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Fast modeling of regenerative amplifier free-electron lasers
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High-gain free-electron lasers (FELs) are becoming important light sources at short wavelengths such as the
EUV and x-ray regimes. A particularly promising concept is the regenerative amplifier FEL (RAFEL), which can
greatly increase the brightness and stability of a single pass device. One of the critical challenges of the x-ray
RAFEL is maintaining electron-optical overlap over the relatively large (hundreds of meters) footprint of the
system. Numerical modeling of x-ray RAFELs with angular and positional errors is critical for designing stable
cavities, as well as to predict signatures of specific misalignment effects. Full-scale simulations of x-ray FELs are
incredibly time consuming, making large-scale parameter searches intractable on reasonable timescales. In this
paper, we present a semi-analytical model that allows to investigate realistic scenarios—x-ray cavity without
gain (“cold cavity” or x-ray FEL oscillator) and x-ray RAFEL—in the presence of angular/positional errors
and electron trajectory oscillation. We especially focus on fast modeling of the FEL process and x-ray optics,
while capturing effects pertaining to actual experimental setups at the Linac Coherent Light Source (LCLS) at
SLAC. Such a method can be used to explore RAFEL at other wavelengths by suitable replacement of the optics
modeling.
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I. INTRODUCTION

Free-electron lasers (FELs) have revolutionized the scope
of light-driven science. FELs are high-power, ultrafast radia-
tion sources, which work by wiggling a relativistic electron
beam inside of a magnetic undulator prompting the beam
to emit synchrotron radiation. The central frequency of an
FEL is tunable across the entire electromagnetic spectrum
simply by changing the electron beam energy or the undulator
field strength or period, allowing them to fill critical gaps left
by conventional laser technology—most notably in the THz,
EUV, and x-ray spectral ranges. The earliest FELs operated
at relatively long wavelengths, in the infrared and optical
regimes [1–4]. The conceptual designs of the earliest FELs
looked very much like a traditional laser: A gain medium (the
FEL) was enclosed within an optical cavity capable of storing
the output radiation so that it could be amplified further and
further with fresh electron beams [5–7]. Similarly to conven-
tional lasers, FELs of this form could be operated in a low
gain-per-pass configuration (termed FEL oscillator or FELO),
or in a high gain-per-pass configuration (termed regenerative
amplifier FEL or RAFEL).

The true power of the FEL lies in its tunability, so the
natural question is how to extend it to photon energies that are
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inaccessible by conventional laser technologies: x-rays and
beyond [8–10]. In this regime difficulties arose early on due
to the lack of high reflectivity, large angle mirrors to form
the optical cavity. As a result, the x-ray FEL (XFEL) has in
every realization to date been a single-pass device, where the
radiation is instantiated either by seeding with an external
laser [11] (only for very soft x-rays) or by amplifying the
spontaneous radiation emitted by the electron beam due to
its shot noise—the latter is called self-amplified spontaneous
emission (SASE) [12–16]. SASE XFELs have been tremen-
dously successful—they are almost completely transversely
coherent, but they suffer from a lack of temporal coherence
and shot-to-shot stability arising from the random nature of
the startup [17,18]. These issues limit the peak spectral bright-
ness that can be obtained from SASE XFELs. Many concepts
have been proposed to improve the temporal coherence, most
notably self seeding [19–21], but for hard x-rays all are inher-
ently limited by the fact that the start-up is always random.

The discovery of very high (∼99%) reflectivity Bragg
reflections of hard x-rays from crystal structures [22–24] revi-
talized the discussions around cavity-based FELs in the x-ray
regime [25,26]. An XFEL enclosed by a Bragg crystal cavity,
which would provide both spectral and angular filtering to
the radiation, promises to deliver fully coherent, high-power,
stable x-ray pulses. For later reference, Fig. 1 shows the layout
of a rectangular cavity-based FEL. As with the earliest FELs,
cavity-based x-ray FELs (CBXFELs) are envisioned in two
different regimes: the XFEL oscillator (XFELO) with low
single-pass gain, and the x-ray regenerative amplifier FEL
(XRAFEL) with high single-pass gain. There are several on-
going projects aimed at the first experimental demonstration
of the CBXFEL concept at the LCLS (USA) [27], EuXFEL
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FIG. 1. A possible example CBXFEL geometry. A rectangular
cavity formed by four Bragg reflecting crystals wraps an undulator
of length Lu. On either side of the cavity there are focusing lenses
with focal length f . The mirror immediately following the undulator
is labeled M1.

(Germany) [28], and SHINE (China) [29] facilities. One
of the key difficulties associated with the demonstration of
CBXFELs is proper alignment of the optical cavity—the
XFEL gain medium has a tens to 100 meter scale footprint
while Bragg reflections have typical angular acceptances on
the scale of 10 µrad. Thus these optical cavities must be
aligned in principle with sub-µrad precision, and critically
the effects of and tolerance to misalignment must be well
understood.

In order to fully understand the tolerances and optimal
design strategies for cavity-based FELs, accurate numerical
modeling is essential. This is true at any wavelength, from the
original IR cavity-based FELs, to extreme ultraviolet cavity-
based FELs for lithography, to the x-ray regime. Cavity-based
FELs pose a unique modeling challenge—single-pass FEL
simulations are notoriously time consuming and they must
now be combined with Fourier optics propagation of the re-
sulting fields through long cavities, and then all of this must
be done over the tens to hundreds of passes required for the
system to reach a steady state. In the low gain, FELO case,
these challenges are alleviated by the fact that the impact of
the FEL on the transverse dynamics of the photons is weak.
One can thus largely get away with ignoring the impact of the
FEL on the transverse dynamics, dealing only with the optical
cavity [30,31]. For RAFELs this is no longer the case, as high-
gain FELs exhibit strong optical guiding effects—both gain
guiding and refractive guiding—which play a dominant role in
the dynamics of the optical pulse in the cavity [32–35]. Thus,
accurate modeling of RAFELs mandates accurate modeling of
the FEL interaction, which makes simulations extremely time
consuming. This limits the extent to which the full RAFEL
parameter space can be explored, holding back any individual
project, and the field as a whole. Unfortunately, there is no
real getting around how time consuming full fidelity RAFEL
simulations are; however, there is a space for faster models
with more restricted accuracy, which can be used to perform
wide, coarse scans of the parameter space and study misalign-
ment tolerances. The results found by such fast models could
be then be used as starting points for finer scans with higher
fidelity simulations.

In this paper we present a fast, semi-analytical model for
RAFEL dynamics tailored precisely to that purpose. We base
our technique on a time-independent, high-gain FEL gain
guiding model combined with Gaussian beam propagation.
We start from the general 3D FEL equations, which are appli-

cable at any wavelength, but in our discussions we will focus
on parameters relevant to hard XRAFEL systems.

