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We use a tensor network renormalization group method to study random S = 2 antiferromagnetic Heisenberg
chains with alternating bond strength distributions. In the absence of randomness, an imposed dimerization with
bond alternation induces two quantum critical points between the S = 2 Haldane phase, a partially dimerized
phase, and a fully dimerized phase, depending on the strength of dimerization. These three phases, called
(0,4—0) =(2,2), (3,1), and (4,0) phases, are valence-bond solid (VBS) states characterized by o valence
bonds (effective spin-1/2 singlet pairs) forming across even links and 4 — o valence bonds on odd links.
Here we study the effects of bond randomness on the ground states of the dimerized spin chain, calculating
disorder-averaged twist order parameters and spin correlations. We classify the types of random VBS phases
depending on the strength of bond randomness R and dimerization D using the twist order parameter, which has
a negative/positive sign for a VBS phase with odd/even o. Our results demonstrate the existence of a multicritical
point in the intermediate disorder regime with finite dimerization, where (2,2), (3,1), and (4,0) phases meet. This
multicritical point is at the junction of three phase boundaries in the R-D plane: the (2,2)-(3,1) and (3,1)-(4,0)
boundaries that extend to zero randomness, and the (2,2)-(4,0) phase boundary that connects another multicritical
point in the undimerized limit. The undimerized multicritical point separates a gapless Haldane phase and an
infinite-randomness critical line with the diverging dynamic critical exponent in the large-R limit at D = 0.
Furthermore, we identify the (3,1)-(4,0) phase boundary as an infinite-randomness critical line even at small
R and find the signature of infinite randomness at the (2,2)-(3,1) phase boundary only in the vicinity of the

multicritical point.

DOI: 10.1103/PhysRevResearch.5.043249

I. INTRODUCTION

The ground-state properties of antiferromagnetic Heisen-
berg spin chains have attracted a lot of attention for many
decades, in particular after Haldane’s conjecture [1,2] that
half-integer and integer spin chains are distinct from each
other. Half-integer spin chains with Heisenberg interactions
have ground-state properties generically similar to the exactly
solvable spin-1/2 chain [3], which has a gapless excitation
spectrum [4] and power-law decaying spin correlations. Inte-
ger spin chains, on the other hand, have gapped ground states
with exponentially decaying spin correlations [1,2] and a hid-
den topological order that is characterized by a nonlocal string
correlation function [5]. Qualitative differences are also found
between half-integer and integer spin chains when the cou-
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pling constants alternate between two different values [6,7].
The ground state is dimerized by infinitesimal alternation for
half-integer spins, while the Haldane phase in an integer spin
chain changes to a dimer state via a phase transition only with
sufficiently strong bond alternation.

Another theme of high interest in condensed-matter
physics is the interplay between disorder, interactions, and
quantum fluctuations. The ground-state properties of low-
dimensional quantum systems are often modified dramatically
by introducing quenched disorder (i.e., time-independent
disorder). Remarkably, there are properties resulting from
quenched disorder that are universal for a broad class of quan-
tum spin chains, independently of whether the spin is integer
or half-integer. The so-called random-singlet (RS) phase [8]
is one of the disorder-induced phases that possesses such
universal properties. This phase describes the ground state
of a spin-1/2 Heisenberg chain with any amount of disor-
der in couplings and is also the ground-state phase of the
spin-1 chain in the strong disorder limit where the excitation
spectrum becomes gapless and the string topological order
vanishes [9-13].

The RS phase was first found in the ground state of the
random spin-1/2 chain by using the strong-disorder renormal-
ization group (SDRG) method [8,14—16]. The SDRG method
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FIG. 1. Five distinct VBS phases (o, 4-0) witho =0, 1,2,3,4
for a spin-2 chain, where o denotes the number of spin-1/2 singlets
(indicated by the arches) over each even bond.

(4,00 o

for the spin-1/2 chain consists of iteratively locking the
strongest coupled spin pair into a singlet state, which decou-
ples from the rest of the chain after effective couplings are
generated among the remaining spins. This SDRG scheme
ultimately flows toward an RS fixed point [8] that asymptot-
ically represents the system’s ground state, in which pairs of
strongly entangled spins form singlets over all length scales,
mostly short ranged but occasionally very long ranged. Those
long-ranged singlets are rare; however, they dominate the
average spin-spin correlations that decay asymptotically with
distance L as an inverse-square form L~2. By contrast, the
correlations between typical pairs of widely separated spins
are very weak and decay exponentially with the square root of
their distance. Furthermore, the characteristic energy scale €
and length scale L of the singlets in the RS phase follow:

—Ine ~ LY, (D

with ¥ = 1/2. This energy-length scaling is very different
from the standard dynamic scaling, € ~ L%, and implies that
the dynamic exponent diverges z — oo. The RS fixed point
is one example of an infinite-randomness fixed point [17],
which is characterized by extremely broad distributions of
physical properties, even on a logarithmic scale, leading to
the distinction between average and typical behaviors.

