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Nonequilibrium processes break time-reversal symmetry and generate entropy. Living systems are driven
out-of-equilibrium at the microscopic level of molecular motors that exploit chemical potential gradients to
transduce free energy to mechanical work, while dissipating energy. The amount of energy dissipation, or the
entropy production rate (EPR), sets thermodynamic constraints on cellular processes. Practically, calculating the
total EPR in experimental systems is challenging due to the limited spatiotemporal resolution and the lack of
complete information on every degree of freedom. Here, we propose an inference approach for a tight lower
bound on the total EPR given partial information, based on an optimization scheme that uses the observed
transitions and waiting times statistics. We introduce hierarchical bounds relying on the first- and second-order
transitions, and the moments of the observed waiting time distributions, and apply our approach to two generic
systems of a hidden network and a molecular motor, with lumped states. Finally, we show that a lower bound on
the total EPR can be obtained even when assuming a simpler network topology of the full system.
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I. INTRODUCTION

Advances in experimental techniques over the last few
decades have opened new possibilities for studying systems
at the single-molecule level [1–3]. In parallel, new theoretical
approaches of stochastic thermodynamics for studying the
physics of nonequilibrium, small fluctuating systems have
emerged [4–6]. These include the mathematical relations
describing symmetry properties of the stochastic quanti-
ties like work [7–10], heat [9], and entropy production
[11,12], leading to fundamental limits on physical systems
like heat engines [13–15], refrigerators [16], and biological
processes [17,18].

Living systems operate far from equilibrium and constantly
produce entropy. At the molecular level, the hydrolysis of
fuel molecules, such as adenosine triphosphate (ATP), powers
nonequilibrium cellular processes, utilizing part of the liber-
ated free energy for physical work, while the rest is dissipated
[5]. The dissipation, or entropy production, is a signature of
irreversible processes and can be used as a direct measure of
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the deviation from thermal equilibrium [19–22]. Therefore,
the entropy production rate plays an important role in our
understanding of the physics and underlying mechanism, gov-
erning biological and chemical processes [13–15,17,18,23].

Various studies have focused on estimating the mean en-
tropy production rate using the thermodynamic uncertainty
relations (TUR) using current fluctuations [24–29], fluctua-
tions of first passage time [30,31], kinetic uncertainty relation
in terms of the activity [32], or unified thermodynamic and
kinetic uncertainty relations [33]. Other approaches utilize
waiting-time distributions [34–36], machine learning [37–40],
and single trajectory data [41–43]. Additional studies calcu-
late higher moments of the full probability density function
of the entropy production [44], use irreversible currents in
stochastic dynamics described by a set of Langevin equa-
tions [45], or linear response theory [23].

Estimating the total EPR is only possible if we have knowl-
edge regarding all of the degrees of freedom that are out of
equilibrium [46,47]. However, due to practical limitations on
the spatiotemporal resolution, not all of them can be experi-
mentally accessible, and one can only obtain a lower bound on
the total EPR for partially observed or coarse-grained systems
[48–55].

The passive partial entropy production rate σpp is an es-
timator for the EPR calculated from the transitions between
two observed states, which bounds the total EPR [48,56–58].
This estimator, however, fails to provide a nonzero bound
in case of vanishing current over the observed link, i.e., at
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stalling conditions [48]. Other EPR estimators for partially
observed systems based on inequality relations like the TUR
[24–26,32,33] also fail to provide a nontrivial bound on the
total EPR in the absence of net flux in the system.

The Kullback-Leibler Divergence (KLD) estimator σKLD

is based on the KLD, or the relative entropy, between
the time-forward and the time-revered path probabilities
[21,46,59–64]. For semi-Markov processes, this estimator is
a sum of two contributions. The first stems from transitions
irreversibility or cycle affinities σaff, whereas the second stems
from broken time-reversal symmetry reflected in irreversibil-
ity in waiting time distributions (WTD) σWTD [65]. Using the
KLD estimator, one can obtain a nontrivial lower bound on
the total EPR for second-order semi-Markov processes even
in the absence of the net current [35,65–67]. Moreover, a
lower bound on the total EPR can be obtained from the KLD
between transition-based WTD [60,66,68].

Recently developed estimators solved an optimization
problem to obtain a lower bound on the entropy production.
For a discrete-time model, Ehrich proposed to search over
the possible underlying systems that maintain the same ob-
served statistics using knowledge on the number of hidden
states [69]. For continuous-time models, Skinner and Dunkel
minimized the EPR on a canonical form of the system that
preserved the first- and second-order transition statistics to
yield a lower bound on the total EPR σ2 [70]. The authors
also formulated an optimization problem to infer the EPR
in a system with two observed states using the waiting time
statistics [34].

In this paper, we provide a tight bound on the total EPR by
formulating an optimization problem based on the statistics
of both transitions and waiting times. We use the first- and
second-order statistics for the mass transition rates, and any
chosen number of moments of the observed waiting time dis-
tributions. For a system with a known topology, we calculate
the analytical expressions of the statistics as functions of the
mass rates and the steady-state probabilities, which describe
a possible underlying system and are used as variables in
the optimization problem. These analytical expressions are
then used to constrain the optimization variables to match
the observed statistics. We show for a few continuous-time
Markov chain systems that using the constraints of the mass
rates and only the first moment of the WTD already provides
close-to-total EPR value. Our approach outperforms other
estimators, such as σpp, σKLD, σaff, and σ2, in terms of the
tightness of the lower bound. In the case of a complex model,
where the formulation of the optimization problem might not
be practical due to the number of constraints, or in case the full
topology is not known, we show numerically that assuming a
simpler underlying topology can provide a lower bound on the
total EPR.

The paper is organized as follows. In Sec. II, we describe
our model system and the coarse-graining approach. The re-
sults are presented in Sec. III: We discuss the estimator in
Sec. III A, apply it to different systems in Sec. III B, demon-
strate how the accuracy of the measured statistics affects the
results of our estimator in Sec. III C, and finally, we show
the results of the optimization problem assuming a simpler
underlying model in Sec. III D. We conclude our findings in
Sec. IV.

II. MODEL

We assume a continuous time Markov chain over a finite
and discrete set of states i = {1, 2, . . . , N}. A trajectory is
described by a sequence of states and their corresponding
residence times before a transition to the next state occurs.
Being a Markovian process, the jump probabilities depend
only on the current state.