The paper is organized as follows. We first introduce
Gaussian beam parametrization and discuss the high-gain,
time-independent FEL model as well as our approach to x-ray
optics modeling. We then provide several concrete examples
of where our technique can be applied, and use it for the
case of an x-ray cavity with no gain (cold cavity), and a
high-gain XFEL amplifier with and without e-beam trajec-
tory oscillations. Finally, we utilize the unique capabilities
of a fast modeling scheme to optimize the focusing system
for an XRAFEL, and to understand the tolerance of a given
XRAFEL design to increasingly large angular errors.

II. APPROACH TO FAST CAVITY MODELING

Modeling cavity-based free-electron lasers requires deal-
ing with two distinct phenomena: The first is the modeling of
the FEL gain process in the undulator, and the second is prop-
agation of the fields through the optical elements that make
up the cavity. In this section we describe approximate meth-
ods for describing the propagation of a transversely Gaussian
beam through these two stages. In the FEL we restrict our
attention to the high-gain regime (also called the exponential
or linear amplification regime) before saturation, and for the
cavity optics we restrict our attention to linear elements de-
scribable by ABCD matrices and introduce a simple model
for Bragg reflections by crystals.

These approximations—namely employing a Gaussian
ansatz and ignoring the saturation regime—are motivated by
the typical critical features of a RAFEL system and basic
high-gain FEL physics. The high-gain FEL is characterized
by strong gain and optical guiding effects, which ensure a
high degree of transverse coherence and a nearly Gaussian
transverse mode [17,18,33–37]. Even in the case of SASE,
mode competition in the first few gain lengths gives rise, in
the exponential gain regime, to a single Gaussian mode that
persists into early saturation. For an FEL amplifier initiated
by a Gaussian seed field—which is an accurate description of
all but the first pass in a RAFEL—the field remains Gaussian
throughout the gain process. These facts justify the use of a
Gaussian ansatz for the sake of simplicity and speed. Ignoring
the saturation regime is motivated more than anything by a
lack of useful semi-analytical 3D models capable of capturing
saturation effects. Thankfully, it is also in line with common
RAFEL design methodologies, which avoid allowing the FEL
to go deep into saturation in a single pass. There are sev-
eral reasons for that methodology. At saturation, gain and
refractive guiding effects are reduced and the transverse mode
quality suffers as a result [38–41]. Furthermore, the side-band
instability causes the emission of unwanted frequency com-
ponents [42,43]. As we will find in our numerical examples
later in the paper, for a well-designed RAFEL the linear theory
is sufficient for finding good working points, which can be
further refined with traditional simulation tools. Conveniently,
before saturation the FEL acts as a linear amplifier and does
not couple different frequency components together. As a
result, single-frequency (or time-independent) modeling is
sufficient to capture the essential physics. With all of these
justifications in mind, we emphasize once more that the point
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of the presented model is to provide a fast tool for studying
RAFEL systems so as to enable studies requiring a large
number of simulations—in particular, coarse parameter scans
and tolerance studies. The ultimate verification of a given
design should always be done with high fidelity numerical
simulations.

We will employ the following monochromatic, Gaussian
ansatz for the field distribution

E (x, y, z) = f (z)e− i
2 (Qx (z)(x−x0(z))2+Qy (z)(y−y0(z))2 ). (1)

This ansatz simplifies the problem both analytically and com-
putationally by reducing the number of required parameters
to describe the field to five. These parameters, f (z), Qx(z),
Qy(z), x0(z), and y0(z), describe the field amplitude, mode size
and divergence in x and y, and transverse centroids in x and
y, respectively. In general they are all complex. We provide
equations connecting these parameters to physically relevant
ones in Appendix A. In the rest of this section we will describe
the evolution of these mode parameters through the optical
elements relevant to XRAFEL operation.

A. Gaussian beams in quadratic optical fibers

We begin with a discussion of Gaussian mode propagation
through a quadratically gradient index optical fiber, which we
will connect to the FEL propagation problem in the next sub-
section. The radiation profile in a material with some spatially
varying refractive index n(r, z) satisfies the following paraxial
wave equation (see e.g., [44]):

∂E

∂z
+ 1

2ikr
∇2

⊥E = kr

2i
(1 − n(r, z)2)E , (2)

where E is the slowly varying transverse field, z is the propa-
gation distance, and kr = 2π/λr is the radiation wavenumber.
For a quadratic gradient index fiber, we may write the re-
fractive index (approximately or exactly, depending on the
material), to second order in the transverse coordinates,

n(x, y, z)2 = n0(z)2 + 2n1x(z)x + 2n1y(z)y

− n2x(z)x2 − n2y(z)y2. (3)

The presence of the linear-order terms allows us to accurately
take into account radiation profiles with nonzero transverse
centroid. This form of the index couples naturally to our Gaus-
sian ansatz for the radiation field, as we can see from plugging
the Gaussian ansatz into equation (2) alongside equation (3).
The resulting equation is a second-order decoupled polyno-
mial equation in x and y: thus it has five terms that are
proportional to unity, x, y, x2, and y2. We may take advantage
of the orthogonality of the polynomial terms to separate the
second-order polynomial equation in x and y into five distinct
equations corresponding to each of the polynomial coeffi-
cients. The result is the following five first-order differential
equations:

Q′
x(z) = k2

r n2x(z) + Qx(z)2

kr
, (4)

Q′
y(z) = k2

r n2y(z) + Qy(z)2

kr
, (5)

x′
0(z) = kr (n1x(z) − n2x(z)x0(z))

Qx(z)
, (6)

y′
0(z) = kr (n1y(z) − n2y(z)y0(z))

Qy(z)
, (7)

f ′(z) = f (z)

2kr

[
Qx(z) + Qy(z) + ik2

r (n0(z)2 − 1

+ 2n1x(z)x0(z) − n2x(z)x0(z)2

+ 2n1y(z)y0(z) − n2y(z)y0(z)2)
]
. (8)

We note that this approach is analogous to that taken in [45] to
study Gaussian beam propagation through azimuthally sym-
metric gradient index fibers. The propagation of the Gaussian
mode can then be understood by integrating these equa-
tions through the system in question, given that we understand
how to compute the refractive index components n2

0, n1x, n1y,
n2x, and n2y. Equations (4)–(8) elucidate the primary reason
for the fast nature of the method: We have reduced the prob-
lem of tracking the radiation profile down to tracking five
complex numbers, which obey simple first-order differential
equations.