The SDRG method has been extended to higher spin chains
[9-11,18-20]. In particular, Damle and Huse applied an ex-
tended SDRG scheme to disordered spin-S Heisenberg chains
with arbitrary S and obtained a class of infinite-randomness
fixed points, called permutation symmetric fixed points [19].
In the VB picture for spin S > 1/2, each spin S is replaced
with 2S5 virtual spin-1/2 variables, and valence bonds (sin-
glets) are pairwise created between spin-1/2 variables that
belong to different spin-S sites. For a spin-§S chain, there are
28 + 1 distinct valence-bond solid (VBS) domains, denoted
by (0,28 — o) with 0 € {0, 1,...,25}; a VBS domain of
type (0,25 — o) (type o) consists of o spin-1/2 singlets
over each even bond and 2§ — o spin-1/2 singlets over each
odd bond (Fig. 1). Among these generalized VBS states, the
Haldane phase in an integer spin-S chain is associated with the
symmetric (S, S) domain. A dimerized state (o, 25 — o) with
o # S can be realized in chains with alternating bond strength
distributions. In the extended SDRG scheme, the degrees of
freedom are effective spins of magnitude

lo — o'l

2 s

Se.00 =

localized at the boundaries between distinct domains of type o
and o’. These domain-wall spins interact with spins in neigh-
boring domain walls through effective couplings that can be
antiferromagnetic or ferromagnetic, depending on the types of
environment domains. The renormalization of strong effective
couplings between domain-wall spins under the renormal-
ization group (RG) leads to reconfigurations of associated
domains. Using this domain-wall picture, Damle and Huse
have predicted a series of infinite-randomness multicritical
points P, that result from a competition between n domains.
At a P, multicritical point, » domains appear with equal prob-
ability; hence the multicritical point is called a permutation
symmetric critical point. For a P, multicritical point, we have

Y, = 1/n, 2)

for the energy-length scaling exponent given in Eq. (1). This
is a generalization of the RS fixed point with n = 2, where
two domains occur with equal probability under the action of
the RG.

The Griffiths singularity (also known as the Griffiths-
McCoy singularity for quantum systems) [21-23] is another
interesting phenomenon arising from the interplay between
quantum fluctuations and randomness. This phenomenon is
characterized by singular low-energy behavior of various ob-
servable, such as the susceptibility and the specific heat, in an
off-critical phase. Griffiths effects occur when there are rare
but arbitrarily large spatial regions that are locally in a phase
B due to disorder fluctuations, while the system is overall in
a phase A. Quantum fluctuations enhance the effects of the
rare regions, leading to a power-law behavior of the density of
low-energy excitations such that [24]

,0(6) ~ 671+1/z 3)

for a one-dimensional system, with a nonuniversal continu-
ously varying exponent z that also describes the length scale
and the energy scale through € ~ L. This power-law density
of states is responsible for power-law singularities of certain
observables at low temperatures. Using the SDRG analysis
[9,18,25], the generalized VBS states in dimerized spin-S
chains, including dimer phases for any S and the Haldane
phase in an integer-S chain, in the presence of sufficiently
strong disorder have been identified as Griffiths phases, where
the energy gaps are filled in yet the topological order (Haldane
order and dimer order) persists.

Considerable numerical efforts have been devoted to exam-
ine the theoretical predictions about the ground-state phases
of random spin § > 1/2 chains but so far have been mainly
focused on the S = 1 chain [12,13,26-28]. Here we first use
a tensor network strong-disorder renormalization group (tS-
DRG) method [29] to study the zero-temperature phases of
the random spin-2 chain with alternating bond strength dis-
tributions, which to our knowledge have not been previously
investigated numerically.

