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Partial remote synchronization in star-like networks with partial connections among leaf nodes
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To understand how the long connections of a brain functional network come from the short connections of
its corresponding structural network, remote synchronization (RS) was recently studied in star graph networks.
However, the motif of the star graph cannot completely characterize the features of brain networks as the leaf
nodes of a star graph may also be connected to each other to some extent in real brain networks. Especially,
the dynamics of a star motif in a brain network will be seriously influenced by its surrounding nodes, i.e., other
parts of the brain network. To study RS of real brain networks, we here present a model of star-like networks by
considering both the partial connections among leaf nodes and the influence of other parts of the brain network.
We find that RS will not appear in all leaf nodes and instead appears only in the group of indirectly connected
leaf nodes when the frequency difference between the hub and leaf nodes is not large enough, resulting in the
concept of partial RS (PRS). Further, we find that the partial connections among leaf nodes favor PRS, implying
that PRS can more easily appear in real brain networks than RS and thus provides a different way to understand
the mechanism of long connections in brain functional networks. Moreover, we find another kind of PRS, i.e.,
double PRS, and discuss the dependence of PRS on system parameters. Finally, a brief theoretical analysis is
provided to explain the results.
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I. INTRODUCTION

The human brain is the most complicated system, and
understanding it has been being a challenging problem for
a long time. It is well known that the human brain can be
characterized by two kinds of networks, i.e., structural and
functional networks. The former is obtained from Diffusion
Weighted Magnetic Resonance Imaging (DW-MRI) data, in
which connections represent axonal fibers [1]. As the cerebral
cortex is an optimal network of the trade-off between wiring
cost and efficiency, the majority of its anatomical connections
are short connections in space [2–4]. The latter is obtained
from the Blood Oxygen Level Dependent (BOLD) functional
Magnetic Resonance Imaging (fMRI) time series of cortical
areas, in which connections represent statistically significant
correlations between two time series [5]. It has been revealed
that any two cortical areas connected by a functional connec-
tion are, in general, spatially separated and there is no edge
connecting the two corresponding nodes in the anatomical
connectivity network, i.e., long connections in space. Then,
a natural question arises: How do the long connections of
the functional network emerge from the short connections of
the structural network? This question is not trivial because it
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might provide meaningful insights about the functional orga-
nization of distant neural assemblies during diverse cognitive
or pathological states [6].

A possible way to answer this question is through the
concept of remote synchronization (RS) proposed by Bergner
et al. in 2012 [7]. RS occurs when two or more subsystems
that are not directly coupled synchronize while the ones be-
tween them do not [8,9]. The paradigmatic model of RS is the
motif of a star graph where the natural frequency of the central
hub is much larger than that of its leaf nodes so that the hub
node will not synchronize with the leaf nodes but serves as
a transmitter of information to induce synchronization among
all the leaf nodes. The study of RS is currently a hot topic
in the fields of complex networks and synchronization, and
many results have been achieved [10–12]. For example, it was
revealed that network symmetries play a central role in RS and
the anatomical symmetry of the brain network plays a role in
neural synchronization by determining correlated functional
modules across distant locations [6,13–15]. Lacerda et al.
investigated the role of the initial conditions in RS and found
the phenomenon of multistability [16]. Kang et al. found that
there are, indeed, motifs of star graphs in brain networks
and the connection of two motifs of star graphs will make
RS appear between distant nodes [17]. Cao et al. extended
the concept of RS to multilayered community networks with
star-like topology [18]. Further, it was shown that RS can even
be induced by phase frustrations [19–22].

On the other hand, it is well known that a real brain
network has both community and rich-club topology and its
degree distribution is an approximate power law [23,24]. In
this unique network, each node has neighboring nodes and
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FIG. 1. Schematic illustration of the PRS model of a star-like
network with partial connections among the leaf nodes where node
1 represents the central hub node and the others represent the leaf
nodes. The coupling strength between the hub and leaf nodes is
assumed to be λ, and that among the leaf nodes is assumed to
be αλ. The number of connections among leaf nodes can be more
than 1.

thus can be approximately considered a motif of a star graph.
Thus, understanding the dynamics of the star graph will be
of great help to understand how brain functional networks
come from their corresponding structural networks. However,
in a real brain network, each node and its neighboring nodes
will not be a pure motif of a star graph and will be seriously
influenced by other parts of the brain network. To consider this
characteristic feature, we here present a model of a star-like
motif to study RS by considering both the partial connections
among the leaf nodes of the star graph and the influence of
other parts of the brain network. For convenience, we divide
the leaf nodes into two groups. One group is the connected
leaf nodes, and the other is the indirectly connected leaf nodes.
Interestingly, we find that RS will appear only in the group of
indirectly connected leaf nodes and not in all the leaf nodes,
which is named partial RS (PRS). Further, we show that the
partial connections among leaf nodes favor PRS. Moreover,
we find another kind of PRS called double PRS. Finally, a
brief theoretical analysis is provided to explain these results.