B. The FEL as a quadratic optical fiber

In order to make use of the formalism from the previous
section, we must find a way to write the effective refractive
index components of a high-gain FEL. To describe the FEL
interaction in the linear amplification regime with all relevant
three-dimensional effects, we will borrow the formalism de-
veloped by Baxevanis et al. [46]. As such, we consider here
a planar undulator without any taper. Those authors showed
that the FEL field development before saturation could be
written concisely in the form of a single integrodifferential
equation

∂E

∂z
+ 1

2ikr
∇2

⊥E

=
∫

d pxd py

∫ z

0
dζK1(x, y, px, py, z, ζ )E (x+, y+, ζ ),

(9)

where x and y are the coordinates transverse to the undulator
axis, and distance along the undulator is denoted by z. Further-
more, px and py describe the transverse propagation angles of
a particle in x and y. The variable x+ = x cos (kβ (ζ − z)) +
(px/kβ ) sin (kβ (ζ − z)) with a similar expression in y. kβ is
the wavenumber associated with the beam betatron oscilla-
tions, which we assume to be matched to an external smooth
focusing lattice such that the beam divergence σx′ = kβσx,
and the beam size and divergence are symmetric between the
two planes and constant along the undulator. Additionally, the
integral kernel K1 has the form

K1(x, y, px, py, z, ζ ) = K10(ζ − z) exp

[
−

(
p2

x + p2
y + k2

βx2 + k2
βy2

)
2k2

β

(
1

σ 2
x

+ ikrk2
β (ζ − z)

)]
. (10)
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In this expression

K10(ξ ) = − 8iρ3k3
u

2πk2
βσ 2

x

ξ exp
[ − i
νkuξ − 2σ 2

δ k2
uξ

2
]
, (11)

where ρ is the Pierce parameter [47], ku = 2π/λu is the
undulator wavenumber, σδ is the relative energy spread of
the electron beam, and 
ν is the FEL detuning parameter.
Identifying the right-hand side of Eq. (9) with that of Eq. (2)
we may extract the effective local refractive index of the FEL,

n(x, y, z)2 =1 − 2i

kr

1

E (x, y, z)

∫
d pxd py

×
∫ z

0
dζK1(x, y, px, py, z, ζ )E (x+, y+, ζ ).

(12)

In Appendix B we present an analytic form for this index for
the Gaussian field ansatz after the angular integrals have been
taken, including the effects of a misaligned e-beam trajectory
that we discuss further in the next section. The effective
refractive index of a free-electron laser has been studied
by multiple authors in the past [32–34,37] under different
approximations, although never using a fully self-consistent
formalism describing the coupled evolution of the electron
beam and the radiation field as we are using. For the purposes
of this paper we would like to choose an appropriate approx-
imation to put this index in the form of Eq. (3). Although
there are in principle many ways to do this, for the present
case we will consider a simple Taylor expansion around the
electron beam centroid. Physically, we expect this choice to
capture the most relevant physics because the e-beam centroid
is also the location of maximal gain, and the gain falls off
exponentially with transverse offset. For radiation, which is
seeded far off-axis one expects that this will yield poor agree-
ment in the early sections of the undulator, but, as long as
there is sufficient total gain along the undulator length, we
should expect good agreement by the undulator exit due to
gain guiding. The accuracy of this relatively simple approach
will be established quantitatively in the next section through
numerical benchmarks. Thus we assign the approximate coef-
ficients by

n0(z)2 = n(x, y, z)2

∣∣∣∣
x=y=0

, (13)

n1x(z) = 1

2

∂n2

∂x

∣∣∣∣
x=y=0

, (14)

n1y(z) = 1

2

∂n2

∂y

∣∣∣∣
x=y=0

, (15)

n2x(z) = −1

2

∂2n2

∂x2

∣∣∣∣
x=y=0

, (16)

n2y(z) = −1

2

∂2n2

∂y2

∣∣∣∣
x=y=0

. (17)

These expressions can be evaluated analytically as a function
of the local mode parameters such that the only integral left
over is the integral in ζ , which can be calculated numeri-
cally. These, coupled with the results of Sec. II A, provide
a self-consistent numerical scheme for propagating the seed
radiation through the FEL. Extensive benchmarks of this ap-
proach are available in the earlier preprint [48].

Before moving on, we should note that within this ex-
ponential regime model, different frequency components
propagate independently of one another. As a result, in princi-
ple the full bandwidth of the FEL can be simulated in parallel
by tracking with different values for 
ν. In this way, simple
longitudinal effects such as bandwidth narrowing due to the
finite mirror bandwidth can be taken into account. To account
for more complex longitudinal effects, such as outcoupling
schemes relying on electron beam shaping [49,50], would
require a revisiting of the underlying model and the basic
single-frequency approach may no longer apply. Including
such effects is not critical to understanding basic transverse
dynamics and stability of RAFELs as we explore in detail in
later sections.

C. The FEL optical fiber model with nonideal beam trajectory

Our model thus far assumes an idealized, on-axis e-beam
transverse centroid trajectory. For real machine conditions,
some level of shot-to-shot variation in the transverse cen-
troid trajectory of the electron beam is unavoidable. This is
important for XRAFEL operations, as for moderate levels of
trajectory jitter the e-beam will continue to guide the radiation
along its direction of motion leading to corresponding jitter
in the pointing of the radiation at the exit of the undulator.
For larger trajectories, the single-pass power gain can also be
affected. Thus it is important to be able to take these effects
into account in our model. For a smooth focusing lattice with
wavenumber kβ as we consider in our model, the trajectory
given an initial transverse offset xce(0) and angular offset
px,ce(0) is

xce(z) = xce(0) cos(kβz) + px,ce(0)

kβ

sin(kβz), (18)

with an equivalent expression in y, and px,ce(z) = x′
ce(z).

The mechanics of allowing arbitrary trajectories in x and
y are a straightforward extension of the previously presented
formalism. We will list the few differences here, and in par-
ticular which expressions from before must be modified. To
start, the original integral kernel is changed to

K1(x, y, px, py, z, ζ ) = K10(z, ζ ) exp

[
− (px − px,ce(z))2 + (py − py,ce(z))2

2k2
βσ 2

x

− (x − xce(z))2 + (y − yce(z))2

2σ 2
x

]

× exp

[
− ikr (ζ − z)

2

(
p2

x + p2
y + k2

β (x2 + y2)
)]

, (19)
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where we have introduced the predetermined electron beam centroid trajectories xce(z) and yce(z), in addition to the centroid
momentum trajectories px,ce(z) and py,ce(z). In addition to this, we should now perform all Taylor expansions of the refractive
index about the centroid of the electron trajectory, since that is now effectively the axis around which the most important physics
occurs,

n(x, y, z)2 = n2
0(z) + 2n1x(z)(x − xce(z)) + 2n1y(z)(y − yce(z)) − n2x(z)(x − xce(z))2 − n2y(z)(y − yce(z))2. (20)

Analogous to the case with no e-beam trajectory oscillations,
the definitions of the various components of the refractive
index are now modified to read

n0(z)2 = n2

∣∣∣∣
x=xce (z),y=yce (z)

