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Quantum machine learning with parametrised quantum circuits has attracted significant attention over the
past years as an early application for the era of noisy quantum processors. However, the possibility of achieving
concrete advantages over classical counterparts in practical learning tasks is yet to be demonstrated. A promising
avenue to explore potential advantages is the learning of data generated by quantum mechanical systems and
presented in an inherently quantum mechanical form. In this article, we explore the applicability of quantum
data learning to practical problems in high-energy physics, aiming to identify domain specific use-cases where
quantum models can be employed. We consider quantum states governed by one-dimensional lattice gauge
theories and a phenomenological quantum field theory in particle physics, generated by digital quantum
simulations or variational methods to approximate target states. We make use of an ansatz based on quantum
convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground
states in the Schwinger model, (de)confinement phases from time-evolved states in the Z2 gauge theory, and that
it can extract fermion flavor/coupling constants in a quantum simulation of parton shower. The observation of
nontrivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum
data learning architecture in high-energy physics.
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I. INTRODUCTION

Quantum computers were originally conceived to tackle
some of the hardest research problems in the physical sciences
[1], such as dynamical simulations of quantum mechanical
systems [2,3]. Recent technological advances brought such
a vision closer to reality [4–7]. Among the several applica-
tion domains that have been associated to noisy, near-term
quantum computers [8], quantum machine learning (QML)
[9–11] received considerable attention in the last years,
thanks to its inherently heuristic and versatile nature com-
plemented by some provable performance guarantees [12].
While remarkable progress has been made in understand-
ing the trainability and generalization power (i.e., prediction
capability on unseen test data) of QML models based on varia-
tional quantum algorithms (VQAs) [13–20], it remains largely
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unclear whether, and in which specific domains, QML could
complement and surpass classical methods in performing
data-driven analysis and learning tasks of concrete practical
relevance.

In this context, a particularly promising route is repre-
sented by the study of inherently quantum mechanical data,
such as quantum states generated in specific experiments
or within quantum communication and simulation protocols
[18,21–35]. This approach appears distinctly attractive as
it eliminates the necessity of encoding classical data into
quantum circuits, leveraging the intrinsic capability of QML
architectures to directly manipulate quantum wavefunctions.
Such QML paradigm that directly exploits quantum forms
of data, referred to as quantum data learning (QDL) in this
paper, may have considerable impact in areas like quantum
sensing, quantum many-body physics, quantum chemistry,
and high-energy/nuclear physics. Paradigmatic QDL prob-
lems concern, among others, recognizing quantum phases of
matter in strongly correlated systems [18,21–28], classifying
model Hamiltonians [29], predicting expectation values of
several incompatible observables on quantum states and per-
forming quantum linear algebra manipulations [30], learning
entanglement of quantum states [31], as well as modeling
quantum processes [30,32–35].

Up to now, most investigations in the field of QDL
focused either on abstract scenarios or on conventional mod-
els in condensed-matter physics such as spin chains. In
this paper, we extend the QDL framework to the realm of
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FIG. 1. Representative QCNN circuit considered in this work, composed of alternating convolution and pooling layers (denoted by CL and
PL, respectively), followed by a fully connected layer (FCL) and the measurement of the output state ρout with an observable O. In the QDL
framework used in this paper, the input to the QCNN circuit is a quantum state ρin, either in the form of a ground state generated with VQE,
a time-evolved state through Hamiltonian simulation, or a multiparticle state from a phenomenological quantum parton shower simulation.
Precise QCNN circuits used in the numerical studies are described in Secs. III, IV, and V, with details in Appendix A.

high-energy physics, identifying an extensive set of suitable
use cases and demonstrating—with numerical calculations—
the direct application of QML methods on some representative
problem instances. More concretely, we begin from quantum
phase recognition tasks in lattice gauge theory (LGT) for
the Schwinger model, which we successfully address with
quantum convolutional neural networks (QCNNs) acting on
variationally-generated quantum states. We then move beyond
the study of ground-state properties by tackling the analy-
sis of dynamical processes, specifically the classification of
(de)confinement phases by using time-evolved states for the
(1 + 1)-dimensional Z2 gauge theory. In this case, quantum
data are generated through a digital quantum simulation us-
ing the standard Suzuki-Trotter decomposition. Finally, we
consider multiparticle states appearing in parton showering,
which can be described by phenomenological quantum field
theory (QFT) models. Here, we employ QDL to classify
fermion flavors and to predict coupling constants from quan-
tum states generated by a quantum circuit implementation
of such phenomenological QFT simulations, a task akin to
Hamiltonian learning [36,37]. Overall, our results suggest that
QDL methods, and particularly QCNNs, can become useful
resources for current and future quantum-powered investiga-
tions in high-energy physics, both on the computational side
(e.g., when working with quantum simulators) and in close
connection with experiments (e.g., when employing quantum
devices).

The paper is organized as follows. In Sec. II, we start
from a generic quantum circuit model for QML and we illus-
trate the specific QDL architecture using QCNNs employed
in this paper. In Sec. III, we investigate the task of quan-
tum phase recognition in the Schwinger model by applying
QDL methods to variationally-generated quantum data and
give the numerical results. Section IV discusses the classi-
fication of confined and deconfined phases of the Z2 gauge
theory. In Sec. V, we describe the QDL method employed for

determining coupling constants and fermion flavors from mul-
tiparticle states in parton showering. Finally, we conclude in
Sec. VI with a discussion on the results and an outlook on
possible future research directions.