The transition rates wi j from state i to j determine the time
evolution of the probabilities for the system to be in each state,
according to the Master equation d

dt p(t )T = p(t )T W , where T
is the transpose operator, and W is the rate matrix

[W ]i j =
{
wi j j �= i
−λi j = i

. (1)

p(t ) is a column vector of the state probabilities at time t ,
with

∑
i pi(t ) = 1, and the diagonal entries are calculated

according to λi = ∑
j �=i wi j for probability conservation.

At the long-time limit, the system eventually reaches
a steady state π, where limt→∞ pi(t ) = πi such that 0 =
d
dt π

T = πT W [71].
The waiting time at each state i is an exponential random

variable with mean waiting time of τi = λ−1
i .

The mass rates ni j are defined as follows:

ni j =
{
πiwi j j �= i
0 j = i

. (2)

The probabilities of jumping from state i to state j can be
written in terms of the mass rates,

pi j = wi j

λi
= ni j∑

j′ �=i ni j′
. (3)

The steady-state total EPR can be calculated by multi-
plying the net currents and the mass rate ratios (affinities),
summing over all the links [5,6],

σtot =
∑
i, j

πiwi j log

(
πiwi j

π jw ji

)

=
∑
i, j

ni j log

(
ni j

n ji

)

=
∑
i< j

(ni j − n ji ) log

(
ni j

n ji

)
. (4)

Given a long trajectory of a total duration T , the steady-state
probability πi is the fraction of time spent in state i, and the
mass rate ni j is the number of transitions i → j divided by T .

According to the definition of the mass rates in Eq. (2), at
the steady state, mass conservation is satisfied at each state,

∀i :
∑

j

ni j =
∑

j

n ji. (5)

In many practical scenarios, some of the microstates cannot
be distinguished, and the transitions between them cannot
be observed. In such a case, a set of states {i1, i2, . . . , iNI }
is observed as a single coarse-grained state I [Fig. 1(a)].
The observed trajectory, therefore, includes only coarse-
grained states and the combined residence time [Fig. 1(b)],
and it is not necessarily a Markovian process [65]. Such a
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FIG. 1. Coarse graining. (a) The full Markovian system (left) and the coarse-grained system (right). (b) An example of a full trajectory
(left) containing the actual states and the corresponding coarse-grained trajectory (right) containing only the observed states.

decimation procedure of lumping several states can give rise
to semi-Markovian processes of any order depending on the
topology of the network [70,72–74]. In this case, the observed
statistics of two or more consecutive transitions may give us
additional information on the process.

III. RESULTS

A. Bounding the entropy production rate

Given a coarse-grained system with a model of the full
underlying Markovian network topology, we can formulate
an optimization problem for obtaining a tight bound on the
total EPR. We consider a few observables: the coarse-grained
steady-state probabilities πI , which is the probability of ob-
serving the system in the coarse-grained state I; the first-order
mass rates nIJ , which is the rate of observing the transition
I → J; the second-order mass rates nIJK , which is the rate of
observing the transition I → J followed by the transition J →
K ; and the conditional waiting time distributions ψIJK (t ),
which is the distribution of waiting times in a coarse-grained
state J before a transition to a coarse-grained state K occurs,
conditioned on the previous transition being I → J .

We search over the space of all possible underlying sys-
tems with the same topology as our hypothesized Markovian

model that give rise to the same observed statistics, while
minimizing the EPR. Trivially, the EPR of the coarse-grained
system at hand is bounded from below by the EPR of the
underlying Markovian system with the same observed statis-
tics after coarse graining, having the minimal value of entropy
production.

1. Analytical expressions of the observed statistics

The observed statistics of the coarse-grained system can
be expressed analytically in terms of the mass rates and
steady-state probabilities of the model underlying system.
From probability and mass conservation πI = ∑

i∈I πi, and
nIJ = ∑

i∈I, j∈J ni j , respectively. The mass conservation for
the second-order transitions nIJK must include all the paths
starting at state i ∈ I , passing through a state in J , where any
number of transitions might occur inside J , and jumping to
state k ∈ K . To account for the transitions within J , we define
the matrix PJJ of the transition probabilities between states in
J , jm, jn ∈ J ,

[PJJ ]mn =
{

p jm jn m �= n
0 m = n

. (6)
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Summing over the possible transitions from I , transitions
within J , and transitions to K , we have (see Appendix A)

nIJK =
∑

i∈I,k∈K

nT
iJ [I − PJJ ]−1 pJk, (7)

where I is the identity matrix of the size of PJJ , and niJ and
pJk are column vectors of the mass rates from state i ∈ I to
any state j ∈ J , and jump probabilities from any state j ∈ J to
a state k ∈ K , respectively,

nT
iJ = [

ni j1 , ni j2 , . . . , ni jNJ

]
(8)

and

pT
Jk = [

p j1k, p j2k, . . . , p jNJ k
]
. (9)

The conditional waiting time distribution ψIJK (t ) can be
calculated by the Laplace and inverse-Laplace transforms (full
derivations can be found in Appendix B). We start from the
Laplace transform of ψi j (t ) = wi je−λit , the joint probability
distribution of the transition i → j and the waiting time in the
Markovian state i,

ψ̃i j (s) = L{ψi j (t )} =
∫ ∞

0
ψi j (t )e−tsdt = wi j

s + λi
. (10)

Note that for any function f (t ), f̃ (s → 0) =∫ ∞
0 f (t )e−tsdt |s→0 = ∫ ∞

0 f (t )dt is the normalization of
f (t ). Here, ψi j (t ) is normalized to pi j , i.e., pi j = ∫ ∞

0 ψi j (t )dt
[Eq. (3)].