II. A STAR-LIKE NETWORK MODEL OF PARTIAL
REMOTE SYNCHRONIZATION WITH PARTIAL

CONNECTIONS AMONG LEAF NODES

As mentioned above, our model will consider two aspects,
i.e., partial connections among the leaf nodes of a star graph
and the influence of other parts of the brain network, in
contrast to previous RS models that mainly focused on the
networks of the star graph. For convenience, we let the influ-
ence from other parts of the brain network be merged into the
partial connections among the leaf nodes. Figure 1 shows a
schematic illustration of the PRS model of a star-like network
where the central node 1 represents the hub node, nodes 2 to
N represent the leaf nodes, and the couplings are considered
bidirectional, with N being the total number of nodes. The

characteristic feature of Fig. 1 is the connections between the
leaf nodes such as that between nodes 2 and 3, in contrast
to previous RS models of a pure star graph. Considering the
fact that the connections among leaf nodes may come either
from themselves or from other parts of the brain network, for
simplicity, we let their coupling strength be different from that
between the hub and leaf nodes. That is, we let the coupling
strength between any two connected leaf nodes be αλ, where
λ represents the coupling strength between the hub and leaf
nodes. Figure 1 will go back to previous RS models of the star
graph when α = 0.

To study the RS in Fig. 1, we let the nodes’ dynamics be the
Stuart-Landau oscillator [7], and thus, the network’s dynamics
can be represented by the coupled Stuart-Landau oscillators as
follows:

żh = (γ + iωh − |zh|2)zh + λ

kh

N∑
�=2

(z� − zh),

ż� = (γ + iω� − |z�|2)z� + λ

k�

(zh − z�)

+ αλ

k�

N∑
�′=2

δ(�, �′)(z�′ − z�), (1)

where h and � represent the hub and leaf nodes, respectively,
with h = 1 and � = 2, . . . , N . ωh and ω� are the natural an-
gular frequencies of the hub and leaf nodes, respectively. kh

and k� represent the degrees of the hub and leaf nodes, re-
spectively, with kh = N − 1. δ(�, �′) represents the connection
between two leaf nodes, with δ(�, �′) = 1 if the leaf nodes �

and �′ are connected and δ(�, �′) = 0 otherwise. γ is a param-
eter representing the nondimensional distance from the Hopf
bifurcation onset. For an isolated oscillator, the stationary
solution z = 0 is stable for γ < 0; in contrast, when γ > 0,
z oscillates in a limit cycle, and

√
γ is the amplitude of |z|. In

this work, we let γ = 1.
In Eq. (1), zh and z� are complex variables and can be

represented as zh = rheiθh and z� = r�eiθ� , with rh and r� and
θh and θ� being their amplitudes and phase angles, respec-
tively. Then, Eq. (1) can be rewritten in the polar coordinate
system as

ṙh = γ rh − r3
h + λ

kh

N∑
�=2

[r� cos(θ� − θh) − rh],

θ̇h = ωh + λ

kh

N∑
�=2

r�

rh
sin(θ� − θh),

ṙ� = γ r� − r3
� + λ

k�

[rh cos(θh − θ�) − r�]

+ αλ

k�

N∑
�′=2

δ(�, �′)[r�′ cos(θ�′ − θ�) − r�],

θ̇� = ω� + λ

k�

rh

r�

sin(θh − θ�)

+ αλ

k�

N∑
�′=2

δ(�, �′)
r�′

r�

sin(θ�′ − θ�). (2)
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Our numerical simulations in the next section will be based on
Eq. (2).

We notice from Fig. 1 that the leaf nodes can be divided
into two groups, i.e., the connected group and the indirectly
connected group. In general, the connected group will be
easier to synchronize than the indirectly connected group,
and thus, the behaviors of the two groups will be different.
Considering the fact that the phase synchronization between
two oscillators implies a constant or bounded phase differ-
ence, we suggest that the phase synchronization of the two
groups should be measured by different quantities because
their phase differences may be different constants. In detail,
we follow Ref. [7] and introduce an order parameter to mea-
sure the phase synchronization between two leaf oscillators,
defined as

r��′ =
∣∣∣∣ lim
T →∞

1

T

∫ t+T

t
ei[θ�(t )−θ�′ (t )]dt

∣∣∣∣, (3)

where T is the time window to measure the correlation. Then,
the order parameter R of all the leaf nodes can be given as

R�� = 2

(N − 1)(N − 2)

N∑
�=2,�′>�

r��′, (4)

where r��′ runs over all pairs of the leaf nodes. Similarly, we
introduce an order parameter to measure the phase synchro-
nization between the hub and a leaf oscillator, defined as

rh�′ =
∣∣∣∣ lim
T →∞

1

T

∫ t+T

t
ei[θh (t )−θ�′ (t )]dt

∣∣∣∣. (5)