II. METHODS

We adopt the approach of supervised QML with a pa-
rameterized quantum circuit, often referred to as quantum
neural network (QNN) [38]. In the QDL framework, the in-
puts to the parameterized circuit are represented by quantum
states prepared on a quantum processor. In the applications
presented in this paper, input quantum states may implicitly
encode some classical parameters x, such as certain values
of coupling constants appearing in an underlying Hamilto-
nian. We generically write ρin ≡ ρ(x) for input states chosen
among a training dataset {(ρ(x), yx)}x∈Ttrain . The labels yx

denote, for example, certain physical phases, properties of
the quantum state, or Hamiltonian parameters that the model
should learn to recognize or predict. In practice, for any given
x, the corresponding input state ρ(x) will be prepared by a
unitary Uprep(x). Depending on the problem, Uprep(x) can take
various forms as depicted in Fig. 1, including a variational
quantum eigensolver (VQE) ansatz [39] approximating the
ground state of a Hamiltonian H (x), a circuit implementing a
time evolution U = e−iH (x)t [2], or another phenomenological
quantum simulation circuit. Each input state is processed by
a QNN circuit UQNN(θ) with trainable parameters θ, produc-
ing the state ρout (x, θ) = UQNN(θ)ρ(x)U †

QNN(θ). This state is
then measured to retrieve a model output yout (x, θ) as the
expectation value 〈O〉 = Tr[ρoutO] of a suitable Hermitian
operator O. The learning is carried out by optimizing the set
of parameters θ, with the aim of minimizing a cost function
L(θ) that quantifies the distance of the model predictions
{yout (x, θ)}x∈Ttrain from the ideal training labels {yx}x∈Ttrain .
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As a QNN ansatz, we employ the class of models known
as QCNNs [21]. QCNNs are closely related to the multiscale
entanglement renormalization ansatz (MERA) and are known
to be particularly well suited for paradigmatic QDL appli-
cations such as quantum phase recognition [21,23,25,26,28].
Specifically, this class of models is expected to achieve ad-
vantages in terms of sampling complexity when conventional
methods rely on nonlocal order parameters [21]. In Ref. [21],
the authors also explicitly constructed the QCNN circuit with-
out trainable parameters starting from the tensor network
representation of the relevant ground states. We hence ex-
pect that a QCNN circuit with trainable parameters can be
suitable for the phase recognition in the Schwinger model,
since its ground states can be efficiently described by matrix
product state (MPS) representations (see e.g., [40,41]). Our
choice is further motivated by the successful application of
convolutional neural networks (CNNs) to similar tasks [42] in
classical machine learning. The representative QCNN circuit
UQCNN(θ), which is schematically shown in Fig. 1, consists
of alternating convolutional and pooling layers: The former
apply translationally-invariant unitary gates to local subsets
of qubits while the latter reduce the dimensionality of the
state by local measurements and classical feed forward. At
the final step, a fully connected layer is applied globally to
the remaining qubits, followed by the measurement of an
observable1. Thanks to their naturally shallow circuit structure
employing only O( log(N )) parameters, QCNNs are expected
to be beneficial on near-term devices and provably resilient
to the phenomenon of barren plateaus, which hinders the
trainability of more generic QNN models [43]. Although the
HEP models that we address are different from those consid-
ered originally in Ref. [21], these properties will also prove
useful for our purposes. Additionally, it is worth remarking
that, even if some of the state preparation algorithms that
we employ (e.g., the VQE) might become impractical at
larger system sizes, QDL with QCNNs can still be applied,
in principle, to a large variety of input states obtained by
employing other algorithms (e.g., adiabatic state preparation,
quantum imaginary time evolution) or retrieved from other
quantum technological applications (e.g., quantum sensors or
detectors).

With a QCNN model UQCNN, the supervised QDL archi-
tecture introduced above can be further detailed as follows.
For N-qubit input quantum data of the form ρ(x) = |ψx〉〈ψx|,
we construct the model output yout (x, θ) by measuring the last
qubit in the Z basis, namely,

yout (x, θ) = 〈ψx |U †
QCNNcZN−1UQCNN | ψx〉, (1)

where c = 1 in the case of the Schwinger model (Sec. III) and
of the Z2 gauge theory (Sec. IV). In the case of the parton
shower (Sec. V), we set c = 2 to increase the output range in
the regression of the coupling constants. The output is then
used by a classical optimizer that solves the minimization

1We give the precise form of the QCNN circuit used in this study in
Appendix A. As explained there, the translational invariance of the
QCNN parameters is not maintained in the study with the Z2 gauge
theory simulation.

problem,

θopt = arg min
θ

L(θ). (2)

The cost function is

L(θ) = 1

|Ttrain|
∑

x∈Ttrain

(yx − yout (x, θ))2 (3)

for the tasks with the Schwinger model, Z2 gauge theory and
the coupling constant determination in the parton shower, and

L(θ) = − 1

|Ttrain|
∑

x∈Ttrain

[yx log(yout (x, θ))

+ (1 − yx) log(1 − yout (x, θ))] (4)

for the 2-class flavor classification task in the parton shower,
where |Ttrain| is the number of training data. With the op-
timized parameters θopt, the trained QCNN model provides
yout (x, θopt), the prediction label for the test data x ∈ Ttest.
The number of trainable parameters θ used in the studies
is 21NL with NL being the number of pairings of convolu-
tion and pooling layers (see Appendix A for the forms of
parameterized unitary gates). All results presented in this
paper are obtained from noiseless numerical simulations, ma-
nipulating exact representations of state vectors and unitary
operations.

III. QUANTUM SIMULATION OF SCHWINGER MODEL

In this section, we address a phase recognition problem for
the Schwinger model [44], a (1 + 1)-dimensional U(1) LGT
(see also e.g., [45,46] for digital quantum simulation of this
model). The aim is to learn quantum states provided as input
data and their associated phases as labels and predict phases of
unknown states in test data. We first introduce the Schwinger
model and its phases, then describe how we prepare the input
dataset using VQE and construct the QCNN model. Finally
we present some numerical results.