The paper is organized as follows. In Sec. II we define the
model and summarize some known properties of the ground-
state phases. In Sec. III we outline the SDRG and tSDRG
methods. In Sec. IV we provide our numerical results for
the ground-state phases depending on randomness and dimer-
ization, focusing on a VBS order parameter and end-to-end
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FIG. 2. Three possible phase diagrams of spin-2 chains in the R-D plane, predicted in Ref. [19].

correlations. We conclude in Sec. V with a summary and
discussion.

II. THE MODEL

The model we consider is the spin-2 antiferromagnetic
Heisenberg chain, described by the Hamiltonian

H =7 JSi-Su. @)

where S; is the spin-2 operator at site i, and J; are random
coupling constants given by

Ji = K[1+ (=1)'D], §))

where the parameter D, with |D| < 1, measures the strength
of bond alternation (dimerization), and K; are random positive
variables with the following power-law distribution:

RIK—HUR - for 0 < K < 1,
0, otherwise

P(K) = { (6)
where R > 0, being the standard deviation of In(K), pa-
rameterizes the strength of the randomness. This power-law
distribution of bond randomness at D = 0 has been widely
used in previous numerical studies for disordered systems
[12,13,27,30,31].

The spin-2 model hosts a variety of ground-state phases,
depending upon the dimerization D and the randomness R. In
the absence of randomness (i.e., R = 0), there are five gapped
states; they are the VBS phases of type 0 =0,1,2,3,4,
changing successively as the dimerization parameter D varies
from —1 to 1. The valence-bond picture suggests that the
elementary excitations at all four domain walls are effective
spin-1/2 variables, and the phase transitions belong to the
level-1 SU(2) Wess-Zumino-Witten universality class [6,32].
The locations of the domain walls have been determined using
the level-crossing method [33] and the ground-state expecta-
tion value of a so-called twist operator [34]. The critical values
for the (2,2)-(3,1) and (3, 1)-(4, 0) transitions are found at
D, ~ 0.18 and D » =~ 0.55, respectively. Under interchang-
ing even and odd bonds, the (1, 3)-(2,2) and (0, 4)-(1, 3)
transitions occur at —D, ; and —D,. », respectively.

According to the Damle-Huse domain-wall picture [19],
random-singlet RSg phases out of spin § = 1/2, 1, 2 variables
and multicritical points P, with possible n = 3,4, 5 can occur
when disorder comes into play. Since the undimerized spin-
1/2 chain with any weak randomness is in the RS/, phase,
the critical domain walls at |D, | and |D. | with effective
spin-1/2 are expected to evolve into an RSy ), state for R > 0.

On the other hand, the RS, phase, arising from a competition
between the (4,0) domain and the (0,4) domain, occurs only
in the strong disorder limit at D = 0. In the RS, phase, spin-2
singlets connect sites on different sublattices over arbitrarily
long distances in a random fashion, completely analogous to
the RS/, state.

For the spin-2 chain, there are three possible arrangements
of random-singlet RSg phases and multicritical points P,
in the R-D plane between weak and very strong disorder,
as shown in Fig. 2, among which the phase diagram with
the maximally symmetric multicritical point Ps may occur
only with some additional fine-tuned parameter in the model
[19], or can be realized only with higher symmetry groups
[35-37]. All multicritical points P, belong to a set of infinite-
randomness fixed points with the critical exponent 1, given in
Eq. (2) and the correlation-length exponent given by [9,10,19]

2 1
/v SRRV 2

In particular, the random-singlet RSg phases for all § is the
special case with n = 2, where we have v = 1/2 and v = 2.

The off-critical regions, including the Haldane phase asso-
ciated with the (2,2) domain and the dimerized phases, have
excitation gaps and exhibit topological order in the absence
of randomness. The topological order in the Haldane phase
can be detected by a nonzero limiting value of the generalized
string order parameter [5,38],

k—1
0i) = —<S§ exp <i9 > s;)s,§>, (8)

I=j+1

in the |j — k| — oo limit, where S; is the z component of the
spin-2 operator at site j, and an angle parameter with 6 = 7 /2
is mostly suitable for the spin-2 case since O%, becomes a
smooth function of the distance |j — k| [39], similar to 6 =
7 for the spin-1 case [5]. The topological order in the dimer
phases is enforced by the Hamiltonian, and its sign reflects
whether the Hamiltonian favors singlet pairs to be formed over
even or odd bonds. Both the Haldane topological order and
dimer order can survive in the presence of randomness even
when the energy gaps close up. Such a gapless region with
topological order is the Griffiths phase.

