 3

2 arg {− j(−y0 sin wb+x cos wb)}
2
√

πb0|−y0 sin wb+x cos wb|
3
2
√

k1−(k0 sin wb+ �ϕ

a )
θ < 0

. (76)

When comparing the results from Table II for Case I(b) to the
asymptotic expression in Eq. (76), we get a large relative error
of about 10%. We note that for the case described at Fig. 14
[Case I(d)] we can not use this approximation.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have developed a rigorous excitation the-
ory for spatiotemporally modulated metasurface. The theory
enables the derivation of the separated wave components that
comprise the Green’s function. From the mathematical stand
point these are related to different singularities and unique
points in the complex spectral plane. Although here for the
sake of concreteness we considered the Green’s function due
to a source above a metasurface, the theory can be applied

to various excitation scenarios. Such as the excitation of a
layered time and space-time modulated medium, etc. The
advantage in having the Green’s function is twofold. From
the physical perspective it provides deeper understanding
of the wave problem, while from the numerical perspective
it may be useful in numerical schemes based on integral
equations for the excitation and propagation in space-time
modulated media. This is an important topic for a continuing
research.
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APPENDIX A: EVALUATION OF THE SCATTERED FIELD
OF LTI DENSE WIRE GRID

This calculation can be found entirely in textbooks, such
as in [51]. We use the definition of s from Eq. (6), and use the
Poisson summation, which is highly efficient for a dense grid,
and get

S = 1

β0a
− 1

2
+ j

π

⎡
⎣ln

ka

4π
+ γ + 1

2

∑
m �=0

(
2π j

βma
− 1

|m|
)⎤⎦.

(A1)

Here γ = 0.5772 is the Euler constant and

βm =
√

k2 −
(

2πm

a
+ kx

)2

. (A2)

We also use the approximation for small argument Hankel
function H0

(2)(kr0) ≈ 1 − j 2
π

(ln kr0
2 + γ ). We get

S ≈ 1

a
√

k2 − (ki
x )2

− 1

2
+ j

π

[
ln

(
ka

4π

)
+ γ

]
. (A3)

The cell-averaged current can be defined with Js = I0
a ẑ. This

leads to Eq. (8).

APPENDIX B: CALCULATION OF |U
¯̄

{N}
n

|
We start with the straightforward definition of the nominator matrix, when using Cramer’s rule,

U {N}
n

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b−N c−N 0 0

a−N+1
. . .

. . . 0 0

0 . . . b−2 c−2 0
...

0 a−1 b−1 c−1 0 0

0 a0 b0 c0 0 Ei

0 a1 b1 c1 0 0

0 a2 b2
. . . 0

0 . . .
. . .

... 0

0 an 0 . . . 0

0 . . .
. . . cN−1

0 aN bN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B1)

We can use the Laplace expansion by minors [55], to get a new square matrix, with a dimension of 2N . The new minor will not
be a tridiagonal matrix, and has the elements c1, c2, ..., cn−2 above the upper diagonal, as we can see in Eq. (B2). We can also
see that the minor has zero elements on the lower diagonal, in the columns that represents the harmonics 1 : n. This fact will
help us calculate the determinant |U {N}

n
|,

∣∣∣U {N}
n

∣∣∣ = (−1)nE i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b−N c−N 0
. . .

. . .
. . . 0

0 a−1 b−1 c−1 0 0

0 a1 b1 c1 0

0 . . .
. . .

. . . 0

0 an−2 bn−2 cn−2 0

0 an−1 bn−1 0

0 an cn 0

0 bn+1 cn+1 0

0 an+2 bn+2 cn+2 0

0 . . .
. . .

. . . 0

0 aN−1 bN−1 cN−1

0 aN bN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (B2)
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The determinant of a matrix is invariant to multiply a row by a nonzero number and add the result to another row.
We can use the above theorem, and add the row of [0, 0, ...an−1, bn−1, 0..., 0] in Eq. (B2) to nullify cn−2 in the row
[0, 0, ...an−2, bn−2, cn−2, 0..., 0]. The same method can be used to nullify all the elements above the upper diagonal. The
elementary operation that we used affect the elements on the upper diagonal b1, ..., bn1 , but since the matching lower diagonal
does not have a nonzero elements, and since in Eq. (30) we can see that the determinant depends only on multiplication of
elements not on the main diagonal, we understand that we can ignore the elements c1, c2, ...cn−2. Therefore we get a new
tridiagonal matrix in Eq. (B3),

∣∣∣U {N}
n

∣∣∣ = (−1)nE i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b−N c−N 0
. . .

. . .
. . . 0

0 a−1 b−1 c−1 0 0
0 a1 0 0 0

0 . . .
. . .