Now, we consider the simple case where the second-order
transition through the coarse-grained state J starts and ends in
specific Markovian states i ∈ I and k ∈ K , respectively. The
Laplace transform of the distribution of waiting times in J
before a transition to k occurs, given the previous transition
was i → J is

ψ̃iJk (s) = pT
iJ∑

j∈J pi j
[I − �̃JJ (s)]−1ψ̃Jk (s) (11)

where

ψ̃
T
Jk (s) = [ψ̃ j1k (s), ψ̃ j2k (s), . . . , ψ̃ jN j k (s)] (12)

and �̃JJ (s) is a matrix of the Laplace transforms of every
joint probability distribution of waiting times and transitions
within J ,

�̃JJ (s) =
{
ψ̃ jm jn (s) m �= n
0 m = n

. (13)

We denote ψ̃iJK (s) ≡ ∑
k∈K ψ̃iJk (s). Then, the Laplace

transform of the conditional waiting time distribution is

ψ̃IJK (s) =
∑
i∈I

πi

πI

ψ̃iJK (s)

ψ̃iJK (s → 0)
. (14)

Finally, we apply an inverse Laplace transform to obtain
the conditional probability density

ψIJK (t ) = L−1{ψIJK (s)}. (15)

We further impose mass conservation at each of the Marko-
vian states according to Eq. (5), to make sure the solution
represents a valid Markovian system.

2. Formalizing the optimization problem

Let S be the real underlying Markovian system and let R
be a general underlying system with the same topology as
S , i.e., the same states and possible transitions as S , but R
can have arbitrary mass rates and steady-state probabilities.
Given the set of all systems R with the same steady-state
probabilities πR

I = πS
I , same first-order mass rates nR

IJ = nS
IJ ,

same second-order mass rates nR
IJK = nS

IJK , and the same con-
ditional waiting time distributions ψR

IJK (t ) = ψS
IJK (t ), as the

system S , the following inequality holds for the EPR of S and
R, σ (S ) and σ (R), respectively,

σtot(S ) � min
R

{
σtot(R)|∀I,J,K : πR

I = πS
I , nR

IJ = nS
IJ ,

nR
IJK = nS

IJK , ψR
IJK (t ) = ψS

IJK (t )
} ≡ σ

(∞)
opt , (16)

where σ
(∞)
opt is the minimal EPR value of all the possible un-

derlying systems R. The inequality holds since the real system
S belongs to the set of systems over which we minimize. The
only variables of the optimization problem are ni j and πi, from
which one can fully describe any of the possible underlying
Markovian systems R. All the constraints, πI , nIJ , nIJK , and
ψIJK (t ), as well as the EPR objective function, depend on
these variables. Note that these variables are bounded by
0 � πi � πI and 0 � ni j � nIJ .

In contrast to the constraints on the steady-state proba-
bilities and the first- and second-order mass rate values, the
constraint on the waiting-time distributions requires an equal-
ity of continuous functions ψIJK (t ), which one cannot fully
reconstruct from trajectory data of finite duration. Moreover,
solving the optimization problem using a constraint on a func-
tion with nontrivial dependency on the optimization problem
variables is extremely challenging. Thus, we modify the op-
timization, and instead, use the moments of the waiting time
distributions,

σ
(n)
opt (S ) ≡ min

R

{
σtot(R)|∀I,J,K : πR

I = πS
I , nR

IJ = nS
IJ ,

nR
IJK = nS

IJK , ∀k∈{1,2,...,n} :
〈
t k
IJK

〉R = 〈
t k
IJK

〉S}
, (17)

where 〈t k
IJK〉 is the kth moment of the conditional waiting time

distribution ψIJK (t ). Using an increasing number of moments,
we can write the hierarchical bounds,

∀n∈N : σtot(S ) � σ
(∞)
opt (S ) � σ

(n)
opt (S ) � · · · � σ

(1)
opt (S ). (18)

We can easily get the analytical expressions for the mo-
ments 〈t k

IJK〉 from the Laplace transform (see Appendix B),

〈
t k
IJK

〉 = (−1)k dkψ̃IJK (s)

dsk
|s→0. (19)

Now, for each moment, we have an expression that depends
on the optimization problem variables in a simpler way, which
in turn, simplifies the calculations. After calculating the values
of the observables for the optimization problem, we solve it
using a global search nonlinear optimization algorithm [75].
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FIG. 2. Four-state system. (a) Illustration of the full four-state
system topology, including the coarse graining of states 3 and 4 to
state H . (b) Total EPR σtot (solid black line), our bound σ

(1)
opt (brown

cross), KLD estimator σKLD (dotted blue line), affinity estimator σaff

(dashed green line), two-step estimator σ2 (yellow Asterisk), and
the passive partial entropy production σpp (dashed-dotted orange
line). The rates used are w12 = 3 s−1, w13 = 0 s−1, w14 = 8 s−1,
w21 = 2 s−1, w23 = 50 s−1, w24 = 0.2 s−1, w31 = 0 s−1, w32 = 2 s−1,
w34 = 75 s−1, w41 = 1 s−1, w42 = 35 s−1, w43 = 0.7 s−1.

B. Examples

1. Four-state system

We consider a fully-connected network of four states,
with two Markovian observed states {1, 2} and two hidden
states {3, 4}, which are coarse grained to state H [Fig. 2(a)],
resulting in second-order semi-Markov dynamics [65]. The
observed statistics of interest are the steady-state probabilities
π1, π2, and πH , the first-order mass rates n1H , nH1, n2H , and
nH2, the second-order mass rates n1H2 and n2H1 and the kth
moment of the conditional waiting time distributions 〈t k

1H1〉,〈t k
1H2〉, 〈t k

2H1〉, and 〈t k
2H2〉. Notice we only used the second-

order statistics through the coarse-grained state H , since states
1 and 2 are Markovian. Furthermore, we do not use n1H1

and n2H2 since they depend on the other mass rates: n1H1 =

n1H − n1H2 and n2H2 = n2H − n2H1. The derivations of the
analytical expressions of the second-order mass rates and the
moments of the conditional waiting time moments, for this
system, can be found in Appendix C.

We tune the transition rates over the observed link be-
tween states 1 and 2 according to w12(F ) = w12e−βFL and
w21(F ) = w21eβFL, where β = T −1 is the inverse temperature
(with kB = 1), and L is a characteristic length scale, to mimic
external forcing. We compare the different EPR estimators on
the system for several values for a driving force F over the
observed link [Fig. 2(b)].

The passive partial EPR [48]

σpp = (π1w12 − π2w21) log

(
π1w12

π2w21

)

= (n12 − n21) log

(
n12

n21

)
. (20)

The KLD estimator is the sum of two contributions,

σKLD = σaff + σWTD

= 1

T
∑
I,J,K

pIJK log

(
p([IJ] → [JK])

p([KJ] → [JI])

)

+ 1

T
∑
I,J,K

pIJK D[ψIJK (t )||ψKJI (t )], (21)

where p([IJ] → [JK]) is the probability to observe the tran-
sition J → K given the previous transition was I → J , pIJK

is the probability to observe the second-order transition I →
J → K , and D[p||q] is the KLD between the probability dis-
tributions p and q. As was previously shown, the hierarchy
between the EPR estimators is σKLD � σaff � σpp [48,65].