A. Schwinger model

The Lagrangian of the continuum Schwinger model is
given by

LSchwinger = − 1

4
FμνFμν + iψ̄γ μ(∂μ + igAμ − m)ψ

+ gϑ

4π
εμνFμν, (5)

where the first term is the kinetic term for a gauge field Aμ,
the second term comprises the kinetic and mass term of a
Dirac fermion ψ as well as its coupling to the gauge field,
and the last term is a topological term. We can obtain a
lattice Hamiltonian via the staggered fermion formalism [47]
where fermions are defined on the lattice sites and gauge fields
are defined on the links between adjacent sites. In 1D, we
can further integrate out all gauge fields making use of the
open boundary conditions and Gauss’s law. Then, applying
the Jordan-Wigner transformation [48] to map fermionic to
qubit operators, the Hamiltonian is written in terms of Pauli
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matrices as

H = J
Ns−2∑
n=0

[
n∑

i=0

Zi + (−1)i

2
+ ϑ

2π

]2

+ w

2

Ns−2∑
n=0

[XnXn+1 + YnYn+1] + m

2

Ns−1∑
n=0

(−1)nZn, (6)

where J = ag2/2, w = 1/(2a), and Ns is the number of spatial
lattice sites.

The continuum model is known to exhibit a phase transi-
tion at ϑ = π and (m/g) = (m/g)c ≈ 0.33 due to breaking of
the CT symmetry [49–51]. A simple order parameter char-
acterizing this phase transition is the expectation value of an
averaged electric field,

E = 1

N

Ns−1∑
n=0

n∑
i=0

Zi + (−1)i

2
. (7)

For ϑ = π , we have 〈E〉 = 0 below the critical mass (sym-
metric phase) and 〈E〉 �= 0 above the critical mass (symmetry
breaking phase).

B. Simulation method

In this first application, we employ VQE to prepare an
input dataset {|ψm〉 , ym}m∈M. Each input state |ψm〉 is the
ground state corresponding to the Hamiltonian H in Eq. (6) at
given mass m ∈ M, with ym = ±1 being the respective label
characterizing the phase,

ym =
{

+1 (m/g) > (m/g)c

−1 (m/g) < (m/g)c
. (8)

We split the full data into training and test data as
{|ψm〉 , ym}m∈Mtrain/test with M = Mtrain 	 Mtest being a dis-
joint union of the training and test data. Our goal is to train
the QCNN with the training data and predict labels associated
with the test data.

We prepare the ground states by performing VQE using
the Hamiltonian variational ansatz (HVA) [52–54] |ψ (λ)〉 =
UHVA(λ) |φ〉, with variational parameters λ. The precise form
of the ansatz is given in Appendix B.

The initial state is fixed as |φ〉 = |01〉Ns/2 to constrain the
minimization to the zero-magnetization sector

∑
i Zi |ψ〉 = 0.

The optimal parameters are then found via classical optimiza-
tion of the Hamiltonian expectation value,

λopt(m) = arg min
λ

〈ψ (λ)|H (m)|ψ (λ)〉 , (9)

where we explicitly write H (m) to indicate that the mass is a
parameter of the Hamiltonian. The input data is then produced
by |ψm〉 := |ψ (λopt(m))〉.

C. Results

Before discussing the results in detail, we briefly sum-
marize the simulation setup. We obtain ground states
of the Schwinger model with N = Ns = 8, ag = 2, ϑ =
π , m/g ∈ M = {−2 + 0.05n | n = 0, 1, . . . , 80}. The critical
mass takes the value (m/g)c ≈ 0.143 for ag = 2 as obtained
from the exact diagonalization (ED) (see Appendix C 1 for

the derivation). The approximate ground states were found
using VQE with SLSQP as the classical optimizer. For better
convergence, we initialized the variational parameters with
the optimal parameters found using the previous m/g value.
Even with this precaution in place, VQE performance tends
to deteriorate during and after crossing the phase transition:
therefore, we also scanned over the M from both directions
(i.e., one scan starting from −2 and the other from 2). The
final input data was subsequently obtained by choosing the op-
timized parameters corresponding to the smallest energy value
found from both scans for a given m/g. As for the QCNN
training, the pairing of the convolution and pooling layers is
repeated three times (NL = 3), and the COBYLA optimizer is
used for the classical optimization with 500 iterations. This
training process is repeated 20 times starting from different
random initial parameters.

The outputs yout(m, θ) from the QCNN circuit after training
are shown in Fig. 2. Except for a few points, one can correctly
distinguish the labels of both training and test data using the
sign of the QCNN output, implying a good prediction ability
of the QCNN. The deviations near the critical point possibly
not only stem from QML errors, but also VQE and lattice
systematic errors such as finite volume effects.

It is important to mention here that, while these proof-of-
principle experiments demonstrate the applicability of QDL
methods to a paradigmatic learning task in high-energy
physics (and particularly the ability to recognize structure in
the model phase space without explicitly introducing an order
parameter), a curve similar to the one appearing in Fig. 2 can
be easily reproduced by directly measuring the electric field
as given in Eq. (7), which would require only single-qubit
measurements (see also Appendix C 2).

IV. REAL-TIME EVOLUTION OF (1 + 1)d Z2 GAUGE
THEORY

A. (1 + 1)D Z2 gauge theory

In this section, we consider a one-dimensional Z2 gauge
theory with staggered fermionic matter [47,55–57]. As with
the Schwinger model, fermions are defined on lattice sites
while gauge fields are defined on the links between sites. The
Hamiltonian of the Z2 gauge theory on a 1D lattice with Ns

sites is given by

H = − J

2

Ns−1∑
n=0

(XnZn,n+1Xn+1 + YnZn,n+1Yn+1)

− f
Ns−2∑
n=0

Xn,n+1 + m

2

Ns−1∑
n=0

(−1)nZn, (10)

where the Pauli matrix Pn with P ∈ {X,Y, Z} acts on site n,
and the Pn,n+1 acts on the link between sites n and (n + 1).
The first term represents the covariant kinetic contribution
of fermions, the second represents the background Z2 gauge
fields, and the third term is the fermion mass term. We take
the periodic boundary condition here, i.e., define PNs := P0.
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Physical states must satisfy the gauge invariant condition,

Gn |phys〉 =gn |phys〉 , (11)

Gn := − Xn−1,nZnXn,n+1, (12)

where gn is a constant. We will set gnprobe = +1 and gn = −1
for n �= nprobe to study the effects of a probe charge at site
nprobe.