, (21)

n1x(z) = 1

2

∂n2

∂x

∣∣∣∣
x=xce (z),y=yce (z)

, (22)

n1y(z) = 1

2

∂n2

∂y

∣∣∣∣
x=xce (z),y=yce (z)

, (23)

n2x(z) = −1

2

∂2n2

∂2x

∣∣∣∣
x=xce (z),y=yce (z)

, (24)

n2y(z) = −1

2

∂2n2

∂2y

∣∣∣∣
x=xce (z),y=yce (z)

. (25)

Finally, with this modified refractive index comes a requisite
modified form for the evolution of the mode parameters,

Q′
x(z) = krn2x(z) + Qx(z)2

kr
, (26)

Q′
y(z) = krn2y(z) + Qy(z)2

kr
, (27)

x′
0(z) = kr

Qx(z)
[n1x(z) − n2x(z)(x0(z) − xce(z))], (28)

y′
0(z) = kr

Qy(z)
[n1y(z) − n2y(z)(y0(z) − yce(z))], (29)

and the field amplitude now obeys

f ′(z) = f (z)

2kr

[
Qx(z) + Qy(z) + ik2

r

{ − 1 + n2
0 + [x0(z)

− xce(z)]{2n1x(z) − n2x(z)[x0(z) − xce(z)]}
+[y0(z)−yce(z)]{2n1y(z)−n2y(z)[y0(z)−yce(z)]}}].

(30)

Although the expressions have become more complicated,
the basic numerical approach is unchanged. Furthermore, the
results of Appendix B already include these extensions.

D. Optical cavity tracking

The specific application of the XRAFEL demands that in
addition to our approximate treatment of the FEL dynam-
ics we also determine a way to track the radiation through
the optical cavity. In conventional studies based on full FEL
simulations, the field is stored on a cartesian grid, so the
optical elements are likewise treated using a Fourier optics
code. Here, in particular since all of the optical elements are
simple drifts, lenses, and mirrors, we can simply use their
well-known ABCD matrices. In the case of the drifts and
lenses this is explicit, as it is known that when a Gaussian
beam propagates through an element described by an ABCD

matrix it transforms according to the Huygens integral (see
e.g., [51])

E (x f , y f ) = e−ikr L
∫

Kx(xi, x f )Ky(yi, y f )E (xi, yi )dxidyi,

(31)
where L is the length of the optical element along the optical
axis and the integral kernels have the form

Kx(xi, x f ) =
√

i

Bλr
exp

[
− iπ

Bλr

(
Ax2

i − 2xix f + Dx2
f

)]
,

(32)
with a similar expression in y. The magnitude of the determi-
nant of the ABCD matrix is one. For the Gaussian beam these
integrals result in another Gaussian with mode parameters
transformed according to

Qx,y → kr
krC + DQx,y

krA + BQx,y
, (33)

x0 → Qxx0

krC + DQx
, (34)

y0 → Qyy0

krC + DQy
, (35)

f →
√

kr

krA + BQx
e− ikrCQx2

0
2(krC+DQx )

√
kr

krA + BQy
e
− ikrCQyy2

0
2(krC+DQy ) . (36)

The approach described so far accounts for drifts and lenses,
which have

Mdrift =
[

1 L
0 1

]
Mlens =

[
1 0

−1/ f 1

]
. (37)

The effects of loss in optical elements, for example air scat-
tering in drifts and material losses in refractive lenses, can be
accounted for by multiplying the amplitude by an appropriate
loss coefficient. We note that for well-collimated beams and
relatively weak focusing (the case pertaining to XRAFEL op-
eration), the transverse beam size in the cavity remains small,
well within the lens aperture. Therefore, the thin lens approach
combined with a loss coefficient is an adequate model for
intracavity beam focusing.

E. Bragg diffraction of narrow divergence Gaussian beams
from perfect crystals

For x-ray RAFELs the mirror of choice is Bragg diffrac-
tion crystals. In general, the action of a Bragg diffraction
crystal can be described by multiplying the spectral-angular
representation of the field by a complex amplitude reflectivity
function R(φx, φy, ω), which can be derived from dynamical
diffraction theory [52] (in two-wave approximation). For a
monochromatic field incident on a semi-infinite crystal, as
we consider here, the amplitude reflectivity function (Darwin
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FIG. 2. The magnitude and phase of the reflectivity curve for
the (4,0,0) reflection of 9.831 keV photons from diamond. The
Darwin curve is recentered by accounting for refraction with 
φr =
−|χ0|/ sin 2φB.

curve) can be written as

R(φx, φy) = η − sign[�[η]]
√

η2 − 1

√
|χH |
|χH̄ | , (38)

where η is

η = −φx sin(2φB) − χ0

|P|√χHχH̄
, (39)

χ0 and χH here are the complex susceptibilities in the di-
rection of incident and diffracted waves, H is the reciprocal
lattice vector, φB is the Bragg angle, and P = 1 for σ po-
larization and cos(2φB) for π polarization. Furthermore, φx

is assumed to be measured relative to the Bragg angle. For
reference we plot the magnitude and phase of the reflectivity
curve for the (4,0,0) reflection of diamond in Fig. 2. It has two
primary features: a flat-topped region whose width is called
the Darwin width, and slowly dropping Lorentzian tails. For
an incident beam whose divergence is narrower than the Dar-
win width, the important parameters are the peak reflectivity
and the slope of the linear phase shift across the flat-topped
region. Note that the selection of angles by the Darwin curve
is only present in the plane of diffraction (in our case x): the
y plane is unaffected by the reflection to first order. For this
reason we delineate between the “dispersive plane” and the
“nondispersive plane”. For the remainder of the paper we will
use x to refer to the dispersive plane.

In case of an incident Gaussian beam, a Bragg diffracted
beam is not strictly Gaussian due to the nonlinear shape of
the Darwin curve; see e.g., Refs. [52–56]. However, when
the beam angular divergence is small, which is the case for
XFEL radiation, the entire pulse stays within the Darwin
width. For context, typical x-ray FEL divergences for hard
x-rays are around or below 1 microradian [25,57–59], whereas
the typical angular acceptance of Bragg reflecting crystals
at those same wavelengths are a factor of a few to an or-
der of magnitude larger [60] (e.g., see Fig. 2). With this in
mind we may say that for conditions relevant to XRAFEL
operations—small FEL divergence, weak focusing in the large
cavity, sub-µrad misalignments in the dispersive plane—the
field is primarily acted upon by the flat portion of the Darwin
curve and maintains its shape close to Gaussian as a result.

Similar assumptions have been previously made in the litera-
ture to study low-gain cavity-based x-ray free-electron lasers;
see e.g., Refs. [30,31]. Thus the key effects to take account
of are the reduction of the field amplitude by the nonunity
reflectivity coefficient and the linear phase shift across the
Darwin width. We can capture these effects by defining an
approximate reflectivity function as

R(φx ) 	 R0eihφx , (40)

where R0 is a reflectivity amplitude and h is a phase coefficient
that leads to the transverse shift.