The σ2 estimator is also formulated as an optimization
problem searching over a canonical form of the system with
the same observed statistics; however, it only considers the
first- and second-order mass rates [70]. Its place in the hierar-
chy between the EPR estimators varies for different systems.
While σ2 can be greater than σKLD in some cases [70], here,
for the rate values we used, σ2 < σKLD. In fact, although the
values of σ2 and σaff appear to be similar [Fig. 2(b)], actually
σ2 < σaff for all of the values of F used.

At the stalling force, there is no current in the visible link,
and we get σpp = σaff = σ2 = 0, which is the trivial bound. In
contrast, σKLD and our estimator σ

(1)
opt give a nontrivial bound.

Moreover, σ
(1)
opt surpasses σKLD significantly and yields a tight

bound. For this system, using higher moments in order to
calculate σ

(2)
opt did not make any improvement compared to

σ
(1)
opt .

While the example in this section is of a system with
three observed states, two of which are Markovian, our ap-
proach can be generalized to any system. For example, see
Appendix E for a system with four observed states, three of
which are Markovian, where the σ

(1)
opt estimator still outper-

forms σKLD and σ2.

2. Molecular motor

Here, we study a model of a molecular motor, illus-
trated in Fig. 3(a). The motor can physically move in space
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FIG. 3. Molecular motor. (a) Illustration of the full molecular motor system, including the coarse graining of the active (red boxed square)
and passive (ellipse) states. (b) Total EPR σtot (solid black line), our bound σ

(1)
opt (brown cross), KLD estimator σKLD (dotted blue line), the

affinity estimator σaff (dashed green line), and the two-step estimator σ2 (yellow asterisk). The rates used are wr = wl = wu2 = wd2 = 1 s−1,
wu1 = wd1 = 0.01 s−1.

(upward or downward), i ↔ i + 1, or change internal states
(passive or active), i ↔ i′. An external source of chemical
work �μ drives the upward spatial jumps from the active
state, and a mechanical force F acts against it and drives
the downward transitions. We assume that an external ob-
server cannot distinguish between the internal states of the
motor, but rather can only record its physical position. The
observed statistics are thus of a second-order semi-Markov
process [65].

Owing to the transnational symmetry in the model, we
represent the molecular motor as a cyclic network of three
coarse-grained states where each of them represents the phys-
ical location, lumping the active and passive internal states.
We denote the steady-state probability of being in the passive
and active states as π and π ′, respectively. Notice that the
probability of being in each physical location in the three-state
cyclic system is the same, and that π and π ′ are the same for
all of the physical locations, therefore, π + π ′ = 1/3.
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We denote the upward and downward transitions from and
to the passive state as u1 and d1, respectively, the upward
and downward transitions from and to the active state as u2

and d2, respectively, and the transitions between the active and
passive states at the same physical location as r (right) and l
(left), respectively. The upward and downward coarse-grained
transitions are labeled as U and D, respectively.

The observed statistics of interest are the first-order mass
rates nU , nD, the second-order mass rates nUU , nDD, and the
kth moment of the conditional waiting times 〈t k

UU 〉, 〈t k
UD〉,

〈t k
DU 〉, and 〈t k

DD〉. Note that we do not use nUD and nDU ,
since they depend on the other mass rates, nUD = nU − nUU

and nDU = nD − nDD. Owing to the symmetry of the cycle
representation of the coarse-grained system, in which the
steady-state probabilities are equally distributed, we only need
the constraints on the upward and downward transitions. The
derivations of the analytical expressions of the second-order
mass rates and the moments of the conditional waiting time
distributions, for this system, can be found in Appendix D.

The chemical affinity μ, arising from ATP hydrolysis for
example, only affects the transitions u2 and d2, whereas the
external force F affects all of the spatial transitions u1, d1,
u2, and d2. The transition rates then obey local detailed bal-
ance, wd1/wu1 = eβFL and wd2/wu2 = eβ(FL−μ), where L is
the length of a single spatial jump [65].

We compare the different EPR estimators for the molecular
motor system for several values of μ, and for each μ value,
we tune the external forcing parameter F [Fig. 3(b)]. Notice
the passive partial EPR (σpp) is not applicable for this system
since all the original Markovian states are coarse grained.

The hierarchy of the different EPR estimators for the
molecular motor, for the rate values we used, is σ

(1)
opt �

σKLD � σaff � σ2. At the stalling force for each value of
μ, where there is no visible current, we find σaff = σ2 = 0,
which is the trivial bound. In contrast, similar to the four-state
system, σ

(1)
opt surpasses σKLD significantly and yields a tight

bound.

C. Importance of data accuracy

One of the hyperparameters defining the optimization
problem is the constraint tolerance, which indicates the ac-
ceptable numerical error of the solution. If ε is the absolute
error of the trajectory statistics with respect to the true an-
alytical ones, then the constraint tolerance must be equal to
or greater than ε. Otherwise, when the constraint tolerance is
smaller than the absolute error of the statistics, the optimiza-
tion problem might not converge or give an overestimation in
the worst-case scenario.

In Fig. 4, we plot the absolute (and relative) error of a
few statistics values calculated from several trajectories as a
function of the trajectory length N , for both systems discussed
in the previous sections. Moreover, using the analytical values
of the statistics for maximum accuracy, we plot the results of
our estimator σ

(1)
opt as a function of the constraint tolerance.

As expected, longer trajectory data result in a more ac-
curate estimation of the observed statistics used for our
optimization problem for both systems, as evident from the
values of n1H , n1H2, and 〈t1H2〉 for the four-state system
[Fig. 4(a)], and from the values of nU , nUU , and 〈tUU 〉 for

the molecular motor [Fig. 4(b)]. For smaller errors, we can
use a smaller constraint tolerance. The error bars in Figs. 4(a)
and 4(b), which are the standard deviation of the values of
the observables in different realizations of trajectories with the
same size, can be used as a scale for the appropriate constraint
tolerance.