Then, the order parameter R for the connections between the
hub and all the leaf nodes can be given as

Rh� = 1

N − 1

N∑
�′=2

rh�′ , (6)

where rh�′ runs over all the links between the hub and leaf
nodes. R will be between 0 and 1, and a larger value of R repre-
sents a stronger phase synchronization. According to Ref. [7],
the system will be remotely synchronized when the value of
R�� is approximately unity while the value of Rh� is smaller
than unity, i.e., the coexistence of synchronization between
the indirectly connected leaf nodes and nonsynchronization
between the directly connected leaf and hub nodes.

Further, we let NI and NII be the numbers of the con-
nected and indirectly connected leaf nodes, respectively, with
NI + NII = N − 1. The order parameter R for the group of
connected leaf nodes can be given as

Rc
�� = 1∑NI

�,�′=1 δ(�, �′)

NI∑
�,�′=1

δ(�, �′)r��′, (7)

where r��′ runs over all pairs of the connected leaf nodes. We
define δ(�, �′) = 1 if the leaf nodes � and �′ are connected and
δ(�, �′) = 0 otherwise. Similarly, the order parameter R for
the group of indirectly connected leaf nodes can be given as

Ri
�� = 2

NII(NII − 1)

NII∑
�=1,�′>�

r��′, (8)

where r��′ runs over all pairs of the indirectly connected leaf
nodes. The order parameter R for the connections between the
hub and the connected leaf nodes can be given as

Rc
h� = 1

NI

NI∑
�′=1

rh�′ , (9)

where rh�′ runs over all the connections between the hub and
the connected leaf nodes. Similarly, the order parameter R for
the connections between the hub and the indirectly connected
leaf nodes can be given as

Ri
h� = 1

NII

NII∑
�′=1

rh�′ , (10)

where rh�′ runs over all the connections between the hub and
the indirectly connected leaf nodes.

III. PARTIAL REMOTE SYNCHRONIZATION

We now use the formulas in Eqs. (4)–(10) to discuss RS
of Eq. (2). For convenience, we let the natural frequency of
the hub be fixed at ωh = 1.5 and let that of the leaf nodes
be ω� = 1.0 + ε� for � = 2, . . . , N if not indicated otherwise,
with ε� being small values chosen randomly from a uniform
distribution around zero. In this case, ε� will not significantly
influence the difference between the hub and leaf nodes and
will make the leaf nodes nonidentical. Let 
ω = ωh − 〈ω�〉
be the difference between the natural frequency of the hub
and the mean frequency of the leaf nodes. Thus, we have

ω ≈ 0.5.

A. Case with N = 5

To discuss RS in Eq. (2) in detail, we take the
case with N = 5 as an example. In this case, the ran-
domly chosen natural frequencies are ωh = 1.5 and ω� =
(1.002, 0.986, 0.991, 1.017) for � = 2, . . . , 5. First, we con-
sider the case with α = 0, which returns back to the motif of
a star graph. According to the results of Ref. [7], the chosen

ω ≈ 0.5 is not large enough to induce RS. Figure 2(a) shows
the numerical results, where the inset is the network configu-
ration and the red and blue lines represent the dependence of
Rh� and R�� on the coupling strength λ, respectively. We see
that the two lines reach R = 1 at the same λ, confirming that
there is no RS.

Then, we move to the case with α > 0, corresponding to
the connection between leaf nodes 2 and 3 in Fig. 1. As an
example, we consider the case with α = 1. Figure 2(b) shows
the results, where the inset is the network configuration and
the red and blue lines represent the dependence of Rh� and R��

on the coupling strength λ, respectively. We see that similar
to Fig. 2(a), the two lines in Fig. 2(b) also reach R = 1 at the
same λ, indicating no RS. Is this true? To go deeper to study
the influence of the connection between leaf nodes 2 and 3 on
RS, we calculate the order parameters for both the group of
connected leaf nodes and the indirectly connected group, i.e.,
the values of Rc

h�, Rc
��, Ri

h�, and Ri
�� for the case with α = 1.