This model is known to exhibit two phases [58]. The matter
fields are confined when a background field is present ( f �= 0),
meaning that the effects of matter fields do not spread out,
while they are deconfined in the absence of the background
field ( f = 0).

B. Simulation method

We consider the classification of time-evolved states ac-
cording to the value of f . Input data are defined by |ψm, f 〉 =
e−iH (m, f )T |ψinit〉 at a fixed time slice t = T , where we ex-
plicitly write the dependence of Hamiltonian on mass m and
background field f . To obtain the dataset, the time evolution
is approximated through a Suzuki-Trotter decomposition ap-
plied to the initial reference state |ψinit〉 satisfying Gauss’s law
in Eq. (11) with nprobe = 1 (see Appendix D for details). The
label ym, f associated with a state |ψm, f 〉 is given by

ym, f =
{+1 f �= 0 (confine)
−1 f = 0 (deconfine) . (13)

The resulting dataset {|ψm, f 〉 , ym, f }(m, f )∈M×F is split into
training and test data, as in Sec. III B. In this study, we used
a QCNN circuit whose parameters are not translationally in-
variant. See Appendix A for details.

C. Results

We fix the system parameters to Ns = 2, T = 2/J , and
F = {0, 3J}. Using periodic boundary conditions, the model
is mapped to N = 2Ns = 4 qubits (two for the sites, two
for the links). We prepare the dataset using the Suzuki-
Trotter decomposition with 20 time steps. To see the
generalization ability to data with larger mass values than
those of the training data, we use as the training and test
datasets Mtrain = {n/49 | n = 0, 1, . . . , 49} and Mtest = {1 +
n/9 | n = 0, 1, . . . , 9}, respectively, and train the QCNN cir-
cuit with NL = 3, starting from 20 different initializations with
200 iterations each.

The QCNN outputs after the training are shown in Fig. 3.
As one can see from the figure, a clear separation is learned for
the two phases of the training dataset. The model also gener-
alizes well for the test data up to m ∼ 1.75; after this value the
separation becomes less evident, as it can be expected given
the increasing differences between the test and training data. It
is also worth remarking that, contrary to the Schwinger model
example presented in Sec. III, there is no known simple local
order parameter associated with symmetry breaking by which
the two phases can be distinguished.

V. QUANTUM PARTON SHOWER SIMULATION

As a third benchmark for the QDL approach, we consider
the quantum simulation of multiparticle states governed by a

FIG. 2. Outputs from the QCNN after the training for the
Schwinger model with Ns = 8, ag = 2, ϑ = π . The blue open (or-
ange filled) markers represent the average of 20 trials for training/test
data. The bars represent the standard deviations. The dashed lines
indicate the critical mass value (m/g)c obtained from ED (vertical)
and ym = 0 (horizontal), respectively.

simple QFT model [59]. The Lagrangian of this model {see
Eq. (1) of [59]}is

LPS = f̄1(i∂/ + m1) f1 + f̄2(i∂/ + m2) f2 + (∂μφ)2

+ g1 f̄1 f1φ + g2 f̄2 f2φ + g12[ f̄1 f2 + f̄2 f1]φ. (14)

The first three terms in Eq. (14) describe the kinematics of
the (anti)fermions fi ( f̄i) and a scalar boson φ, while the last
three terms govern their interactions with coupling constants
gα (α = 1, 2, 12). The fermions have two distinct flavors la-
beled 1 and 2, and can radiate the boson ( fi → f jφ) with
different strengths controlled by the coupling constants: g1

for f1 → f1φ, g2 for f2 → f2φ, and g12 for f1 → f2φ or
f2 → f1φ (and analogously for f̄i). In contrast to [59], here

FIG. 3. Outputs from the QCNN circuit after training for the Z2

gauge theory with Ns = 2. The input states are taken at T = 2. Open
(filled) markers represent the average of 20 trials for training (test)
data. Bars represent the standard deviations. Green and blue mark-
ers represent confinement ( f /J = 3) and deconfinement ( f /J = 0),
respectively.
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FIG. 4. (Top) QPS circuit (UQPS) to produce the dataset, followed
by the QCNN circuit (UQCNN) and the single-qubit measurement.
(Bottom) Unitary gates comprising the UQPS circuit. The circuit dia-
gram follows the notation used in Ref. [59]. The unitaries U and U a/b

i

corresponding to Eqs. (11) and (43) in the Supplemental Material of
Ref. [59], respectively, are given in Appendix E.

we do not consider, for simplicity, the channel φ → fi f̄ j .
Such radiation and splitting processes are basic building
blocks in the simulation of parton showers (PSs) in high-
energy physics. We will therefore refer to the simulation
method for this model, explained below, as the quantum PS
(QPS) algorithm.

The QPS algorithm starts with an initial fermion fi(=1, 2)

and repeats the fi → f jφ process Nstep times to simulate a
shower of the fermions and bosons. In the end, there are at
most Nstep bosons φ. If g12 takes a nonzero value, interference
occurs due to different fermion flavors in the intermediate
unobserved states, resulting in different numbers of emissions
and kinematic properties of the shower compared to the g12 =
0 case. This phenomenon represents a quantum property of
parton showers that is hard to simulate classically [59].