For both systems, smaller constraint tolerance leads to a
better estimator as the value of the lower bound on the EPR
approaches the true analytical value [Figs. 4(c) and 4(d)],
demonstrating the importance of an accurate estimation of
the observables. We emphasize that data accuracy impacts
all EPR estimators that rely on observed statistics, including
σKLD and σ2. The reliability of the estimation is inherently
connected to the precision of the inferred observables, where
longer trajectories naturally lead to smaller errors.

D. Optimizing a simple model

Although our approach can be generalized to any number
of hidden states, the analytical expressions for the observables
become complicated, and the number of variables increases
for a more complex coarse-grained topology. In turn, solving
the optimization problem would require longer computation
times. In order to test the performance of our estimator, we
solved the optimization problem for a larger number of hidden
states in a fully-connected network of four, five, and six states
with only two Markovian observed states, assuming only two
states are coarse grained [Fig. 5(a)]. Similarly, we tested the
performance of our estimator for the case of the molecular
motor with two, three, and four internal states at each physical
position, assuming there are only two. While generally, the
estimator gives a more accurate result for the case of the two
hidden state, which matches the assumption, it still provides a
lower bound on the total EPR with comparable accuracy for a
larger number of hidden states in the two systems [Figs. 5(b)
and 5(c)]. Moreover, our σ

(1)
opt estimator can still outperform

other estimators, σKLD and σ2, as demonstrated for the case
of a five-state system with two Markovian observed states and
one coarse-grained state of three internal states in Appendix F.

IV. CONCLUSIONS

We present an estimator for the entropy production rate,
which gives a tight bound by formulating an optimization
problem using both transitions and waiting times statistics.
Such data is readily available in different experimental set-
tings, for example, tracking a bead attached to a rotating
bacterial flagellum [70,76], or cortical granules embedded in
the actomyosin cortex of an oocyte [77]. Our estimator can be
applied to any system with a known topology, and it signifi-
cantly surpasses previous estimators, as demonstrated for the
two studied systems, the fully-connected hidden network, and
the molecular motor. The variables for the optimization prob-
lem can be inferred from the observed statistics, where longer
trajectories result in more accurate estimation and enable a
smaller constraint tolerance value. Finally, for both systems,
our approach can provide a lower bound on the total EPR for
more complex systems, assuming a simpler underlying topol-
ogy of the hidden states. Although we numerically showed
that searching over all systems with a simpler topology of the
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(a)

(c)

(b)

(d)

FIG. 4. Importance of data accuracy. (a) The error of some statistics of the four-state system for different values of the trajectory length
N . The absolute and relative errors are on the left and right axes, respectively. (b) The error of some statistics of the molecular motor system
for different values of the trajectory length N . The absolute and relative errors are on the left and right axes, respectively. (c) The error of σ

(1)
opt

results for the four-state system for different constraint tolerance values, using the analytical statistics values. (d) The error of σ
(1)
opt results for

the molecular motor system for different constraint tolerance values, using the analytical statistics values. Error bars stand for the standard
deviation of 10 different realizations.

hidden part and the same observed statistics as the true system
gave a lower bound on the total EPR for the two systems we
studied, it remains an open problem to show this approach is
universal. It would be interesting for future work to determine
whether removing states from the hidden subnetwork can only
decrease the entropy production, given the observed statistics
are conserved.

In summary, our approach is based on an optimization
problem formulated using the observed statistics of a partially
accessible system, utilizing information on the underlying
topology, in order to provide a tight lower bound on the
total EPR. The estimator can be used as a benchmark for
comparing the performance of other estimators that rely on
coarse-grained or partial information about the system.
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(a)

(c)

4 3

1 2

4 3

1 2

5 6

4 3

1 2

5

4 3

1 2

(b)

FIG. 5. Optimizing using a simple model. (a) Illustration of solving the optimization problem for a simple model with two hidden states
(right), whereas the real system has more hidden states (left). (b) The results of σ

(1)
opt assuming the simple four-state model (two hidden states),

when the real system has two (red cross), three (green triangle), or four (blue circle) hidden states. (c) The results of σ
(1)
opt assuming the simple

molecular motor model (two hidden states), when the real system has two (red cross), three (green triangles), or four (blue circle) hidden states.
For both systems, the results are presented for randomly generated transition rates (for each case) with statistics calculated from trajectories of
length N = 108 using a constraint tolerance of 10−5.
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APPENDIX A: SECOND-ORDER MASS RATES

In order to find the second-order mass rates for two consec-
utive transitions between coarse-grained states nIJK , we need
to take into account every possible original state i ∈ I , every
possible path within the coarse-grained state J , and every
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possible transition from a state in J to every possible final state
k ∈ K . Let us start by considering a specific initial Markovian
state i ∈ I and a specific final Markovian state k ∈ K and
calculate the mass rate niJk ,

niJk =
∞∑

N=0

∑
j0,..., jN ∈J

ni j0 p j0 j1 p j1 j2 · · · p jN−1 jN p jN k

=
∞∑

N=0

∑
j′, j′′∈J

ni j′
[
PN

JJ

]
j′ j′′ p j′′k

=
∑

j′, j′′∈J

ni j′

( ∞∑
N=0

[
PN

JJ

]
j′ j′′

)
p j′′k

=
∑

j′, j′′∈J

ni j′ [I − PJJ ]−1
j′ j′′ p j′′k

= nT
iJ [I − PJJ ]−1 pJk. (A1)

The two summations are for all the possible lengths N of
trajectories within J , and all the optional paths with the given
length { j0, j1, . . . , jN } in J . From mass conservation, we can
now obtain the expression for nIJK by summing over all the
optional original i ∈ I and final k ∈ K states,

nIJK =
∑
i∈I

∑
k∈K

niJk . (A2)

APPENDIX B: CONDITIONAL WAITING TIME MOMENTS

The waiting time at each Markovian state i is an expo-
nentially distributed random variable ψi(t ) with mean waiting
time τi = λ−1

i ,

ψi(t ) = λie
−λit . (B1)

For the calculations, we used the joint distribution of the
waiting time and the transition i → j,

ψi j (t ) = wi je
−λit . (B2)

Notice that ψi j (t ) is not normalized to 1 as
∫ ∞

0 ψi j (t )dt = pi j .
The probability to observe a trajectory γN : i0 → i1 →

· · · → iN with a total duration of T is

p(γN , T ) =
∫

N−1∑
i=0

ti=T
ψi0i1 (t0)ψi1i2 (t1) · · · ψiN−1iN (tN−1)

× dt0dt1 · · · dtN−1. (B3)

Since this is a convolution, we can perform a Laplace trans-
form to get a simpler formula of multiplications of Laplace
transforms of Markovian joint distributions of waiting times
and transitions,

p̃(γN , s) = ψ̃i0i1 (s)ψ̃i1i2 (s) · · · ψ̃iN−1iN (s), (B4)

where

ψ̃i j (s) =
∫ ∞

0
ψi j (t )e−st dt =

∫ ∞

0
wi je

−λit e−st dt

= wi j

∫ ∞

0
e−(s+λi )t dt = wi j

[
−e−(s+λi )t

s + λi

]∞

0

= wi j

s + λi
.