Figure 2(c) shows the results for the group of connected leaf
nodes, where the inset gives the network configuration and the
red and blue lines represent the dependence of Rc

h� and Rc
�� on
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FIG. 2. Partial RS induced by the connection between
leaf nodes 2 and 3, with N = 5, ωh = 1.5, and ω� =
(0.980, 1.005, 0.997, 1.017) for � = 2, . . . , 5, where the insets
show their network configurations. (a) and (b) show the cases
of α = 0 and 1.0, respectively, where the red and blue lines
represent the dependence of Rh� and R�� on the coupling strength
λ, respectively. (c) shows the group of connected leaf nodes with
α = 1, where the red and blue lines represent the dependence of Rc

h�

and Rc
�� on the coupling strength λ, respectively. (d) shows the group

of indirectly connected leaf nodes with α = 1, where the red and
blue lines represent the dependence of Ri

h� and Ri
�� on the coupling

strength λ, respectively.

the coupling strength λ, respectively. We see that Rc
�� reaches

unity at a small λ, while Rc
h� reaches unity at λ ≈ 0.4. That is,

the order parameter Rc
h� for the connected hub and leaf nodes

reaches an unsynchronized state, while the order parameter
Rc

�� for the connected leaf nodes reaches a synchronized state
before λ ≈ 0.4, indicating a typical RS. Similarly, Fig. 2(d)
shows the results for the group of indirectly connected leaf
nodes, where the inset gives the network configuration and
the red and blue lines represent the dependence of Ri

h� and Ri
��

on the coupling strength λ, respectively. We see that Ri
�� also

reaches unity earlier than Ri
h�, confirming the existence of RS

again. In conclusion, we find a phenomenon in which the two
groups of connected and indirectly connected leaf nodes will
show RS independently but not when they are considered as
a whole. As the group of connected leaf nodes is not exactly
consistent with the definition of RS in Ref. [7], we will not
pay attention to it. In the following, we will focus on only the
group of indirectly connected leaf nodes because it is exactly
consistent with the definition of RS in Ref. [7]. Considering
the fact that the group of indirectly connected leaf nodes is
only one part of all the leaf nodes, we call its RS partial RS.

The PRS in Fig. 2(d) is based on a specific set of ω�. Is
this PRS robust to other sets of ω�? To answer this question,
we carried out extensive numerical simulations and confirmed
this result. We find that it is very easy for the two connected
leaf nodes, 2 and 3, to be synchronized but the synchronization
of the indirectly connected leaf nodes, 4 and 5, is a little com-
plicated. Thus, we will mainly focus on the group of indirectly
connected leaf nodes, i.e., the case in Fig. 2(d). Figures 3(a)
and 3(b) show two more typical cases with α = 1.0, where
the set of ω� is taken as ω� = (0.999, 0.980, 1.012, 1.014) in

FIG. 3. Double PRS induced by the connection between leaf
nodes 2 and 3, with N = 5 and ωh = 1.5, where the red and blue lines
represent the dependence of Ri

h� and Ri
�� on the coupling strength

λ, respectively. (a) and (b) show the case of α = 1.0, with ω� =
(0.999, 0.980, 1.012, 1.014) and ω� = (0.996, 1.018, 0.995, 0.998),
respectively. (c) and (d) show the case of α = 0.5, with ω� =
(0.985, 0.996, 1.001, 1.019) and ω� = (0.996, 1.018, 0.995, 0.998),
respectively.

Fig. 3(a) and ω� = (0.996, 1.018, 0.995, 0.998) in Fig. 3(b).
We see that Fig. 3(a) is similar to Fig. 2(d), confirming PRS.
However, Fig. 3(b) shows another kind of PRS in which there
are two separated regions of PRS, i.e., one around λ = 0.1
and another around λ = 0.3. We will call this double PRS.
Correspondingly, we will call the PRS in Fig. 3(a) single
PRS. That is, we now have two kinds of PRS, i.e., single and
double PRS.

We have found phenomena similar to those in Figs. 3(a)
and 3(b) for cases with other α, indicating that they
are general for the network in Fig. 1. As an example,
Figs. 3(c) and 3(d) show the results for α = 0.5, with
ω� = (0.985, 0.996, 1.001, 1.019) in Fig. 3(c) and ω� =
(0.996, 1.018, 0.995, 0.998) in Fig. 3(d). We see single PRS
in Fig. 3(c) but double PRS in Fig. 3(d).

Further, we find that the state of single or double PRS
is sensitively dependent on both the set of ω� and the con-
nections among leaf nodes. For example, for a fixed set of
ω�, the state of the system will change between single and
double PRS when the connection between leaf nodes 2 and 3
is changed to other nodes such as between leaf nodes 3 and 4
or between leaf nodes 4 and 5. However, for a fixed connection
between leaf nodes 2 and 3, the state of the system will also
change between single and double PRS for different sets of
ω�. Figure 4 shows a phase diagram of PRS on ω4 and ω5 for
fixed ω2 = 0.98 and ω3 = 1.02, where the blue, yellow, and
green regions represent single PRS, double PRS, and no PRS,
respectively. We see that the three regions are not smoothly
separated from each other and look like a fractal, confirming
the sensitivity of PRS to system parameters.