The main goal of our numerical study is to identify which
diagram in Fig. 2 corresponds to the phase diagram of our
spin-2 random chain.
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III. THE NUMERICAL METHOD
A. SDRG

The Hamiltonian of a disordered quantum many-body sys-
tem has an intrinsic separation in energy scales that allows us
to find its ground state using the SDRG technique. The essen-
tial idea of the SDRG method, introduced in Refs. [14,15], is
to find the largest term in the Hamiltonian successively and
put the subsystem associated with this term into its ground
state. The couplings between this subsystem and the rest of
the system are treated by perturbation theory, and effective
couplings across the subsystem are generated. For example,
for the random spin-1/2 Heisenberg antiferromagnetic chain,
an effective coupling is generated between spins k — 1 and
k 4 2 with strength

1 Ji1Jier
2 S

J= , ©))
when J; is the strongest coupling that locks spins k and
k + 1 into a singlet at a certain step of RG. The new energy
scale is then the strength of the strongest remaining coupling:
Q = max{J}. By repeating this RG procedure, we gradually
lower the energy scale and reduce the number of degrees of
freedom in the system. The RG flow equation describing the
evolution of the probability distribution under the RG process
has been solved by Fisher in Ref. [8] for the spin-1/2 chain.
The multiplicative relation in Eq. (9) suggests that it is more
convenient to measure bond strengths on a logarithmic scale.
In terms of logarithmic variables defined as I' = — log(£2) and
¢ =log(2/J), the fixed-point distribution for the spin-1/2
chain corresponds to

P(¢) = %e—f/r. (10)

For higher spin chains, renormalized couplings in the
conventional SDRG method may become stronger than the
decimated couplings when the randomness is not sufficiently
strong, which makes perturbation theory invalid. Thus several
extended SDRG methods, based on effective S = 1/2 mod-
els with both antiferromagnetic and ferromagnetic couplings,
have been proposed for higher spin chains [9-11,19,40]. Us-
ing a domain-wall model, Damle and Huse have extended
Fisher’s RG analysis to arbitrarily high spin. In the domain-
wall model, one defines p, to be the probability that a specific
domain is of type ¢ and W, to be the probability of a domain
of type o followed by one of type o', which are required to
formulate the RG flow equations. The fixed-point solution,
which controls the multicritical point P,, is found to be given
by the bond strength distribution:

—1
P,(¢) = ”T e~V (11)

and
pe = 1/n, Vo,

12
Woor = 1/(n — 1), (12

Yo # o/,

indicating the domain permutation symmetry. From the fixed-
point solution, one can deduce the energy-length scaling
relation — Ine ~ LY» with 1, given in Eq. (2).

B. Tensor networks and SDRG

Here we use a tree tensor network generalization of the
SDRG, referred to as tSDRG, to study the spin-2 random
chain. This generalized SDRG scheme, proposed by Golds-
borough and Romer [29], formulates the RG procedure as a
tree tensor network and refines the perturbative approximation
of SDRG by including higher energy states at each RG step,
along the lines of a previous SDRG extension [41]. The tS-
DRG method has been applied in studies of the quantum Ising
chain [42] and spin-1 chains [13], where accurate results that
are compatible with the results obtained by nonapproximate
quantum Monte Carlo calculations [43] and the density matrix
renormalization group [12,28] are achieved.

The starting point of tSDRG is to express a one-
dimensional Hamiltonian of L sites as a sum of a two-site
Hamiltonian in terms of matrix product operators (MPOs)
[44]:

H=Y Hy=wwb...wh, (13)

where an MPO W/ at site i is a matrix of operators.
Specifically for the model considered in this work, the
two-site Hamiltonian reads

H;iv1 = JiSi - Sip
=S5 S +STSE D +SiSia]. (4
where ST and S~ are the ladder operators. For a chain with
open boundary conditions (OBCs), we have the following
explicit form of the W tensors:

1 0 0 0 0
S 0 0 0 0
whil = 18- 0 0 0 0], @5
¥ 0 0 0 0
0 (/2S5 (/28 JSE 1
for a site in the bulk, i.e., i # 1, L, and
will=(0 /287 (/28] 4LSi 1),  (16)
1
S;
wiH =151, (17)
Si
0

for two edge sites i =1 and L. For a chain with periodic
boundary conditions (PBCs), the MPO tensors fori = 1...L
are all bulk tensors as given in Eq. (15), where the coupling J;,
links between two end sites L and 1. An important observation
is that the two-site Hamiltonian H; ; is encoded in the local
matrix product WIIWUF Tt is easy to verify that