. . . 0
0 an−2 0 0 0

0 an−1 0 0
0 an cn 0

0 bn+1 cn+1 0
0 an+2 bn+2 cn+2 0

0 . . .
. . .

. . . 0
0 aN−1 bN−1 cN−1

0 aN bN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (B3)

For n = nr > 0, we can approximate the expression with

∣∣∣U {N}
nr

∣∣∣ ≈ (−1)nr E i
−1∏

i=−N

bi

nr∏
i=1

ai

N∏
i=nr+1

bi. (B4)

For n = 0. The expression is different for the case of nr = 1 and for nr > 1 (we focus ourselves for the case of resonance at
positive harmonic number),

∣∣∣U {N}
0

∣∣∣ ≈
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ei

b0

(
1 − anr cnr −1

bnr bnr −1
− anr +1cnr

bnr +1bnr

) N∏
n=−N

bn nr � 2

Ei

b0

(
1 − anr +1cnr

bnr +1bnr

) N∏
n=−N

bn nr = 1
. (B5)

APPENDIX C: CALCULATION OF THE BIAS FROM THE
SPECULAR ANGLE

We calculate the expressions for q, in order to find an ap-
proximate expressions for δws, and the asymptotic stationary
field. For k1,x(w),

k1,x (w) = k0 sin w + �ϕ

a
, (C1a)

k1,x
′(w) = k0 cos w, (C1b)

k1,x
′′(w) = −k0 sin w. (C1c)

For k1,y(w),

k1,y(w) =
√

k2
n −
(

k0 sin w + �ϕ

a

)2

, (C2a)

k1,y
′(w) = −

(
k0 sin w + �ϕ

a

)
k0 cos w√

k2
1 − (k0 sin w + �ϕ

a

)2 , (C2b)

k1,y
′′(w) = −k2

0cos2w − (k0 sin w + �ϕ

a

)
k0 sin w√

k2
1 − (k0 sin w + �ϕ

a

)2
−
(
k0 sin w + �ϕ

a

)2
k2

0cos2w[
k2

1 − (k0 sin w + �ϕ

a

)2] 3
2

. (C2c)

We can now write the expressions for k1,x (w) and k1,y(w),

k1,x (θ + δw) = k1,x(θ ) + k0 cos θδw − 1

2
k0 sin θ (δw)2, (C3a)

k1,y(θ + δw) = k1,y(θ ) − k1,x (θ )k0 cos θ

k1,y(θ )
δw + 1

2

[
−k2

0cos2θ − k1,x (θ )k0 sin θ

k1,y(θ )
− (k1,x(θ ))2k2

0cos2θ

(k1,y(θ ))3

]
(δw)2. (C3b)
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We can now calculate q′(θ + δws) of the integral expression in Eq. (59),

q′(θ + δw) = [−k0 sin θ − k0 cos θδw]y0 + (k0 cos θ − k0 sin θδw)R sin θ +

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− k1,x (θ )k0 cos θ

k1,y (θ ) +⎡
⎢⎣− k2

0 cos2θ−k1,x (θ )k0 sin θ

k1,y (θ ) −
(k1,x (θ ))2k2

0 cos2θ

(k1,y (θ ))3

⎤
⎥⎦(δw)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(R cos θ − y0).

(C4)

The demand for q′ = 0 leads to Eq. (65).

APPENDIX D: APPROXIMATE BRANCH CUT
CALCULATION

We start with the derivative of k1,y,

k1,y
′ = −

(
k0 sin w + �ϕ

a

)
k0 cos w√

k2
1 − (k0 sin w + �ϕ

a

)2 . (D1)

Using l’hopital’s rule, we can write

k+′
1,y ∼ −

(
k0 sin wb + �ϕ

a

)
k0 cos wb√

k1 + (k0 sin wb + �ϕ

a

)√−k0 cos wb

1√
w − wb

.

(D2a)

k−′
1,y ∼ −

(
k0 sin wb + �ϕ

a

)
k0 cos wb√

k1 − (k0 sin wb + �ϕ

a

)√
k0 cos wb

1√
w − wb

,

(D2b)

where k+
1,y represents the branch point for positive θ , and k−

1,y
the negative θ . We can calculate the derivative of f from
Eq. (76). After a little algebra,

f ′(wb) = − jIsηk0a1yk1,y
′

4πb0
. (D3)

Therefore

√
w − wb f ′(wb)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Isηk
3
2

0 a1y
4πb0

(k0 sin wb+ �ϕ

a )
√

cos wb√
k1+(k0 sin wb+ �ϕ

a )
θ > 0

j Isηk
3
2

0 a1y
4πb0

(k0 sin wb+ �ϕ

a )
√

cos wb√
k1−(k0 sin wb+ �ϕ

a )
θ < 0

. (D4)

This leads to Eq. (76).
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