The final nuance to account for in the dispersive plane is
that depending on the cavity geometry, the crystal acts either
with R(φx ) or with R(−φx ). This “dispersion sign” changes
from one crystal to the next depending on the geometry. In a
rectangular cavity, for example, the dispersion switches signs
at each mirror, while in a bowtie cavity it only switches
twice [61]. In the literature this sign changing is indicated
with the notation (+,+,+,+) for the rectangular cavity and
(+,−,+,−) for the bowtie: Note that the sign in the notation
is not the sign applied to the reflectivity function, it is just
notation to indicate whether the sign locally flips or not. In the
nondispersive plane, the dynamics of a monochromatic wave
are much simpler. The crystal acts like a perfect reflector in
this plane, and so any angular misalignments of the crystal
translate directly into angular misalignment of the reflected
field. In this study we do not consider the finite thickness of
the cavity mirrors for the sake of simplicity. We note that
including a more rigorously derived formula of the crystal
reflectivity (for a thin crystal) presented, e.g., in Ref. [54], will
not change the results of our modeling.

We may represent the action of a misaligned crystal in
the following way. First, the amplitude of the field after re-
flection with dispersion sign ±1 and angular offset in the
dispersive plane φm,x becomes E f (φx, φy, z) = R( ± (φx +
φm,x ))Ei(φx, φy, z). In this expression we use the definition of
the angular field given in Appendix A,

E (φx, φy, z) =
∫

E (x, y, z)e−ikr (φxx+φyy)dxdy. (41)

In addition to this complex amplitude change from the par-
ticular value of the crystal reflectivity, the x-ray pulse also
experiences an angular pointing shift, which is twice the mir-
ror misalignment in the two transverse planes. Thus the field
is subsequently shifted in φx by 2φm,x and in φy by 2φm,y.
In terms of our Gaussian mode parametrization, the model
reflectivity curve leads to the transformations

x0 → x0 + 2krφm,x

Qx
∓ h

kr
, (42)

y0 → y0 + 2krφm,y

Qy
, (43)

f → f R0e
±ihφm,x−2krφm,y�[y0]+ 2(kr φm,y )2�[Qy ]

|Qy |2 (44)

×e
−2krφm,x�[x0]+ 2(kr φm,x )2�[Qx ]

|Qx |2 . (45)

In the tracking code used in the simulation studies below, we
have implemented a flag to check whether the angular inten-
sity of the field is close to the edge of the true Darwin curve.
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We do this by calculating the angular centroid of the radiation
and adding to its absolute value three times the radiation
divergence. If this value is greater than the half-width of the
Darwin curve, a warning is shown and the simulation results
are not trusted. In practice we will find that for well-designed
XRAFEL systems this is not really a limitation.

III. CAVITY SIMULATIONS WITH MISALIGNMENTS

With our formalism now established, we will proceed to
cavity simulations with comparisons between more conven-
tional tracking methods and our approximate methods. We
will focus on rectangular x-ray cavities (Bragg angle of 45◦)
with the possibility to include focusing lenses. We focus on
the photon energy 9.831 keV, which has a 45◦ Bragg reflection
off of the (4,0,0) plane of diamond that has gathered sub-
stantial interest from the CBXFEL community. Fitting to the
flat portion of the Darwin curve (Fig. 2) gives the parameters
R0 	 0.9965 and h = −0.3217 rads/µrad for this reflection.
Furthermore, the rectangular cavity exhibits a (+,+,+,+)
dispersion pattern (here + means a change of dispersion di-
rection). We note that it is important to properly account for
the dispersion direction in the cavity, especially in the case
when the radiation is focused before a mirror, and therefore
“inverted”, with the lens. We further note that in this configu-
ration, the volumetric shift of the transverse centroids by the
crystals is perfectly canceled by two adjacent crystals. The
net effect of it is to increase the cavity length on the µm scale,
which can be trivially taken into account. It is important for
establishing the correct timing overlap between the electron
beam and the recirculating radiation pulse, but it has no impact
on the transverse dynamics if lenses are shifted appropriately.
Thus in the simulations below we artificially correct the shift
after each mirror for both simulation methods.

To facilitate the benchmarking of our approach against
more traditional methods, we have implemented an additional
cavity tracking software, which tracks the field on a square
cartesian grid. The FEL interaction is handled using Genesis
1.3 Version 4 [62]. The Genesis simulations are performed in
the time-independent, single-frequency mode so as to enable
direct comparison with our model. The optical cavity elements
are tracked through using Fourier optics methods. The crystals
are accounted for using the complete Darwin curve in the
traditional tracking method.

A. Cold cavity case

Before dealing with the additional complexity of the FEL
interaction, we begin by tracking a seed pulse through a “cold”
cavity: one without a gain mechanism. This allows us to
observe the accuracy of our model for the optical elements in
practice, most importantly the simplified crystal model. The
parameters we choose are inspired by recent experimental
work demonstrating the first low-loss ten-meter-scale x-ray
cavity [63]. We consider a rectangular cavity with dimensions
of 6 m by 1 m for a total round trip length of 14 m. In the
middle of one of the 6 m sides we place an ideal thin lens with
focal length 100 m.

We tracked a radiation pulse that is initially angularly dis-
placed by 1 µradian in both planes, starting from a 30 µm waist

FIG. 3. Tracking results for the cold cavity study. (a) The ring-
down of the power stored in the cavity as a result of crystal losses.
(b) The oscillations in the beam size in x and y due to combined
effects of diffraction and focusing. (c) The oscillations in the beam
centroids in x and y due to initial angular offset of the radiation.

in x and a 10 µm waist in y. The traditional tracking method
is done using a ±300 µm grid spanned by 301 points. For
each case we simulated 40 passes around the cavity: for the
traditional method this took 11 seconds while for the Gaussian
tracking method it took 25 milliseconds. We show the results
of the simulations using both methods in Fig. 3. Panel (a)
shows the ringdown of intracavity power over the 40 simu-
lated passes. On each pass there is a loss in power of roughly
a factor |R0|4 due to the imperfect reflectivity amplitude of
the Darwin curve. Slightly higher losses are observed in the
Fourier tracking code because power leaks out of the tails of
the radiation pulse that fall marginally outside of the Darwin
width. Panels (b) and (c) present the transverse dynamics in
the cavity, with the orange lines plotted with 70% opacity
to aid visibility. Due to the lens, the beam undergoes size
oscillations in x and y with a frequency twice as fast as the
oscillations in the beam centroids. The parameters we have
chosen bring the beam size to a minimum value of 10 µm,
which corresponds to a divergence of 816 nrad. Furthermore,
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TABLE I. Parameters for XRAFEL simulations.