1 0 0 0 0
St 0 0 0 0
W[i]W[i+1] — Si_ 0 0 0 0
A 0 0 0 0
Hi 2080, st g5, 1
(18)
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(b) 3
1%

E ¥
FIG. 3. (a) The three-leg tensor V (triangles), built from the x’
lowest energy eigenvectors, truncates a two-site tensor into a renor-
malized site. The blue-shaded squares are local tensors of the MPO.
The vertical legs denote physical indices; the horizontal legs denote
virtual indices. (b) Isometric property VIV = 1 of the tensor V.

That is, H; ;11 = (WHWIH)s | The essential information
required for the tSDRG procedure is the list of MPO Wl and
the list of two-site Hamiltonians H; ;1.

Similar to the conventional SDRG, in each RG iteration
one selects a pair of adjacent sites to be renormalized, de-
pending on the local energy spectrum. Here the selection is
based on the largest energy gap, rather than the strongest
coupling (corresponding to the lowest gap) [41,45,46]. For
each two-site Hamiltonian H; ;;; we identify the energy gap
A, i+1, which is measured as the difference between the high-
est energy of the x’-lowest eigenstates that would be kept
and the energy of the (x’ + 1)-th eigenstate. We set a bond
dimension x as the upper bound of the number x’ to control
the accuracy of the calculation. The actual number x’ is ad-
justed to keep full SU(2) multiplets. By increasing the bond
dimension x, we can obtain more accurate results but at the
cost of computational resources and time.

After obtaining all local gaps described above we identify
the two sites with largest gap. These two sites will be merged
into a renormalized site as follows. We first express the kth
eigenstate | W) of H; ;1| in terms of the local two-site product
basis,

(W) = Y W lsi)lsisn),

SisSit1

19)

where |s;)|s;11) is the local product basis. We then construct a
projector that projects the two-site space to the renormalized
site space with dimension y’,

’

X
V= Isa)lsin) W (il
k=1

(20)

In terms of matrix notation one can write V as

V=(¥) [¥) Wy ), (21)
and its tensor network diagram is given in Fig. 3. Note that the
tensor V has the isometric property VIV = 1. To obtain the
renormalized MPO Wi+ agsociated with the renormalized
site, one uses V to renormalize each element of the product
WUHW U+ a5 follows:

(W[i]W[iH])b,b/ s Wla[,iifi+1] = VT(W[i]W[iH])b,yV. (22)

FIG. 4. (a) The tSDRG algorithm as a tree tensor network for a
chain of eight sites with periodic boundary conditions. The squares
indicate the W tensors in the MPO representation of the system’s
Hamiltonian, the triangles are the V' tensors used to truncate the two-
site operators, and the circles represent the top Hamiltonian encoded
in the final two-site tensor. The RG iteration proceeds upwards in the
vertical dimension. The part below the W tensors is the conjugate
of the upper part. (b) A tree tensor network for the ground-state
expectation value of the end-to-end correlator which acts only on
two edge sites. Since VTV = 1, only those isometric tensors (orange
triangles) that affect the two edge sites are considered.

The two-site Hamiltonians that contain the renormalized site
can be decoded as follows:

Loy @ Hijy — Hioy ey = WETHWEH 0 (23)

Hijn1 ® Iy — Hijigyie = WEOIWERDs 0 (24)
This completes one iteration of tSDRG. We have now an up-
dated list of MPOs and two-site Hamiltonians. Conceptually,
one can relabel the sites so that the renormalized MPO and
two-site Hamiltonian are labeled as W and H; i1, respec-
tively. In practice the relabeling is not necessary.

To obtain the ground state of the system, we should
repeat the tSDRG iteration until the system contains only
two renormalized sites. At this stage we diagonalize the top
Hamiltonian Hy, to obtain its ground state |W\°"). From | W)
and the projector V at each iteration, one can generate an
inhomogeneous binary tree tensor network as sketched in
Fig. 4(a). The expectation value of a product of local operators
can be obtained by contracting the operators with the tree and
its conjugate as sketched in Fig. 4(b). The contraction can be
evaluated efficiently thanks to the property that VIV = 1.