(B5)

In order to calculate the moments of the conditional wait-
ing time distribution ψIJK (t ) for the coarse-grained state J
conditioned on an initial state in I and a final state in K , our
strategy is to calculate its Laplace transform ψ̃IJK (s). We start
by calculating ψ̃iJk (s), which is the Laplace transform of the
waiting distribution in coarse-grained state J , before jumping
to a specific Markovian state k ∈ K , given it came from a
specific Markovian state i ∈ I . Since we want the waiting time
in J , we sum over all of the paths with any length N inside J
with a final transition to k ∈ K , j0 → j1 → · · · → jN → k,
weighed by the probability to jump from i ∈ I to the first state
j0 ∈ J ,

ψ̃iJk (s)

=
∞∑

N=0

∑
j0,..., jN ∈J

pi j0∑
j∈J pi j

p̃( j0 → j1 → · · · → jN → k, s)

=
∞∑

N=0

∑
j0,..., jN ∈J

pi j0∑
j∈J pi j

ψ̃ j0 j1 (s) · · · ψ̃ jN−1 jN (s)ψ̃ jN k (s)

=
∞∑

N=0

∑
j′, j′′∈J

pi j′∑
j∈J pi j

[�̃JJ (s)N ] j′, j′′ψ̃ j′′k (s)

=
∑

j′, j′′∈J

pi j′∑
j∈J pi j

∞∑
N=0

[�̃JJ (s)N ] j′, j′′ψ̃ j′′k (s)

=
∑

j′, j′′∈J

pi j′∑
j∈J pi j

[I − �̃JJ (s)]−1
j′, j′′ψ̃ j′′k (s)

= pT
iJ∑

j∈J pi j
[I − �̃JJ (s)]−1ψ̃Jk (s), (B6)

where �̃JJ (s) is a matrix of size NJ × NJ , and NJ is the number
of Markovian states inside J ,

[�̃JJ (s)] j1, j2 =
{
�̃ j1 j2 (s) j1 �= j2
0 j1 = j2

. (B7)

As mentioned in the main text we denote ψ̃iJK (s) ≡∑
k∈K ψ̃iJk (s). Notice that ψ̃iJK (s) is not normalized to 1 and

it needs to be divided by ψ̃iJK (s → 0), which is exactly the
probability to jump from J to K , given the transition to J was
from i,

ψ̃Normalized
iJK (s) = ψ̃iJK (s)

ψ̃iJK (s → 0)
. (B8)

This results from the fact that we used ψi j (t ), which is nor-
malized to pi j .

In order to get ψ̃IJK (s), we sum ψ̃Normalized
iJK (s) over all of

the Markovian states i ∈ I , weighed by the corresponding
probability πi/πI of being in state i, given the system is in
the coarse-grained state I ,

ψ̃IJK (s) =
∑
i∈I

πi

πI
ψ̃Normalized

iJK (s). (B9)

For a general probability density function f (t ) : [0,∞] →
[0, 1] the Laplace transform is

f̃ (s) =
∫ ∞

0
f (t )e−st dt (B10)
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and its kth derivative by s is

dk f̃ (s)

dsk
= (−1)k

∫ ∞

0
t k f (t )e−st dt . (B11)

Taking the limit s → 0,

dk f̃ (s)

dsk
|s→0 = (−1)k

∫ ∞

0
t k f (t )dt = (−1)k〈t k〉, (B12)

we find the kth moment of the probability density function
f (t ),

〈t k〉 = (−1)k dk f̃ (s)

dsk
|s→0. (B13)

Therefore, the kth moment 〈t k
IJK〉 of the conditional waiting

time distribution ψIJK (t ) is

〈
t k
IJK

〉 = (−1)k dkψ̃IJK (s)

dsk
|s→0. (B14)

APPENDIX C: ANALYTICAL EXPRESSIONS
FOR THE FOUR-STATE SYSTEM

The variables to consider for this system are the mass rates
ni j and the steady-state probabilities πi for i, j ∈ {1, 2, 3, 4},
meaning a total of 16 variables. Note that π1, π2, n12, and n21

are fully observed. Therefore, we are left with 12 variables.
With the following linear constraints, we can immediately
reduce the problem to six variables.

1. Linear constraints

We impose probability conservation, mass rate conser-
vation in the hidden Markovian states, and mass rate
conservation between an observed Markovian state and the
hidden coarse-grained state.

a. Probabilities

From the conservation of the steady-state probability of the
Markovian states within the coarse-grained hidden state,

πH = π3 + π4. (C1)

b. Mass conservation at any Markovian state

We write the mass conservation for one of the hidden states
(3 or 4), which for this system, is enough to guarantee the
mass conservation for the other hidden state,

n13 + n23 + n43 = n31 + n32 + n34. (C2)

c. First-order mass rates

Here, we require the mass rate conservation of transitions
in and out of the hidden state, providing four constraint equa-
tions,

∀i∈{1,2} : niH = ni3 + ni4,

∀i∈{1,2} : nHi = n3i + n4i. (C3)

2. Nonlinear constraints

The second-order mass rates and the conditional waiting
times moments can be expressed only as a nonlinear function

of the optimization problem variables. Here, we show the full
derivations of these relations.

a. Second-order mass rates

For this system, as mentioned in the text, we are interested
in n1H2 and n2H1, where the first and the last states are the
observed Markovian states. From equation Eq. (A1)

niH j = nT
iH [I − PHH ]−1 pH j (C4)

where

PHH =
[

0 p34

p43 0

]
(C5)

and

[I − PHH ]−1 = 1

1 − p34 p43

[
1 p34

p43 1

]
. (C6)