A. QPS simulation data

Two different tasks are considered here, both aiming to
predict the parameters in the Lagrangian of Eq. (14) by learn-
ing the state of a produced φ boson system. The first task is
to predict the values of the coupling constants by means of
regression, and the second is to classify the flavor of the initial
fermion.

Figure 4 shows the circuit used to create the QPS data and
to learn the states using QCNN. The QPS circuit (UQPS) to pro-
duce the data consists of single-qubit U gates and two-qubit
controlled-U a/b

i gates for ith emission step (see Appendix E
for details). The U a/b

i gate depends implicitly on the emission
scale θi through a Sudakov factor that controls the splitting
probability of fi → f jφ [59]. The Nstep-qubit register that

represents the state of emitted φ bosons {|φi〉}Nstep

i=1 is fed into
the UQCNN. The |φi〉 state represents whether a φ boson is
emitted or not at the ith step.

First, the QPS dataset is produced using the UQPS with
Nstep = 8 and an initial fermion selected randomly between f1

and f2. The dataset contains 30 parton showers, 20 of which
are used for the training of the UQCNN and 10 for the testing. In
a single experiment, the trainable parameters of the UQCNN are

initialized randomly and are optimized using the 20 training
parton showers. In the testing stage, the trained UQCNN model
is applied to the 10 testing parton showers. This experiment
is repeated 30 times, each starting with random initial QCNN
parameters, to obtain the average and the uncertainty of the
average, which are reported below. Exactly the same QPS
dataset is used in all experiments, and we choose this approach
to assess the performance of QCNN model and characterize its
network structure by altering the UQCNN into different UQNN

models, as discussed below.

B. QCNN for parameter prediction

The QCNN circuit structure and gates used in the study of
QPS are slightly different from those used in the previous two
sections (Secs. III and IV), as detailed in Appendix A. The
number of pairings of the convolution and pooling layers is
NL = 3 for the QPS dataset with Nstep = 8. The measurement
of ρout is always performed on the last qubit corresponding to
|φNstep〉, irrespective of NL, and the observable is chosen to be
2Z for both tasks, as motivated in Sec. II.

For comparison with the QCNN model, an alternative
ansatz, referred to as the hardware-efficient ansatz (HEA)
[60], is considered by replacing UQCNN in Fig. 4 with the
corresponding unitary UHEA. The HEA consists of a layer
of single-qubit RY and RZ gates on each qubit, followed by
two-qubit CZ gates between neighboring qubits with a peri-
odic boundary condition and another layer of the single-qubit
rotation gates. The pairing of the layers of single-qubit and
two-qubit gates is repeated N ′

L times, leading to the number of
trainable parameters of 2Nstep(N ′

L + 1).
In each experiment, the QCNN and HEA circuits are in-

dependently set with randomly-chosen initial parameters and
trained. For the parameter optimization, the COBYLA opti-
mizer is used for both tasks with 2000 iterations.

C. Results

1. Prediction of coupling constants

The prediction of the coupling constants is performed by
restricting the training data to a certain g1 range and pre-
dicting the g1 value within a different, nonoverlapping range
for unseen test data. More precisely, we consider two cases:
the training (test) data with 0 < g1 < 0.5 (0.8 < g1 < 0.9)
in Case 1, and the training (test) data with 0.5 < g1 < 1.0
(0.1 < g1 < 0.2) in Case 2. Figure 5 shows the predicted and
true g1 coupling constants, averaged over all experiments, for
the two cases. The QCNN model can predict the g1 values
with good accuracy, although we observe a small offset for
the test data in Case 1.

Averaging over all the test data, the prediction accuracy
is calculated as the absolute difference g1 between the pre-
dicted and true coupling constants. For the QCNN (HEA) with
NL = 3 (N ′

L = 6), the prediction accuracies are obtained to be
0.20 ± 0.01 (0.18 ± 0.01) and 0.07 ± 0.01 (0.07 ± 0.01) in
Case 1 and 2, respectively. Increasing N ′

L does not improve
the accuracy for the HEA. The overall accuracies defined in
this way turn out to be similar between the QCNN and HEA.
A more detailed comparison of prediction accuracies and their
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FIG. 5. Determination of g1 values at Nstep = 8. Open (filled)
markers represent training (test) data. The circles (squares) corre-
spond to Case 1 (2) of the training data within 0 < g1 < 0.5 (0.5 <

g1 < 1.0) and the test data within 0.8 < g1 < 0.9 (0.1 < g1 < 0.2).
The other coupling constants are set to g2 = 1 and g12 = 0.

dependence on NL and the number of trainable parameters are
described in Appendix E.

2. Classification of fermion flavors

First, we consider two limit situations in which the clas-
sification of the fermion flavor is either trivial or impossible.
Then, we identify a scenario in which the classification be-
comes highly nontrivial.

In the first case, we consider the situation in which different
values of g1 and g2 are assigned and we aim at learning
the φ-boson state generated from an initial fermion selected
randomly between f1 and f2. However, we can easily realize
that, in this case, the flavor defined by the initial conditions
is perfectly classifiable. Next, we consider the other limit
scenario in which two sets of coupling constants, G and G′,
are predefined and an initial fermion fi is selected at random.
Then, depending on the randomly chosen initial fermion, the
coupling constants are drawn from either of the two sets; for
fi = f1(2), we draw g1(2) from G and g2(1) from G′. The g12

value is set to 1. In this specific situation, the shower profile
becomes independent of the initial fermion flavor due to the
choice of the coupling constants, therefore the classification
will always fail. However, building on this last scenario, we
observe that if the emission scale θi is modified depending
on the fermion flavor, the flavor difference is restored and the
classification becomes possible.