B. Case with N = 9

All the above results were obtained for the fixed network
size of N = 5. To study the influence of network size, we
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FIG. 4. Phase diagram of PRS on ω4 and ω5 with fixed ω2 = 0.98
and ω3 = 1.02, where the blue, yellow, and green regions represent
the single PRS, double PRS, and no PRS, respectively.

gradually increase the number of leaf nodes but leave the hub
node unchanged. In this situation, more connections can be
added among the leaf nodes, and thus, more configurations
of the network can be generated. We find that PRS can
still be observed and the areas of PRS increase with the
number of connections among the leaf nodes. Figure 5
shows such an example with N = 9 where α = 1 and
the natural frequencies are taken as ωh = 1.5 and ω� =
(0.998, 1.014, 0.981, 0.992, 0.982, 1.004, 0.996, 1.013) for
� = 2, . . . , 9. The connections among the leaf nodes in
Figs. 5(a)–5(f) are gradually increased from 0 to 5. That
is, Fig. 5(a) is, in fact, the motif of the star graph with no
connections among the leaf nodes. We see that it has no RS
and thus confirms the result in Fig. 2(a). However, we see
from Fig. 5(b), which has one connection among the leaf
nodes, that the blue line for Ri

�� will reach unity at about
λ = 0.3, while the red line for Ri

h� is still slightly smaller than
unity, indicating the emergence of PRS. We interestingly find
that in the coupling range of PRS, the difference between
Ri

�� and Ri
h� will become larger and larger as the number of

connections among the leaf nodes continues to increase [see
Figs. 5(c)–5(f)].

On the other hand, we notice that all the plots in Figs. 5(b)–
5(f) show the single PRS but no double PRS. To figure out the
reason, we carried out extensive numerical simulations and
found that the fixed set of frequencies ωh and ω� in Figs. 5(b)–
5(f) are the main reason. In fact, it is possible to observe the
double PRS if we change the set of frequencies, indicating
that both the single and double PRS can be observed in the
case with N = 9.

In addition to the size effect of the network, another
key element that influences PRS is the frequency difference
between the hub and leaf nodes. To illustrate this, we
here fix a set of natural frequencies of leaf nodes ω� for
� = 2, . . . , N and let the frequency of the hub node ωh

gradually increase from 1.0 to a larger value. Then, we check

FIG. 5. PRS of the star-like networks with N = 9,
where the natural frequencies are taken as ωh = 1.5 and
ω� = (0.998, 1.014, 0.981, 0.992, 0.982, 1.004, 0.996, 1.013) for
� = 2, . . . , 9. (a)–(f) show cases with different network
configurations where the connections among the leaf nodes
are gradually increased from 0 to 5, respectively. The inset of each
panel gives the configuration of the network.

the range of PRS, regardless of whether it is single or double
PRS. That is, we measure the value of 
R ≡ Ri

�� − Ri
h�,

provided that Ri
�� reaches unity. Figures 6(a) and 6(b)

show the phase diagrams of 
R on the parameter plane
(
ω, λ) for N = 5 and 9, respectively, with 
ω ≡ ωh − ω�,
where the color bar represents the value of 
R and the
sets of natural frequencies of the leaf nodes are fixed at
ω� = (0.996, 1.018, 0.995, 0.998) in Fig. 6(a) and ω� =
(0.989, 1.016, 1.012, 1.010, 1.011, 0.985, 0.989, 0.995) in
Fig. 6(b). We see from Fig. 6(a) that double PRS occurs for
0.23 < 
ω < 1.09 and single PRS occurs for 
ω > 1.09.
Figure 6(b) shows behavior similar to that in Fig. 6(a). In
contrast to Figs. 6(a) and 6(b), Figs. 6(c) and 6(d) show
the phase diagrams of another set of natural frequencies
of leaf nodes for N = 5 and 9, respectively, in which
the set of natural frequencies of leaf nodes are fixed at
ω� = (0.975, 0.991, 1.008, 1.024) in Fig. 6(c) and ω� =
(0.981, 0.982, 0.992, 0.996, 0.998, 1.004, 1.013, 1.014) in
Fig. 6(d). We see that 
R also depends on 
ω and λ.
Therefore, the frequency difference between the hub and leaf
nodes has a serious influence on PRS.