IV. NUMERICAL RESULTS

In this section we use the tSDRG method to explore
ground-state phases of the random spin-2 chain with alternat-
ing bond strength distributions as defined in Eqgs. (5) and (6),
focusing on two observables: the VBS order parameter based
on a unitary operator appearing in the Lieb-Schultz-Mattis
theorem [47] and the end-to-end correlation function. We first
show the R-D phase diagram, extracted from our numerical
data, in Fig. 5 before presenting detailed results. We restrict
ourselves to the D > 0 region because the results for D < 0
can be obtained simply via the parity symmetry. The phase
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(4, 0)-phase

¢:(1.0,0.34)

a:(1.0,0.12)

(2, 2)-phase (3, 1)-phase

d:(0.5,0.48

(R=0,D0=0.18)

00 01 02 03 04 05 06
D

FIG. 5. The phase diagram in the R-D plane with D > 0, ex-
tracted from our numerical results (unfilled circles) for L = 512 and
previous numerical data [34] at R = 0. The points labeled by P?
and P} are three-phase multicritical points for L =512 at D =0
and D > 0, respectively. The points labeled by P) and P; are the
multicritical points estimated for L — oo. The four points denoted
by a, b, ¢, and d are finite-size critical points whose properties are
further discussed in Secs. IV A and IV B.

diagram that we have identified largely agrees with the type in
Fig. 2(c).

A. VBS order parameter

We consider a unitary operator, called the twist operator,
defined for a chain with L spins as

L
27 .
U =exp i+ Z]S§ , (25)

J=1

which creates spin-wave-like excitations by rotating each spin
about the z axis with a relative angle. The twist operator was
first introduced in the Lieb-Schultz-Mattis theorem [47-49],
which states that for the ground state Wgs of a half-integer
spin chain, one has

7 = (Wes|U|W¥gs) =0 (26)

in the limit L — oo, indicating a gapless excitation spec-
trum. Furthermore, the ground-state expectation value of this
operator has been found to be capable of detecting and char-
acterizing VBS order [34]. For a VBS state of type o, the
asymptotic form of the expectation value is given by [34]

= (=171 =00/L)], 27)

that is, it is positive (negative) in the L — oo limit if o is
even (odd). Using the properties of z;, the ground-state phase
diagrams of dimerized spin-S chains with S =1/2,1,3/2,
and 2 in the absence of randomness were determined in
Ref. [34]. Remarkably, this order parameter is applicable also
for strongly disordered systems, as demonstrated in a quantum
Monte Carlo study for the random spin-1 Heisenberg chain
[27].

—=— [ =128 L=256 —¥— L[ =512

021R=1.5

ZL 0.1

_01 4

0.5 1

0.0

_05 4

(c)
0.0 0.1 0.2 0.3 0.4 0.5 0.6
D

FIG. 6. Disorder-averaged twist order parameters z; for differ-
ent system sizes at R = 1.5, R = 1.0, and R = 0.5, plotted vs the
dimerization D. The red labels 133>, a, b, c, and d indicate the points
where 7; = 0 for L = 512 (green data); these points are also shown
in Fig. 5.

Here we calculate z; using the tSDRG method for the
random spin-2 chain with periodic boundary conditions. We
explore the behavior of the disorder-averaged order param-
eter 7, for a wide range of randomness and dimerization,
parametrized by R and D. We have considered system sizes
up to L = 512 and more than 5 000 random coupling samples
to obtain the disorder average. Figure 6 shows the disorder-
averaged order parameter for different system sizes at R =
1.5, 1.0, and 0.5 as a function of D. Here, in the cases with
R = 0.5 and R = 1.0, one can clearly observe that the order
parameter changes its sign at certain values of D; there are
two such zero crossings for each L that can be identified as
two-phase transition points between different random VBS
states. The sign of z; indicates that the domains from left
(small D) to right (large D) are successively in (2,2), (3,1),
and (4,0)-dominant phases. By varying R, the two domain
walls, located at the zero crossings of z;, form critical lines
that connect the two critical points in the clean limit, i.e.,
D, ~ 0.18 and D, =~ 0.55 at R = 0. The distance between
these two critical lines decreases as R increases. For the case
with R = 1.5, one can observe the minimum value of Z; for
L =512 (the largest system size that we consider here) is
about zero; we can than identify the associated (R, D)) with
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FIG. 7. Finite-size scaling of the location (R,, D,) at which the
twist order parameter reaches its minimum at 7; = 0. The multicrit-
ical point in the thermodynamic limit is estimated as R, ~ 1.15 and
D, ~ 0.04 from an extrapolation to L — o0, using Eqs. (28) and (29)
with v = 2.3.

this minimum as the junction of the two critical lines for the
finite chain. In Fig. 5 the point at (R, D)) is denoted by 1’53> .