Moving one step further, one can think of a setup where
the emission scale is modified at only one step chosen ran-
domly between 1 and Nstep, for the specific flavor of fermion,
e.g., f1. This situation is analogous to the case where the
φ boson is radiated once by a slightly modified mechanism

due to an unknown flavor-dependent physics process. In or-
der to detect such processes, one wants to maximize the
probability p that the fermion flavor is correctly classified.
If no such modification is made to the emission scale, there
is no distinction between radiation processes in terms of
fermion flavors, resulting in p = 0, as mentioned above. If,
for instance, the emission scale is modified once by 20%,
the probability becomes p = 0.79 ± 0.02 for the QCNN with
NL = 3 and p = 0.63 ± 0.02 for the HEA with N ′

L = 6 (see
details in Appendix E). The QCNN clearly outperforms HEA
in this benchmark case. This is qualitatively understood to
be due to different circuit structures for the two ansatzes: a
tiny modification to the φ-boson state anywhere in the Nstep-
qubit register is propagated to the measured qubit. Moreover,
the propagation could be more efficient for the QCNN due
to its characteristic convolution and pooling structure. More
detailed results including dependencies on NL and the number
of trainable parameters are given in Appendix E.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we focused on quantum machine learning
problems with quantum data, and specifically extended the
QDL framework to high-energy physics, identifying a set of
paradigmatic tasks and promising use cases.

In particular, we applied quantum convolutional neural
networks to quantum data sets generated from quantum sim-
ulations of LGT and QFT models. First, we considered the
problem of quantum phase recognition in the Schwinger
model, and we successfully demonstrated the detection of
symmetry-breaking phases near a critical point. Second, we
considered the Z2 gauge theory and classified phases from
time-evolved states, corresponding to the deconfinement and
confinement of fermionic matter depending on the presence of
a background Z2 gauge field. Our results demonstrated non-
trivial learning capabilities and a good generalization behavior
for the QCNN method, in a scenario where no known simple
local order parameter was available. Finally, we considered
multiparticle states simulated by a phenomenological QFT
model of parton showers, from which fermion flavors and cou-
pling constants between fermions and bosons were extracted.
The QCNN method performed well in both tasks and, in
the setup where some unknown flavor-dependent modification
was made to the PS process, it achieved superior performances
in flavor classification compared to a more generic hardware-
efficient ansatz.

Our studies suggest several future research directions. For
example, it would be interesting to understand the connection
between specific properties of the input quantum data, the
structure of the QCNN ansatz, and its trainability. The former
can, for instance, prevent various amounts of entanglement or
encode certain physical symmetries such as gauge invariance
[61], which should probably be reflected in the structure of the
learning model. At the same time, it is also well known that
the choice of the ansatz and, perhaps less intuitively, of the
input states can have a significant impact on the trainability of
general QML models [62–64].

In terms of applications, it would certainly be important to
extend our results to more complex models and tasks that are
hard to learn with conventional methods. A primary example
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in this direction could be an investigation of phases in non-
Abelian and/or higher dimensional gauge theories (see e.g.,
[53,65–90] for quantum simulation of such theories). Recent
results pointed out that classical machine learning algorithms
with access to samples from quantum systems can, in cer-
tain regimes, successfully and efficiently carry out some of
the tasks commonly associated with the QDL paradigm such
as predicting properties and phases of many-body quantum
systems [91,92]. A comparison of the two approaches, aimed
at identifying the proper conditions to achieve a practical
quantum advantage, would represent a natural continuation of
our line of research.

Another set of open questions concerns the generaliza-
tion power of QDL models, which is an actively investigated
topic in the QML literature [17,18,34]. For the LGT models,
the prediction accuracy is affected by both state preparation
(VQE, Suzuki-Trotter, etc.) and training of the QCNN. Future
work might aim to better understand this interplay, sepa-
rating both effects in an effort to study how each changes
with increasing system sizes, as well as with more trainable
parameters and larger data sets. Besides studying the per-
formance of, e.g., QCNNs in the context of more advanced
LGT and QFT models than the ones analyzed in this paper,
some specific follow-up studies on the QPS algorithm can be
considered. Precisely, for this model the g12 value is crucial
for creating the interference between fermion flavors that is
hard to simulate classically. In the numerical studies of Sec. V,
the g12 was kept constant at 0 or 1. The fermion flavor clas-
sification and the g1 prediction were attempted with these
two different g12 values, and the results were not significantly
different. However, the direct prediction of g12 values was
also investigated on a test dataset with nonoverlapping g12

values in the training dataset, and in this case the accuracy was
much worse than for the case of predicting g1 values in Fig. 5.
Understanding this behavior could provide more insight into
the generalization ability of QCNN ansatzes when an intrin-
sically quantum mechanical property of parton showers is
involved.

Finally, a fascinating direction to look at is the exploration
of the QDL paradigm in connection with future experiments,
where quantum transduction techniques to coherently convert
a quantum state from one quantum system to another—
possibly from a detector to a quantum information processing
device—may become available. This would potentially offer
exciting opportunities for effectively characterizing quantum
phenomena observed in experiments or collected by quan-
tum sensors [30], and, for instance, extracting dynamical
properties of interacting particles in high-energy physics.
Here, the applications of QDL methods may once more pro-
vide a promising path to shed light on complex quantum
systems.
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APPENDIX A: STRUCTURES OF QCNN CIRCUITS

The basic structure of QCNN circuit is common in the
studies presented in Secs. III, IV, and V, each of those referred
hereafter to as the Schwinger, Z2, and QPS, respectively. In
general, the QCNN circuit is composed of alternating layers
of the convolution (CL) and pooling (PL) unitaries, each con-
structed with repeated blocks of gates, followed by a fully
connected layer (FCL) and a measurement operator, as in
Fig. 4. In the studies presented in this paper, one of the qubits
from the last PL block is directly measured, therefore the FCL
is not used. Moreover, the gates and the qubit connections
to implement each CL and PL blocks are chosen slightly
differently to be suited for individual studies.