IV. A BRIEF THEORETICAL ANALYSIS

In the above numerical simulations, we observed three
main results: (i) The group of connected leaf nodes will
be easily synchronized at a small coupling strength [see
Fig. 2(c)]. (ii) The group of indirectly connected leaf nodes
will show PRS at a smaller 
ω where RS is not available for
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FIG. 6. Phase diagrams of 
R on the parameter plane (
ω, λ),
where the color bar represents the value of 
R. (a) and (c) show
the case with N = 5, and its network configuration is the same
as in Fig. 2(d); (b) and (d) show the case with N = 9, and its
network configuration is the same as in Fig. 5(e). The set of natural
frequencies of leaf nodes is fixed as ω� = (0.996, 1.018, 0.995,

0.998) in (a), ω� = (0.989, 1.016, 1.012, 1.010, 1.011, 0.985, 0.989,

0.995) in (b), ω� = (0.975, 0.991, 1.008, 1.024) in (c), and
ω� = (0.981, 0.982, 0.992, 0.996, 0.998, 1.004, 1.013, 1.014) in (d).

the case of no connections among the leaf nodes [see Fig. 2(a)
for no RS and Fig. 2(d) for PRS]. (iii) PRS can be either single
or double PRS, depending on the frequency distribution of
the leaf nodes (see Fig. 3). To understand the mechanism of
these results, we take the case with N = 5 as an example to
undertake a theoretical analysis, while the cases with N > 5
can be similarly analyzed.

First, we discuss result (i), i.e., the synchronization in
Fig. 2(c). In this case, the influence of the hub node on the two
connected leaf nodes can be considered a common perturba-
tion. Thus, the dynamics of the two connected leaf nodes, 2
and 3, can be simplified to

ż2 = (γ + iω2 − |z2|2)z2 + αλ

2
(z3 − z2) + ξ (t ),

ż3 = (γ + iω3 − |z3|2)z3 + αλ

2
(z2 − z3) + ξ (t ), (11)

where ξ (t ) represents the perturbation from the hub node.
Equation (11) is a typical system of two coupled oscillators
when ξ (t ) is ignored. In this case, the coupling term will easily
make the largest transverse Lyapunov exponent of two iden-
tical or nearly identical oscillators be negative and thus will
make the system be synchronized [25,26]. When ξ (t ) is un-
correlated to the dynamics of the system, it can be considered
to be a noise common to both z2 and z3. In this case, it is well
known that a common noise is helpful for synchronization,
called noise-induced synchronization [27,28]. Therefore, both
the coupling and common noise are helpful for the synchro-
nization in Eq. (11), which results in the early synchronization
between connected oscillators 2 and 3 in Fig. 2(c).

Next, we discuss result (ii), i.e., PRS in Fig. 2(d). In this
case, we focus on the coupling range in which the two con-

nected leaf nodes are synchronized and thus have stronger
influence on the indirectly connected leaf nodes through the
hub node. To figure out the mechanism of result (ii), we divide
the influence of the network on the two indirectly connected
leaf nodes, 4 and 5, into two parts: one directly from the hub’s
dynamics, ξ (t ), and one from connected leaf nodes 2 and 3,
y(t ). Thus, the dynamics of the two indirectly connected leaf
nodes, 4 and 5, can be simplified to

ż4 = (γ + iω4 − |z4|2)z4 + y(t ) + ξ (t ),

ż5 = (γ + iω5 − |z5|2)z5 + y(t ) + ξ (t ). (12)

As the difference between ωh and ω� is relatively large, the
hub node will not synchronize with the leaf nodes in the region
of PRS. When y(t ) does not exist, the hub node will take only
the role of transmitter to make the indirectly connected leaf
nodes synchronized, provided that the frequency difference

ω is large enough, such as 
ω = 1.5 in Refs. [7,19]. Other-
wise, the hub node not may be completely uncorrelated with
the leaf nodes when 
ω is not large enough, such as 
ω =
0.5 in Fig. 2(a). In this case, ξ (t ) cannot be considered a pure
transmitter and thus weakens the indirect coupling between
nodes 4 and 5, resulting in no RS in Fig. 2(a). However, when
y(t ) is considered, it will seriously influence the dynamics
of the two indirectly connected leaf nodes, 4 and 5, as its
natural frequency is very close to that of nodes 4 and 5. In this
sense, y(t ) will behave as a common driving signal to induce a
synchronization between nodes 4 and 5 [25,26] and thus result
in the observed PRS in Fig. 2(d).

Finally, we discuss result (iii), i.e., double PRS in Fig. 3(d).
We notice from Fig. 4 that the areas of double PRS are located
around the diagonal line of ω4 ≈ ω5, indicating that a small
difference between ω4 and ω5 is a necessary condition of dou-
ble PRS. Based on this condition of ω4 ≈ ω5, it is possible for
the first PRS to appear at a relatively smaller coupling strength
λ if the initial conditions of the system are appropriately
chosen (see the jumping behaviors in Fig. 3(d) at λ ≈ 0.1).
However, this synchronization between indirectly connected
nodes 4 and 5 will be broken when the coupling strength λ is
further increased. In this case, the further increased coupling
actually amplifies the small difference between nodes 4 and
5 and thus induces dynamical instability, similar to the mech-
anism of the first loop of the double explosive transition in
Ref. [29]. The mechanism of the second PRS in Fig. 3(d) is
the same as that of the single PRS in Fig. 3(c).