Plugging into Eq. (C4), we have

niH j = nT
iH [I − PHH ]−1 pH j

= [ni3 ni4]

(
1

1 − p34 p43

[
1 p34

p43 1

])[
p3 j

p4 j

]

= 1

1 − p34 p43
[ni3 ni4]

[
p3 j + p34 p4 j

p4 j + p43 p3 j

]

= ni3(p3 j + p34 p4 j ) + ni4(p4 j + p43 p3 j )

1 − p34 p43
. (C7)

Remember we can express pi j in terms of the mass rates
[Eq. (3)].

b. Conditional waiting time moments

We calculate the conditional waiting times moments 〈t k
iH j〉

for i, j ∈ {1, 2}, in terms of the problem variables. Based on
Eq. (B14), we need to calculate ψ̃Normalized

iH j (s).
From Eq. (B6)

ψ̃iH j (s) = pT
iH∑

h∈{3,4} pih
[I − �̃HH (s)]−1ψ̃H j (s). (C8)

Now, we can calculate ψ̃H j (s) from Eqs. (12) and (B5),

ψ̃H j (s) =
[
ψ̃3 j (s)

ψ̃4 j (s)

]
=

[
w3 j

s+λ3
w4 j

s+λ4

]
. (C9)

Given that [Eqs. (B7) and (B5)]

�̃HH (s) =
[

0 ψ̃34(s)
ψ̃43(s) 0

]

=
[

0 w34
s+λ3

w43
s+λ4

0

]
. (C10)
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We can plug into Eq. (C8)

ψ̃iH j (s) = pT
iH∑

h∈{3,4}
pih

[I − �̃HH (s)]−1ψ̃H j (s)

= 1

pi3 + pi4
[pi3 pi4]

((
1 − w34w43

(s + λ3)(s + λ4)

)−1
[

1 w34
s+λ3

w43
s+λ4

1

])[
w3 j

s+λ3
w4 j

s+λ4

]

= 1

pi3 + pi4

(
1 − w34w43

(s + λ3)(s + λ4)

)−1

[pi3 pi4]

[
w3 j

s+λ3
+ w34

s+λ3

w4 j

s+λ4
w4 j

s+λ4
+ w43

s+λ4

w3 j

s+λ3

]

=
(

1 − w34w43

(s + λ3)(s + λ4)

)−1[ pi3

pi3 + pi4

(
w3 j

s + λ3
+ w34

s + λ3

w4 j

s + λ4

)
+ pi4

pi3 + pi4

(
w4 j

s + λ4
+ w43

s + λ4

w3 j

s + λ3

)]
. (C11)

Since the states i and j are Markovian, we just need to normalize this expression in order to get the desired result,

ψ̃iH j (s → 0) =
(

1 − w34w43

λ3λ4

)−1[ pi3

pi3 + pi4

(
w3 j

λ3
+ w34

λ3

w4 j

λ4

)
+ pi4

pi3 + pi4

(
w4 j

λ4
+ w43

λ4

w3 j

λ3

)]

= pi3(p3 j + p34 p4 j ) + pi4(p4 j + p43 p3 j )

(pi3 + pi4)(1 − p34 p43)
. (C12)

Therefore

ψ̃Normalized
iH j (s) = ψ̃iH j (s)

ψ̃iH j (s → 0)
. (C13)

Finally, we get the moments from Eq. (B14).
In order to get the expressions of the derivatives, we used

the package Sympy in Python.

APPENDIX D: ANALYTICAL EXPRESSIONS
FOR THE MOLECULAR MOTOR SYSTEM

The variables to consider for the molecular motor system
are the mass rates nu1, nu2, nd1, nd2, nl , nr and the steady-state
probabilities π and π ′, meaning a total of eight variables. With
the following linear constraints, we can immediately reduce
the problem to four variables.

1. Linear constraints

As in the four-state system, we impose probability conser-
vation, mass rate conservation in the Markovian states, and
mass rate conservation for the observed transitions U and D.

a. Probabilities

From the conservation of the steady-state probability of the
Markovian states within the coarse-grained states,

π + π ′ = 1
3 . (D1)

b. Mass conservation at any Markovian state

We write the mass conservation for one of the hidden
states (active or passive), which for this system, is enough to
guarantee the mass conservation for the other hidden state,

nr + nu2 = nl + nd2. (D2)

c. First-order mass rates

Here, we require the mass rate conservation of transitions
in and out of the coarse-grained state, providing two constraint
equations,

nU = nu1 + nu2, nD = nd1 + nd2. (D3)

2. Nonlinear constraints

Since we have two hidden states as in the four-state system,
the results from Appendix C can be used here.

a. Second-order mass rates

We use the results for the four-state system in Eq. (C7),
together with Eq. (A2). For nUU , we need to sum over all the
mass that goes up from the passive or active state, and then up
again only to the passive state,

nUU = nu1(pu1 + pl pu2)

1 − pl pr
+ nu2(pu1 + pl pu2)

1 − pl pr

= (nu1 + nu2)(pu1 + pl pu2)

1 − pl pr
. (D4)

For nDD, we need to sum over all the mass that goes down
only from the passive state, and then down again to the passive
or active state,

nDD = nd1 pd1 + nd2 pr pd1

1 − pl pr
+ nd1 pd2 + nd2 pr pd2

1 − pl pr

= (nd1 + nd2 pr )(pd1 + pd2)

1 − pl pr
. (D5)

b. Conditional waiting time moments

We account for all of the transitions through a coarse-
grained state i, and specify in the following calculations
the Markovian state before jumping to i, and the following
Markovian state, after state i, where i′ (i) denoted an active
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(passive) state. For example, (i − 1) −→ (i + 1) represent two
consecutive transitions, (i − 1) −→ i −→ (i + 1).

Note that a transition upward is only to a passive
state, so the previous state (being passive or active) in

the first transition does not affect the waiting time. Fur-
thermore, a transition downward is only from a passive
state.