1. Convolution layer

An individual block in the CL consists of a generic SU(4)-
like gate with 15 independent parameters. This is common
in all the studies and each block is implemented using
single- and two-qubit gates with rotation angles as parameters
(Fig. 6).

For the Schwinger and Z2 studies, the U gate is imple-
mented with a generic single-qubit gate

U (θ1, θ2, θ3) =
(

cos(θ1/2) −eiθ3 sin(θ1/2)

eiθ2 sin(θ1/2) ei(θ2+θ3 ) cos(θ1/2)

)
.

The two-qubit gates act on neighboring qubits in the first
layer, but then on further separated qubits as the CL block
goes deeper in the circuit, as shown in Figs. 7 and 8. For the
QPS study, the U gate is constructed using Pauli operators as
U (θ1, θ2, θ3) = RZ (θ3)RY (θ2)RX (θ1) and the two-qubit gates
always act upon neighboring qubits (see Fig. 9). The boundary
conditions for the CL blocks are different: the Schwinger uses
the open boundary condition, while the Z2 and QPS use the
closed one, as indicated by the truncated Uconv gates in Figs. 8
and 9.

2. Pooling layer

For the PL, each block consists of a set of single-qubit rota-
tion gates acting on the control and target qubits, followed by
a CNOT gate and the adjoint of the single-qubit gate set on the
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FIG. 7. QCNN circuit used for the phase recognition task in the
Schwinger model. The unitaries Uconv and Upool correspond to those
shown in Figs. 6 and 10, respectively

target qubit (Fig. 10). As for the single-qubit gate, the U gates
used in the CL blocks above are also used here. The qubit
connections for the control and target qubits follow the same
rule as those used in the CL blocks for the Schwinger and
Z2. For the QPS, the control and target qubits are separated
by Nstep/(2L) in qubit counts where L is the number of PLs,
and the block is repeatedly applied by incrementing the qubit
locations by one in a given PL (see Fig. 9).

3. QCNN circuit

The QCNN circuits used for the Schwinger, Z2, and
QPS studies are shown in Figs. 7–9, respectively. For the
Schwinger and QPS (Nstep = 8) the set of CL and PL is re-
peated three times, while for the Z2 it is repeated two times.
For all the three cases, the last qubit is always measured. The
boundary conditions and the qubit connections to the convolu-
tion and pooling blocks are different as in the figures. Except
for the Z2 gauge theory simulation, the sets of parameters for
the CL and PL in the same layer are same, making the circuit
translationally invariant.

APPENDIX B: VQE FOR THE SCHWINGER MODEL

This Appendix explains the ansatz we used for prepar-
ing dataset in the Schwinger model. We used the so-called

FIG. 8. QCNN circuit used for the phase recognition task in the
Z2 model. The unitaries Uconv and Upool correspond to those shown in
Figs. 6 and 10, respectively. The truncated Uconv gate at the first CL
indicates that the gate acts upon the top and bottom qubits.

FIG. 9. QCNN circuit used in the QPS study with Nstep = 8. The
unitaries Uconv and Upool correspond to those shown in Figs. 6 and 10,
respectively. The truncated Uconv gates at the same CL indicate that
they act upon those two qubits.

Hamiltonian variational ansatz (HVA) [52–54]. The ansatz is
defined by UHVA(λ) |φ〉 where

UHVA(λ) =
N ′

L−1∏
l=0

[
exp

(−iλ(0)
l HZ

)
exp

(−iλ(1)
l H (odd)

XY

)

× exp
(−iλ(2)

l H (even)
XY

)]
, (B1)

with

HZ =
Ns−2∑
n=0

[
n∑

i=0

Zi + (−1)i

2
+ θ

2π

]2

+ m

2

Ns−1∑
n=0

(−1)nZn,

(B2)

H (odd)
XY =

∑
m:odd

[X2m−1X2m + Y2m−1Y2m], (B3)

H (even)
XY =

∑
m:even

[X2mX2m+1 + Y2mY2m+1]. (B4)

The initial state was fixed as |φ〉 = |01〉Ns/2 to constrain the
minimization to the zero-magnetization sector

∑
i Zi |ψ〉 = 0.

APPENDIX C: EXACT DIAGONALIZATION ANALYSIS
OF THE SCHWINGER MODEL

1. Critical mass for a finite lattice spacing

As mentioned in the main text, the critical mass in the con-
tinuum limit is already obtained in [40,94]. Here we want to
reproduce the critical mass for a finite lattice spacing ag = 2.
For this purpose, we use the finite scaling analysis [95] and
exact diagonalization (ED). First, we compute the mass gap
N (x) with changing the value of mass x = m/g, and then

FIG. 10. A set of single-qubit rotation gates and a CNOT gate
that composes a PL block. The single-qubit gates on the target qubit
after the CNOT correspond to the adjoint of the set of single-qubit
gates on the control qubit.
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FIG. 11. The expectation value of the Pauli operator 〈Zn〉 at n-th
qubit for the Schwinger model with Ns = 8, ag = 2, ϑ = π .

obtain the following ratio:

RN (x) = NN (x)

(N + 2)N+2(x)
. (C1)

We choose five points near RN = 1 and solve RN (x∗
N ) =

1 by a linear fitting. We repeat this process for N ∈
{10, 12, 14, 16, 18, 20} and extrapolate the results to the limit
of N → ∞. This gives the critical mass for ag = 2 as (m/g) ≈
0.143.