This double PRS may be related to the echo effect involved
in cognitive processes. Take epileptic seizures as an example.
During the seizure process, the coupling between brain areas
will change with time [30], and a patient will undergo four
phases: the interictal period, the onset of the seizure, and the
propagation and termination phases. Recently, Shen and Liu
studied the mechanism of the echo effect [31]. They showed
that the echo effect is, in fact, double or multiple coupling
ranges of synchronization and can be observed in Electroen-
cephalography (EEG) databases for pediatric subjects with
intractable seizures [32] and the resting-state EEG from a long
sustained attention task [33]. In this sense, double PRS may
provide new insight into the understanding of the echo effect.
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V. DISCUSSION AND CONCLUSIONS

RS is currently a hot topic in the field of complex networks.
So far, most efforts have been made for star graphs with
various oscillators and frustrations. However, pure star graphs
are very rare in realistic systems, and instead, most of them
feature star-like graphs, such as brain and social networks.
Based on this observation, we here presented a model of
star-like graphs in which the leaf nodes were divided into
two groups, with one group being weakly connected and the
other being unconnected. We found that its RS cannot be
described by the previous definition, i.e., all the leaf nodes
should be synchronized. Therefore, we extended the concept
of RS to PRS, in which only the unconnected leaf nodes are
synchronized. This concept of PRS can be conveniently used
for realistic cases. For example, in a functional brain network,
a connection is considered by asking only whether two remote
nodes are synchronized but not whether all the neighboring
nodes are synchronized. Appendix A shows evidence from
resting-state functional connectivity [34,35].

At the same time, we revealed that the required frequency
difference between the hub and leaf nodes for PRS in Fig. 6(a)
(
ω ≈ 0.23) is much smaller than that for RS in Ref. [7]
(
ω ≈ 1.5). This finding is practically useful because the fre-
quency differences of neurons in the human brain are usually
not very large. That is, the required small frequency difference
for PRS may have practical applications such as explaining
the long connections of brain functional networks, in contrast
to the theoretical meaning of the required large frequency
difference for RS.

The model in Fig. 1 can also be analyzed from another
angle. If we consider all the connected leaf nodes and the
hub node as a whole, this combination will be equivalent to
a “big hub.” Especially, it is not strange to observe PRS in the
indirectly connected leaf nodes when all the nodes in the big
hub are synchronized with each other. However, in the model
in Fig. 1, the connected leaf nodes are not synchronized with
the hub node; thus, they cannot be considered to be a real big
hub. Instead, they play a key role in the emergence of PRS
among the indirectly connected leaf nodes. Without them, we
will not have PRS [see Fig. 2(a)].

On the other hand, the coupling strength αλ in Fig. 1
represents the effect from both the connection between leaf
nodes and the influence of other parts of the brain network.
In general, α should be smaller than unity. However, for the
nearly identical natural frequencies ω� of leaf nodes with
small ε�, two connected leaf nodes can easily be synchronized
for smaller α. In this sense, a further increase in α will not
have more influence on other parts of system. Therefore, the
results in Fig. 3 for α = 1.0 and 0.5 can also be observed for
cases with smaller α.

In conclusion, we presented a model of a star-like graph
to study RS for realistic systems such as brain functional
networks. We found that RS can still be observed when we
consider only the indirectly connected leaf nodes and called it
PRS. We also found the phenomenon of double PRS, except
in the single PRS. We showed the phase diagram of both the
single and double PRS and found that the frequency difference
between the hub and leaf nodes is a key quantity influencing
the types of PRS. Further, we showed that more connections

among the leaf nodes favor PRS. A brief theoretical analysis
was provided to explain these results. These findings highlight
the fundamental question of how the brain functional network
emerges from the brain structural network.
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APPENDIX A: PARTIAL REMOTE SYNCHRONIZATION
IN BRAIN FUNCTIONAL NETWORKS

One of the key problems in neuroscience is to understand
how the long connections of brain functional networks come
from the short connections of neural networks. So far, a
promising way to solve this problem is by RS. However, RS is
based on a pure star graph and thus is still a little far away from
real brain functional networks. To go forward a substantial
step, in this work, we consider the case of a more realistic
star-like graph with partial connections among its leaf nodes
and discuss its RS. Surprisingly, we find that we cannot ob-
serve RS again because the connected leaf nodes are easier to
synchronize than those indirectly connected leaf nodes. This
finding seems to indicate that RS does not work for realistic
brain functional networks, which is not good news for the
understanding of how the long connections of brain functional
networks come from the short connections of neural networks.
Fortunately, we further reveal the phenomenon of PRS and
thus extend the concept of RS to realistic situations. In this
sense, it will be better if we can provide some evidence to
support the concept of PRS, which is the purpose of this
Appendix.