Beam parameter Value

Current 1.5 kA
Beta function 20 m
Norm. emittance 0.4 µm
Energy 8 GeV
Energy spread 1.5 MeV

Undulator parameter Value

Period 2.6 cm
Length (Lu) 23.66 m
Resonant photon energy 9.831 keV

Cavity parameter Value

Short side length (L2/2 = L3/2) 1 m
Long side length (L4 = 2L1 + Lu) 149 m

the maximum angular centroid offset in the dispersive plane is
1 µrad. This combination of angles means that the edges of the
radiation field approach the edge of the Darwin curve, hence
the very slight damping of the beam size oscillations in the
dispersive plane, which is not found in the Gaussian tracking
code. This effect is quite small at this level because the angular
centroid does not get too close to the Darwin width. This
restriction is physically well founded, for two reasons. First,
when aligning an x-ray cavity there is a clear feedback on how
well aligned the mirrors are in the dispersive plane since it
directly talks to the storage efficiency of the cavity. For this
reason, from here on we focus on mirror misalignments in the
nondispersive plane. Second, a well-designed XRAFEL sys-
tem should not allow the beam divergence to become so large
that it reaches the Darwin curve edges, with the exception of
some outcoupling schemes [28,50]. Thus, we do not actually
face much of a limitation from the flat crystal model, and
our previously mentioned warning flag in the tracking code
is sufficient to maintain high fidelity.

B. High gain cavity case with static misalignments

With the validity of our approach now established for basic
optical elements, we move on to a rectangular cavity, which
wraps a high-gain FEL. In addition to the losses due to the
imperfect crystal reflectivity, we now also include losses due
to absorption in the lens as well as potential outcoupling
losses. We consider an FEL with parameters inspired by the
planned LCLS-II-HE. The relevant FEL parameters are given
in Table I. We now track the radiation field on a ±300 µm grid
spanned by 501 points.

We now consider a rectangular cavity with 10% energy
outcoupling on each pass and two lenses of 50-meter focal
length placed in the middle of the short drift sections in the
cavity. The cavity geometry is described in Table I, where the
included variable names correspond to the geometry shown
in Fig. 1. We assume the lens to absorb 3% of the radiation
energy on each pass as well due to losses in the material. We
take losses into account by simply multiplying the field by
the appropriate factor. Additionally, as discussed previously
it is in practice very difficult to exactly align the crystal
angles in the nondispersive plane. Thus, we pick at the start

FIG. 4. Tracking results for the cavity with gain study. (a) The
power growth during propagation. (b) The oscillations in the beam
size in x and y due to combined effects of diffraction and focusing
from both the lens and the FEL. (c) The oscillations in the beam
centroids in x and y due to initial angular offset of the radiation
coupled with lens and FEL focusing.

of the simulation four values from a normal distribution with
100 nrad rms spread and assign these values to the angular
errors of the four crystals in the nondispersive plane. We then
simulate five cavity round trips with both simulation methods:
the traditional method takes one minute while the Gaussian
method takes two seconds. Figure 4 shows the results of the
simulations using the two methods, with the x axis indicating
physical distance along the optical path. Panel (a) shows the
evolution of the radiation power, (b) shows the evolution of the
rms beam size in x and y, and (c) shows the beam positions
in x and y. Several interesting features are worth noting. In
general the agreement between the two methods is not as exact
as in the cold cavity case due to the complexity of the FEL
interaction, but the results are still generally quite close. The
beam size evolutions are slightly offset from each other by
no more than 10 µm at any point as the grid-tracked pulse is
not exactly Gaussian. The centroid tracking does not suffer
much from this, as the curves are almost perfectly overlapped
in both planes. The centroids exhibit oscillations in y due to
the coupling of angular misalignments to both the focusing
from the lens as well as the optical guiding in the FEL.

C. High gain cavity case with e-beam trajectory oscillation

Electron beam trajectory oscillations are unavoidable fea-
tures of XFEL linacs. Although they can be minimized, they
can never be completely eliminated. A misaligned e-beam in
the FEL undulator leads to deleterious guiding of the seed
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FIG. 5. Tracking results for the cavity with gain and e-beam
trajectory study. (a) The power growth during propagation. (b) The
oscillations in the beam size in x and y due to combined effects of
diffraction and focusing from both the lens and the FEL. (c) The
oscillations in the beam centroids in x and y due to initial angular
offset of the radiation coupled with lens and FEL focusing.

radiation away from the nominal optical axis for small tra-
jectories, and for large ones it can even lead to degradation
of gain. To ensure that our fast tracking model can account
for these complicated but important effects, we performed
cavity simulations as in the last section, but this time we
initiated the beam with –0.5 µrad and 1.5 µrad initial angles
in the x and y directions, respectively. Similarly, as before
the mirrors were given initial random misalignments in the
nondispersive plane. Figure 5 shows the results of that study
in the same style as Fig. 4. Although the dramatic entrance
angles lead to an underestimation of the instantaneous power,
the transverse dynamics are still very well represented by
the fast cavity model. We also note that for this particular
configuration, the errors conspire to shift the effective optical
axis away from the nominal rectangular one. This can be
seen in panel (c), in which the centroid seems to oscillate not
around the axis, but rather some perturbed value. This concept
has been discussed largely for low-gain XFEL oscillators, in
which case the distortion of the optical axis is due to optical
element misalignments [64]. This case shows that errors in
the FEL can similarly distort the optical axis in a high-gain
configuration. A recent study found similar, although smaller
amplitude, results for the low-gain case [30].

IV. NUMERICAL STUDIES USING THE FAST CODE

We now proceed to demonstrate the real advantage of hav-
ing a sufficiently accurate, fast tracking code for the cavity:

fast scanning of cavity parameters. Performing cavity pa-
rameter scans on a large scale is extremely time consuming
using traditional methods due to the long single simulation
times. This is especially problematic for statistically varying
quantities like mirror misalignment angles and electron beam
trajectories, for which one must run many simulations with
randomly sampled errors. Here we will use the fast cavity
model to study two extremely important topics in RAFEL
design: the proper choice of intracavity focusing strengths,
and the impact of mirror misalignments.

A. Intracavity focusing optimization

The placement and strength of the intracavity lenses must
both be highly optimized in order to ensure long-term cavity
stability and maximal cavity output power. Traditionally, the
focal length for a given lens configuration has been picked to
set up a radiation waist in the middle of the undulator in the
equivalent cold cavity scenario. This approach makes sense
for low-gain systems, but is not necessarily ideal for high-gain
RAFEL cavities in which the FEL itself is a nontrivial optical
element that contributes to the cavity transverse dynamics.
Thus, as a first application of the method we will utilize the
fast modeling scheme to scan lens focal lengths to determine
an optimal cavity performance working point taking into ac-
count FEL guiding. For both studies shown below we utilize
the same basic cavity geometry as in the benchmarks with two
lenses of the same focal length on the two short sides of the
cavity.