From Eq. (B9),

ψ̃UU (s) = π

π + π ′
ψ̃(i−1)→(i+1)(s)

ψ̃(i−1)→(i+1)(s → 0)
+ π ′

π + π ′
ψ̃(i−1)′→(i+1)(s)

ψ̃(i−1)′→(i+1)(s → 0)
= ψ̃(i−1)→(i+1)(s)

ψ̃(i−1)→(i+1)(s → 0)
(D6a)

and similarly

ψ̃UD(s) = π

π + π ′

(
ψ̃(i−1)→(i−1) + ψ̃(i−1)→(i−1)′

)
(s)(

ψ̃(i−1)→(i−1) + ψ̃(i−1)→(i−1)′
)
(s → 0)

+ π ′

π + π ′

(
ψ̃(i−1)′→(i−1) + ψ̃(i−1)′→(i−1)′

)
(s)(

ψ̃(i−1)′→(i−1) + ψ̃(i−1)′→(i−1)′
)
(s → 0)

=
(
ψ̃(i−1)→(i−1) + ψ̃(i−1)→(i−1)′

)
(s)(

ψ̃(i−1)→(i−1) + ψ̃(i−1)→(i−1)′
)
(s → 0)

. (D6b)

Moreover

ψ̃DU (s) = ψ̃(i+1)→(i+1)(s)

ψ̃(i+1)→(i+1)(s → 0)
(D6c)

and

ψ̃DD(s) =
(
ψ̃(i+1)→(i−1) + ψ̃(i+1)→(i−1)′

)
(s)(

ψ̃(i+1)→(i−1) + ψ̃(i+1)→(i−1)′
)
(s → 0)

. (D6d)

Now we calculate all the terms in the numerators, using Eq. (C11) from the four-state system results,

ψ̃(i−1)→(i+1)(s) =
(

1 − wlwr

(s + λ)(s + λ′)

)−1(
wu1

s + λ
+ wl

s + λ

wu2

s + λ′

)
, (D7a)

(
ψ̃(i−1)→(i−1) + ψ̃(i−1)→(i−1)′

)
(s) =

(
1 − wlwr

(s + λ)(s + λ′)

)−1(
wd1

s + λ
+ wd2

s + λ

)

=
(

1 − wlwr

(s + λ)(s + λ′)

)−1
wd1 + wd2

s + λ
, (D7b)

ψ̃(i+1)→(i+1)(s) =
(

1 − wlwr

(s + λ)(s + λ′)

)−1[ pd1

pd1 + pd2

wu1

s + λ
+ pd2

pd1 + pd2

wr

s + λ′
wu1

s + λ

]

=
(

1 − wlwr

(s + λ)(s + λ′)

)−1 1

pd1 + pd2

wu1

s + λ

[
pd1 + pd2wr

s + λ′

]
, (D7c)

(
ψ̃(i+1)→(i−1) + ψ̃(i+1)→(i−1)′

)
(s) =

(
1 − wlwr

(s + λ)(s + λ′)

)−1[ pd1

pd1 + pd2

wd1

s + λ
+ pd2

pd1 + pd2

wr

s + λ′
wd1

s + λ

+ pd1

pd1 + pd2

wd2

s + λ
+ pd2

pd1 + pd2

wr

s + λ′
wd2

s + λ

]

=
(

1 − wlwr

(s + λ)(s + λ′)

)−1[ pd1

pd1 + pd2

wd1 + wd2

s + λ
+ pd2

pd1 + pd2

wr

s + λ′
wd1 + wd2

s + λ

]

=
(

1 − wlwr

(s + λ)(s + λ′)

)−1 1

pd1 + pd2

wd1 + wd2

s + λ

[
pd1 + pd2wr

s + λ′

]
. (D7d)

All of the denominators from Eq. (D6) can be calculated by setting s → 0 in Eq. (D7). Finally, we get the moments from
Eq. (B14).

In order to get the expressions of the derivatives, we used the package Sympy in Python.

APPENDIX E: LARGER SYSTEMS

We apply our method to a system with five states, three of
which are Markovian, and the other two are coarse grained to
a single state H [Fig. 6(a)], for different values of an external

force F used to tune the transition rates over the observed
link 1 − 2 according to w12(F ) = w12e−βFL and w21(F ) =
w21eβFL. Comparing the results of our method to other bounds
[Fig. 6(b)], σ

(1)
opt outperforms σKLD and σ2, and trivially σaff.
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(a)

(b)

5 4

1 3

2

1 3
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FIG. 6. Five-state system with four observed states. (a) Illustra-
tion of the full system topology, including the coarse graining of
states 4 and 5 to state H . (b) Total EPR σtot (black line), our bound
σ

(1)
opt (red cross), KLD estimator σKLD (blue downward-pointing tri-

angle), affinity estimator σaff (green upward-pointing triangle), and
two-step estimator σ2 (yellow asterisk). The rates used are w12 =
11 s−1, w13 = 0 s−1, w14 = 71 s−1, w15 = 81 s−1, w21 = 31 s−1,
w23 = 0 s−1, w24 = 12 s−1, w21 = 96 s−1, w31 = 0 s−1, w32 = 0 s−1,
w34 = 92 s−1, w35 = 12 s−1, w41 = 69 s−1, w42 = 15 s−1, w43 =
14 s−1, w45 = 91 s−1, w51 = 100 s−1, w52 = 71 s−1, w53 = 29 s−1,
w54 = 30 s−1.

APPENDIX F: COMPARING ESTIMATORS WHEN
OPTIMIZING FOR A SIMPLE MODEL

We apply our method to a system with five states, two of
which are Markovian, and the other three are coarse grained
to a single state H . In order to solve for a case where one

(a)

(b)

4 3

1 2

5

4 3

1 2

FIG. 7. Comparison to other bounds when assuming a simple
topology. (a) Illustration of the full five-state system topology, in-
cluding the coarse graining of states 3, 4, and 5 to state H (left)
and the full-system topology we assume (right). (b) Total EPR σtot

(solid black line), our bound σ
(1)
opt (red cross), KLD estimator σKLD

(green upward-pointing triangle), and two-step estimator σ2 (blue
circle). The results are presented for randomly generated transition
rates with statistics calculated from trajectories of length N = 108.
Values of the estimators with the same σtot correspond to the same
system, showing that σ

(1)
opt outperforms both σKLD and σ2.

does not have information about the underlying topology, we
assume the simplest topology, with only two internal states
[Fig. 7(a)], and write the optimization problem accordingly.
Using our approach, not only do we get a lower bound on the
total EPR, but also our estimator σ

(1)
opt outperforms the other

estimators.
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