To determine the evidence for PRS in realistic situations,
we turn to the brain structural network and its correspond-
ing brain functional network. For this purpose, we employ
the weighted network of the cerebral cortex from the data
of Refs. [34,36], which was partitioned into 989 nodes with
L = 17 865 connections [37]. By checking all 989 nodes and
their nearest neighbors, we find that for each node, some of its
nearest neighbors are connected to each other while the others
are not. Figure 7(a) shows such an example, where the red
node represents the hub and the five blue nodes represent the
leaf nodes. We see from Fig. 7(a) that there is one connection
among the leaf nodes, indicating that it belongs to the motif
of the star-like network in Fig. 1.

Then, we consider the corresponding functional network
of Fig. 7(a), whose nodes are the same as those of the struc-
tural network but whose connections are different; that is, the
structural matrix {Wi j} is different from the functional matrix
{Fi j}. For this purpose, we consider the empirical data for
the resting-state functional connectivity from Ref. [34]. By
focusing on each individual node in Fig. 7(a) and checking
the functional connections among its nearest neighbors, we
find that some new connections emerge and, at the same time,
some old connections disappear, confirming the existence of
PRS. As an example, Fig. 7(b) shows the functional con-
nections among the five leaf nodes in Fig. 7(a). Comparing
Fig. 7(b) to Fig. 7(a), we see that only one connection between
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FIG. 7. PRS in a realistic resting-state brain functional network.
(a) shows a typical star-like motif from the brain structural network
with 989 nodes from the Refs. [34,36], where the red node represents
the hub and the five blue nodes represent the leaf nodes. (b) shows
the functional connections among the five leaf nodes in (a), where the
only black line represents the remaining old connection in (a) and the
three pink lines represent the new emerging connections of PRS.

the hub and leaf nodes in Fig. 7(a) remains in Fig. 7(b) (see
the black line) and, at the same time, three new connections
emerge in Fig. 7(b) (see the three pink lines), indicating
that remote synchronization has occurred in the unconnected
neighboring nodes of the structural network but not all the
neighboring nodes, thus confirming PRS.

APPENDIX B: PARTIAL REMOTE SYNCHRONIZATION
IN CHAOTIC SYSTEMS

To study PRS in chaotic systems, we take the network
motif in Fig. 2(d) as an example and consider the nodes as
piecewise Rossler units [38]:

ẋi = −αi

⎧⎨
⎩�

⎡
⎣xi − λ

ki

5∑
j=1

ai j (x j − xi )

⎤
⎦ + βyi + σ zi

⎫⎬
⎭,

ẏi = −αi(−xi + vyi ),

żi = −αi[−g(xi ) + zi], (B1)

where the piecewise part is g(xi ) = 0 if xi � 3 and g(xi ) =
μ(xi − 3) otherwise. The parameters are taken as � =
0.05, β = 0.5, σ = 1, μ = 15, and v = 0.02 − 10/H , with

FIG. 8. PRS in a chaotic system of piecewise Rossler units with
the network motif from Fig. 2(d). (a) shows the group of all nodes,
where the red and blue lines represent the dependence of Rh� and
R�� on the coupling strength λ, respectively. (b) shows the group
of indirectly connected leaf nodes, where the red and blue lines
represent the dependence of Ri

h� and Ri
�� on the coupling strength

λ, respectively.

H = 55 being a tunable quantity that regulates the dynamical
state of the system. A = {ai j} is the adjacency matrix (ai j = 1
if nodes i and j are connected and 0 otherwise), λ is the cou-
pling strength, and ki is the degree of the node, with kh = 4,
k2 = k3 = 2, and k4 = k5 = 1. The difference between the
natural frequencies of the nodes is implemented by letting
αh = 3.5 for the hub node and α� be randomly chosen from
(1.98, 2.02) for all four leaf nodes.

For each node i, the instantaneous phase at time t is ge-
ometrically evaluated [39] as θi = arctan(yi/xi ). Then, we
calculate the order parameters Rh� and R�� of all the nodes
and the order parameters Ri

h� and Ri
�� of the indirectly con-

nected leaf nodes. Figure 8(a) shows the results for the group
of all the nodes, where the red and blue lines represent the
dependence of Rh� and R�� on the coupling strength λ, re-
spectively. We see that with the increase of the coupling
strength λ, neither Rh� nor R�� will reach unity, indicating
that there is no synchronization or remote synchronization.
However, this conclusion will change when we calculate the
quantities of Ri

h� and Ri
�� for the indirectly connected leaf

nodes. Figure 8(b) shows the results for the group of indirectly
connected leaf nodes, where the red and blue lines represent
the dependence of Ri

h� and Ri
�� on the coupling strength λ,

respectively. We see that with the increase in λ, Ri
�� will reach

unity for λ > 2.8, while Ri
h� remains less than unity, indicating

a typical PRS. Therefore, PRS can be observed in chaotic
systems.
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