The results described above for the disorder-averaged twist
order parameter suggest that there is a multicritical point at
which three phases (2,2), (3,1), and (4,0) meet, in the region of
D # 0. This implies that the diagram in Fig. 2(c) corresponds
to the R-D phase diagram of our model. To determine the
location of this multicritical point in the limit of L — oo, we
find the [R,(L), D,(L)] point at which the disorder-averaged
twist order parameter reaches its minimum at 7 = 0, and then
estimate the critical values for R, and D, from an extrapola-
tion to L — o0 using

R,(L) — Ry(c0) ~ L' (28)
and
D,(L) — Dy(c0) ~ L', (29)

with v = 2.3 for a multicritical point P; [see Eq. (7)]. By
doing so, we obtain R,(c0) ~ 1.15 and D,(c0) ~ 0.04, as
shown in Fig. 7. Here we round to two decimal places to point
up D, (00) # 0, which is the chief characteristic of the phase
diagram in Fig. 2(c). We note that for a control parameter
A, the deviation of a finite-size pseudocritical point A.(L)
from the true critical point A.(oco) in the limit of L — oo is
often parameterized as In[A.(L)] — In[A.(c0)] for an infinite-
randomness fixed point [8,50-52]. For the bond strength
distributions given in Egs. (5) and (6), the distance from the
critical point defined in Eq. (28) is thus consistent with such
logarithmic parametrization; the distance given in Eq. (29) is
also suitable because the values of D we consider here are so
small that the approximation In(1 + D) ~ D is valid.

Now we turn to the undimerized region with D = 0.
Figure 8 shows the dependence of disorder-averaged twist
order parameters on R. Here the twist order parameter for
each system size L is positive before converging to z;, = 0
in the large-R region, consistent with the scenario in which
the system’s ground state changes from a (2,2) phase to an

0.0 0.5 1.0 1.5 2.0 2.5
R

FIG. 8. Disorder-averaged twist order parameters 7, for different
system sizes at D = 0, plotted vs the randomness R.

RS phase when the randomness exceeds a critical value; this
critical point at D = 0 is also a multicritical point P5 at which
three phases (2,2), (4,0), and (0,4) meet [see Fig. 2(c)]. Since
the order parameter z; does not change its sign for the (2,2)-
RS phase transition nor for a nearby (2, 2)-(4, 0) transition,
it is difficult to determine the transition point accurately by
zr. Nevertheless, the results shown in Fig. 8 [and also in
Fig. 6(a)] suggest that the critical R value at D = 0 for the
largest size L =512 is about R ~ 1.5 (or slightly higher).
Thus the multicritical point at D = 0 (denoted as P? in Fig. 5)
and the one at D > 0 (P in Fig. 5) have critical R values that
are not far apart.

As seen in Figs. 6(c) and 8, there are intersection points
developing at some nonzero values of z;. In Ref. [27] such
intersection points of z;, instead of zero crossings, were used
to identify the multicritical point and the RS critical line for
the random spin-1 chain. Here, by exploring a wide range
of parameters (R, D) and accessing larger system sizes, we
have found that the Z7; curve crossings appear only in the
region of small R, or the crossing points tend toward z; = 0.
Thus the zero order parameter, z; = 0, turns out to be a more
reasonable indicator for a transition point even in disordered
systems.

B. End-to-end correlations

In this section we investigate the end-to-end correlations in
an open chain, which considers correlations between two end
spins. This quantity is defined as

Ci(L) = (=" (Wes|Si - Sz Was) (30)

for the ground state |Wgs) of a chain with L spins and open
boundary conditions.