Figure 6 shows the results of a scan of the lens focal lengths
from 30 m to 70 m. Panel (a) shows the output power after
five passes normalized to the maximum in the scan range,
alongside the rms fluctuation of the beam size on the four
crystals in the last two passes. There are peaks in the output
power for f = 35 m and f = 55.4 m coinciding with the
minimization of the beam spot size fluctuation on the crys-
tals. We note that the flag on angular width we mentioned
previously begins to give warnings for focal lengths smaller
than 32 m. Panel (b) shows the oscillation of the beam size
in the cavity over three round trips as the lens focal length
is scanned. The two optimal points coincide with symmetric,
periodic solutions and deviation on either side removes the
symmetry within a single pass. Panel (c) shows the oscillation
of the radiation beam size over three passes through the cavity
for three characteristic focal lengths: the two at which the
output power peaks f = 35 m and f = 55.4 m, and the local
power minimum between them f = 45 m. In Panels (b) and
(c), z = 0 corresponds to the exit of the FEL on the first pass
and the final point near z = 900 m corresponds to the entrance
of the FEL starting the fourth pass. From these oscillations
we see that the optimal focusing configurations correspond to
establishing symmetric oscillations of the beam size through
the cavity, with both a small and a large radiation mode in
the middle of the long side of the cavity being sufficient as
long as the beam is focused near the entrance of the undulator.
For the nonoptimal focal length of f = 45 m, the beam is
larger entering the undulators, which reduces the gain of the
radiation field.

So far we have assumed that the theoretical linac repetition
rate perfectly matches the cavity round trip time such that
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FIG. 6. (a) The output power (normalized to the maximum value)
and the root-mean-square fluctuation in beam size over the last two
passes are plotted as the focal length of the lenses is scanned. (b) A
sweep through focal length values as a function of intracavity beam
size (in color). (c) The beam size evolution over three cavity passes
is shown for three characteristic focal lengths.

we have amplification in the FEL on every round trip. This
does not generally need to be the case, and indeed in some
designs it is necessary to let the radiation propagate through
the cavity over multiple passes without interacting with an
electron beam [50]. Thus for another study we consider a
linac with a 333-kHz repetition rate such that the radiation
interacts with an electron beam on every third round trip. We
expect since the interaction with the e-beam is an essential
component of the cavity transverse dynamics that the opti-
mal focusing location will change. Indeed, Fig. 7 shows the
equivalent to Fig. 6 for this new repetition rate configura-
tion. This time, the warning flag is shown for focal lengths
smaller than 40 m. Panel (a) again shows two peaks in the
output power, this time for f = 45.5 m and f = 68.5 m.
The shift of the two optimal focal lengths relative to the
prior study is testament to the strong impact of the FEL on
the transverse dynamics in the cavity, and the necessity of
accounting for FEL optical guiding when designing XRAFEL
systems. We note that a similar conclusion has been reported
in Ref. [65]. Additionally, the tolerance on the lens focal
length is tighter for this configuration: whereas the full-width
at half-maximum for the output power in the previous study
was nearly 10 m for the f = 55.4 m working point, here it is
much narrower. Panel (b) shows the beam size oscillations for
focal lengths between 40 m and 80 m, while panel (c) shows
the particular oscillations for the two optimal focal lengths

FIG. 7. (a) The output power (normalized to the maximum value)
and the root-mean-square fluctuation in beam size over the last two
passes are plotted as the focal length of the lenses is scanned. In
this case the field only interact with an electron beam on every third
pass through the cavity. (b) A sweep through focal length values as
a function of intracavity beam size (in color). (c) The beam size
evolution over three cavity passes is shown for two characteristic
focal lengths.

over six round trips. The last point again coincides with the
entrance of the undulator. The optimal focal lengths bring the
field to a focus well matched to the natural FEL mode side
just before the entrance of the undulator around 900 m and
1800 m.

The working points discussed above can act as starting
points for finer, more accurate optimization using traditional
methods. It is important to note that our method does not
account for the saturation regime of the FEL, during which
optical guiding effects are reduced. To further validate our
claim that these configurations found by the fast code are still
feasible when the XRAFEL is driven to its saturated steady
state, we have simulated the above XRAFEL systems using
traditional methods for the optimal focal lengths. Figure 8
shows the results of these simulations. Panels (a)–(c) deal with
a cavity with FEL gain on every pass as we studied in Fig. 6.
The top row shows the power as the field propagates through
10 passes of the cavity. The bottom two rows [panels (b) and
(c)] show the beam size oscillations in both x and y for the
two lens focal lengths. The FEL reaches the saturation regime
around 1.3 km of propagation in both simulations. We note
that the beam size oscillations before saturation match very
well with the corresponding lines in Fig. 6(c) as expected.
We observe very little qualitative change in the beam size
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FIG. 8. XRAFEL simulations using traditional methods of a rectangular cavity with optimal focusing as predicted by the fast code. The
top row shows power evolution through the cavity and the bottom two rows show oscillations in the rms beam size in both planes. [(a)–(c)] A
cavity with FEL gain on every pass with either a 35 m (b) or 55.4 m (c) focal length. [(d)–(f)] A cavity with FEL gain every three passes with
either a 45.5 m (e) or 68.5 m (f) focal length.

oscillations with 35 meter focal length [panel (b)] as the
FEL transitions from the linear to the saturated regime. On
the other hand, the 55.4-meter focal length scenario changes
somewhat significantly as we pass into the saturation regime.
This can be understood by looking at the differences between
the two oscillations in the linear amplification regime. The
35-meter cavity exhibits oscillations that almost look like os-
cillations in a cold cavity: the beam size is roughly symmetric
between the two long sides of the cavity despite the presence
of the FEL on one of the sides. Thus, the reduction of the FEL
guiding effects during saturation has a relatively small impact
on the oscillations. The 55.4-meter focal length case exhibits
asymmetric oscillations between the two long cavity sides
that are only maintainable due to the FEL guiding. A similar
observation comes from looking at panels (d)–(f), where we
study an XRAFEL that has gain only every three round trips as
in Fig. 7. Now the saturation point is pushed back to roughly
5 km of propagation due to the less frequent FEL gain. As with
the previous study we see that the shorter focal length work-
ing point maintains qualitatively similar characteristics into
saturation compared to the longer focal length working point.
It is also worth keeping in mind that the larger focal length
operating points keep the the radiation divergence smaller on
the crystals, which may be desirable for stability when mirror
jitter is taken into account. In all of these cases, the goal of
the fast model—finding a reasonably accurate starting point
for fine tuning—has clearly been met, and additionally it has
unveiled interesting physical effects in the cavity dynamics.