2. Local observable in the Schwinger model

As mentioned in the main text, the phase transition in the
Schwinger model can be detected by measuring the electric
field operator. On top of that, a similar profile is already
observed in 〈Zn〉 in the bulk, as shown in Fig. 11. This pre-
vents us from seeing a clear advantage in terms of sampling
complexity because we can roughly distinguish two phases by
just a single qubit measurement. However, it would be worth
noting that, for the QCNN model, we measure the last qubit
and distinguish two phases, which we cannot do otherwise by
a single qubit measurement. In this sense, the QCNN “sends”
the information in the bulk to the boundary.

APPENDIX D: QUANTUM CIRCUIT FOR REAL-TIME
EVOLUTION IN Z2 GAUGE THEORY

This Appendix explains the detail of dataset preparation in
the Z2 gauge theory.

First, we decompose the time-evolution operator of Z2

gauge theory via the Suzuki-Trotter formula as

e−iHt ≈ e−iHf t e−iHgt e−iHmt , (D1)

where

Hf = − J

2

Ns−1∑
n=0

(XnZn,n+1Xn+1 + YnZn,n+1Yn+1), (D2)

Hg = − f
Ns−1∑
n=0

Xn,n+1, (D3)

Hm = m

2

Ns−1∑
n=0

(−)nZn. (D4)

FIG. 12. Quantum circuit for e−i(X ZX+Y ZY )α/2.

The latter two factors, e−iHgt and e−iHmt , are easily imple-
mented using single-qubit rotation gates of RX and RZ , while
the first factor e−iHf t can be implemented, following [96], by
a quantum circuit shown in Fig. 12.

Second, the initial state |ψinit〉, which satisfies Gauss’s law
in Eq. (11) with gn = −1 for n �= 1 and gn = +1 for n = 1
can be obtained by

|ψinit〉 =
Ns−2∏
n=0

Hn,n+1

Ns−1∏
n �=1

Xn |0〉 . (D5)

APPENDIX E: ADDITIONAL RESULTS FOR QPS
SIMULATION

Here we describe the QPS simulation method used in
Sec. V in more detail. Figure 4 in the main text shows the
QPS circuit used to produce the dataset. The unitary operators
U and U a/b

i in the circuit are given by the matrices

U =
(√

1 − u2 u
−u

√
1 − u2

)
, (E1)

where

u =
√

g1 − g2 + g′

2g′ , (E2)

g′ = sign(g2 − g1)
√

(g1 − g2)2 + 4g2
12 (E3)

and

U a/b
i =

( √
a/b(θi ) −√

1 − a/b(θi )√
1 − a/b(θi )

√
a/b(θi )

)
, (E4)

where a/b(θi ) represents a Sudakov factor that describes the
probability to have no emission from a fermion of type a/b at
the ith emission scale θi [59]. The emission scale is chosen to
start from θmax = 1 and decrease with increasing number of
emission steps, down to the smallest scale of ε = 10−3.

In addition to the main QCNN circuit, two slightly mod-
ified QCNN circuits are prepared for this task. The circuit,
denoted as QCNNm1, is formed simply by reducing the num-
ber of pairs of the convolution and pooling layers, NL. Another
circuit called QCNNm2 is constructed by replacing the gates
in the convolution and pooling layers with more simplified
ones: the single-qubit gates are reduced to RY and RZ gates in
the convolution and pooling layers and the two-qubit gates in
the convolution layer to just ZZ gate. The number of trainable
parameters Npar is 21NL for the QCNN and QCNNm1 and
12NL for the QCNNm2. For the QPS dataset with Nstep = 8,
NL = 3 for the QCNN and 1 or 2 for the QCNNm1.

The prediction accuracy, as defined in the main text, is
shown as a function of NL for the QCNN and N ′

L for the HEA,
respectively, in Fig. 13. For both selections of the g1 ranges,
the prediction accuracy improves with increasing NL and
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FIG. 13. Determination of g1 values at Nstep = 8. The absolute difference g1 between the predicted and true coupling constants is shown
for the test data as a function of NL for QCNN and QCNNm2 and N ′

L for HEA, respectively (left) and training iterations (right). The top (bottom)
figures show the Case 1 (2) of the training data within 0 < g1 < 0.5 (0.5 < g1 < 1.0) and the test data within 0.8 < g1 < 0.9 (0.1 < g1 < 0.2).
The other coupling constants are set to g2 = 1 and g12 = 0.

FIG. 14. Classification of fermion flavors at Nstep = 8. The probability that the fermion flavor is correctly classified when the emission
scale is modified only once, randomly between 1 and Nstep in the shower steps, is shown as a function of NL for QCNN and QCNNm2 and N ′

L

for HEA, respectively (left) and training iterations (right).
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reaches similar precisions at NL = 2 (N ′
L = 6) for the QCNN

(HEA). The prediction accuracy and the convergence with the
number of training iterations are also compared between the
QCNN and HEA models with a similar number of trainable
parameters by adjusting the NL and N ′

L. The overall behavior
of the convergence is similar, but the QCNN model appears to
predict more accurately than the HEA when compared at the
similar Npar, in particular at small Npar.

1. Classification of fermion flavors

Figure 14 shows the probability p of correctly classifying
the fermion flavors in the scenario that the emission scale is

modified only once by 20%, randomly between 1 and Nstep.
The probability increases with NL for both ansatzes, and the
QCNN with NL = 3 (p = 0.79 ± 0.02) clearly outperforms
the HEA with N ′

L = 6 (p = 0.63 ± 0.02) in this benchmark
case. Even the simple QCNNm2 with NL = 2 (p = 0.71 ±
0.02) or the QCNNm1 with NL = 1 (p = 0.64 ± 0.02) is com-
petitive to the HEA. The classification performance versus
training iterations is compared between the two ansatzes with
similar number of trainable parameters. No significant differ-
ence is seen in the convergence of classification performance,
but the QCNN can clearly achieve a better performance than
the HEA when both ansatzes have similar number of trainable
parameters.
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