B. XRAFEL tolerance to static mirror misalignments

In addition to determining the optimal cavity design for
otherwise perfectly aligned elements, it is critical to under-
stand the behavior of a particular cavity design in the presence
of errors. Here we focus on static mirror misalignments in
the nondispersive plane. We consider that the cavity align-
ment is not perfect, in particular because the nondispersive

plane is much more difficult to align to high precision than
the dispersive one. As a result, the mirrors may be left with
some fixed, nonzero misalignment angles. We sample the
misalignment of the four mirrors from a normal distribution
with a variable standard deviation, and repeat this 10 times for
each standard deviation in order to gather stable mean values
for the behavior of the output power and radiation pointing
jitter. Figure 9 shows the output power and beam centroid
fluctuation on the crystal immediately following the undulator
(M1 in Fig. 1) as a function of this rms mirror alignment
error. We see that with 150 nrad mirror misalignment the
output power of the cavity has dropped to 20% of its perfectly
aligned value. Furthermore, the centroid of the radiation on
M1 jitters with a standard deviation that scales roughly linearly
with the rms mirror misalignment. The slope of this linear
dependence was found to be 278 µm/µrad, meaning that 1
µrad rms misalignment error would lead to a 278 µm rms

FIG. 9. The output power (normalized to the maximum value)
and the root-mean-square fluctuation in beam centroid on the last
mirror are plotted as the rms mirror misalignment angles are in-
creased. Each datapoint is obtained by averaging over 10 statistically
independent simulations.
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jitter of the radiation centroid on M1. This study informs the
required alignment precision in the nondispersive plane for
such a cavity geometry.

V. CONCLUSIONS

We have presented a fast modeling methodology for
regenerative amplifier FELs, which leverages the nearly Gaus-
sian shape of the field propagated through highly optimized
RAFEL systems. Our scheme enables rapid testing of dif-
ferent RAFEL configurations and predicts nearly the same
results as traditional tracking codes as long as the beam diver-
gence and pointing do not approach the Darwin width. This
assumption is reasonable, as a well-designed XRAFEL sys-
tem should not approach the Darwin width anyway. We have
shown how our fast tracking code can be used to optimize pa-
rameter values in XRAFEL designs with the specific example
of the lens focal length. This includes designs that are robust
up to the saturation regime of the XRAFEL, so that our pre-
liminary workings points act as good starting points for finer
tuning with higher accuracy simulations. Furthermore, the fast
tracking method can be used to understand the behavior of
a given XRAFEL design in the presence of misalignments
and electron beam trajectory oscillations, which is critical for
ensuring a stable, reliable working point.
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APPENDIX A: CONVERSION TO PHYSICAL VALUES

To facilitate comparison of our results with simulations we
must convert the complex radiation mode parameters we are
tracking into measurable quantities. The parameters of the
most interest are the radiation rms or fwhm size, physical
centroid, angular centroid, and power. We will consider the
transverse sizes and centroids of the transverse intensity pro-
file I (x, y, z) = ε0c

2 |E (x, y, z)|2. The rms size is

σx,y =
√

− 1

2�[Qx,y]
. (A1)

Since the beam is Gaussian the full width at half-maximum
size is related to this by fwhm = 2

√
2 log(2)σ . Furthermore

the physical centroid, which we identify as the location of the
peak of the intensity profile, is

xcen = �[x0] + �[x0]
�[Qx]

�[Qx]
. (A2)

The angular centroid on the other hand is the corresponding
centroid of the transverse Fourier transform of the field profile

E (φx, φy, z) =
∫

E (x, y, z)e−ikr (φxx+φyy)dxdy. (A3)

It is readily found that the centroid of |E (φx, φy, z)|2 is

φx,cen = −|Qx|2�[x0]

kr�[Qx]
. (A4)

It is also worth noting that we can invert these centroids to
write the original complex centroid parameter in terms of the
physical and angular centroids

x0 = xcen + krφx,cen

Qx
. (A5)

Similarly, the Q parameters can be written in terms of the
rms size of the intensity if it comes to a waist, σw, as well
as the distance from the current position to the waist, zw. The
expression is

Q = − ikr

2krσ 2
w + izw

. (A6)

Finally, the time-averaged radiation power is the usual integral
over the transverse intensity profile

P(z) = ε0c

2

∫
|E (x, y, z)|2dxdy (A7)

= σxσyπε0c| f (z)|2e− |Qx |2�[x0]
�[Qx ] − |Qy |2�[y0]

�[Qy ] . (A8)

We note that although we call this power, it should more
accurately be understood as spectral power since we consider
a single-frequency slice of the radiation field.

APPENDIX B: ANALYTIC EXPRESSION FOR THE FEL
REFRACTIVE INDEX WITH A GAUSSIAN MODE

In this Appendix we will give the analytic form of the FEL
refractive index for a Gaussian mode and arbitrary electron
trajectory. Since the impact of electron trajectory jitter is in
some sense an additional impact on top of x-ray trajectory
offsets, in particular in the case of the XRAFEL, we will
explicitly separate out their impacts. The end result is of the
form

n2(x, y, z, ζ ) = 1 + 4πk2
βσ 2

x

kr

∫ z

0
dζ

f (ζ )

f (z)
K10(z, ζ )

√
1

gx(z, ζ )gy(z, ζ )
eh0(x,z,ζ )+hce (x,z,ζ )+h0(y,z,ζ )+hce (y,z,ζ ), (B1)

where gx(z, ζ ) = i + krk2
βσ 2

x (z − ζ ) − σ 2
x Qx(ζ ) sin (kβ (z − ζ ))2 with a similar expression for y. The arguments of the exponen-

tial take the form

h0(x, z, ζ ) = i

2

[
Qx(z)[x − x0(z)]2 + A(z, ζ )

[
x2A(z, ζ ) − σ 2

x Qx(ζ ){x2 − 2xx0(ζ ) cos[kβ (z − ζ )] + x0(ζ )2}]
σ 2

x

{
A(z, ζ ) − σ 2

x Qx(ζ ) sin[kβ (z − ζ )]2
}

]
, (B2)
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hce(x, z, ζ ) = px,ce(z)
[
ipx,ce(z) + 2kβσ 2

x Qx(ζ ) sin[kβ (z − ζ )]{x0(ζ ) − x cos[kβ (z − ζ )]}]
2k2

βσ 2
x

{
A(z, ζ ) − σ 2

x Qx(ζ ) sin[kβ (z − ζ )]2
}

− px,ce(z)2

2k2
βσ 2

x

− xce(z)2 − 2xxce(z)

2σ 2
x

, (B3)

where in each of these A(z, ζ ) = i + krk2
βσ 2

x (z − ζ ). In these forms, hce vanishes in the absence of a nonzero electron beam
trajectory. When x0(z) and y0(z) also vanish, the ideal FEL scenario without x-ray offset is retrieved.
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