Here we first summarize some previous results for the
end-to-end correlations. The end-to-end correlation of an open
chain is closely related to the energy gap [53,54]. In the RS
phase the end-to-end correlations are very broadly distributed,
with the typical behavior [8]

—InCy(L) ~ LY, 31
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FIG. 9. End-to-end correlations at the multicritical point (D =
0.04, R = 1.15). (a) Finite-size dependence of the average correla-
tion; the solid red line has a slope of 7; & 0.69. (b) Distributions of
end-to-end correlations for different sizes. (c) A scaling plot for the
data in (b), assuming — In(C;) ~ LY with ¢ = 1/3.

where Y = 1/2. On the other hand, the average end-to-end
correlation function decays as a power of L at criticality [53],

Ci(L)~ 1/L", (32)

with n; = 1 in the RS phase. The behavior of the average
end-to-end correlation in Eq. (32) was first derived for the
infinite-randomness fixed point of the random transverse-field
Ising spin chain [53] and is also valid for the RS phase, as
verified numerically in Refs. [12,13]. At the multicritical point
P3, typical end-to-end correlations go like Eq. (31) but with
Y = 1/3, according to SDRG analytical results. There have
been so far no theoretical conjectures about the exponent in
Eq. (32) for the average end-to-end correlations at P3; never-
theless, previous numerical results [12,13] for the spin-1 chain
estimated 7, &~ 0.69-0.7 for the P; multicritical point, which
is expected also for the P5 point in the spin-2 chain. Away
from an infinite-randomness critical point, the distribution of
end-to-end correlations has a power-law tail that behaves as
[54]

P(Cy) ~ C; ", (33)

with a finite dynamic exponent z; in a Griffiths phase, the
singular low-energy behavior of various observables is charac-
terized by a large and continuously variable dynamic exponent
z> 1.

We first examine the behavior of end-to-end correlations
at the P; points. For the dimerized cases, we consider open
chains with odd numbers of spins to balance the numbers of
strong and weak couplings. Figure 9(a) shows the average
of the correlations at R = 1.15 and D = 0.04 (the point P}
in Fig. 5), where the location of a multicritical point Ps is
according to finite-size scaling of the twist order parameters
discussed in Sec. IV A. Here we estimate 7; =~ 0.69 from the
results for the average correlation as a function of the chain
length L, in good agreement with previous numerical results
[12,13]. Also, the distributions of the logarithmic correlations
[shown in Fig. 9(b)], which become broader with increasing

M R=1.15 = 0.59
R=1.2,n= 0.67
%21 ¢ R=13,m= 076
® R=1.5,n =098
® R=1.6 =101
102

L

FIG. 10. Average end-to-end correlation vs system size for the
undimerized case (D = 0) with various R in a log-log plot. All
lines are fits to the form aL™". From the slopes of the fitting lines,
corresponding to the exponents 7;, we estimate R &~ 1.2 for the
multicritical P; point. For R > 1.5, the slope approaches 1, = 1,
indicating that the system enters an RS phase; here it is the RS,
phase.

size, can collapse onto each other by using the scaled variable
x=InC /LY, (34)

with ¢ = 1/3 [Fig. 9(c)], consistent with the theoretical pre-
diction [19].

For the undimerized case D = 0, we show the average cor-
relations plotted against L for various values of R in Fig. 10;
all data here decay as a power law: C;(L) ~ L™"". From the
slopes of the fitting lines, corresponding to the exponents 1,
we estimate R =~ 1.2 for the multicritical P; point (denoted
by P30 in Fig. 5) by comparing the value of n; with previ-
ous numerical results for the Ps point in the random spin-1
chain [12,13]. For stronger randomness, such as R = 1.5 and
R = 1.6, the slopes approach n; = 1, which is the theoretical
value for an RS phase; in this case it is the RS, phase.

Now we turn to the correlations on the critical lines at
D > 0 that are the (2,2)-(3,1) and (3,1)-(4,0) boundaries, de-
termined using the zero crossings of the z; order parameter
for the largest system size L = 512. Specifically, we focus on
the four points denoted by a, b, ¢, and d in Fig. 5. Figures 11
and 12 show the averages and the distributions of end-to-end
correlations at four such finite-size critical points. For the
critical points (R = 1.0, D = 0.34) and (R = 0.5, D = 0.48),
at the boundary between the (3,1) and (4,0) phases, our nu-
merical results are found to be in good agreement with the
analytic predictions for an RS phase: the average end-to-end
correlations decay as Ci(L) ~ 1/L, as shown in Figs. 11(c)
and 11(d), and the distributions of the correlations, shown
in Figs. 12(c) and 12(d), are extremely broad and become
broader with increasing L. Furthermore, the distributions for
different system sizes collapse well onto each other by using
the scaled variable defined in Eq. (34) with the theoretical
value i = 1/2 for the RS phase, as shown in Figs. 13(c) and
13(d).
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FIG. 11. Finite-size dependence of the average end-to-end corre-
lations at critical points, determined by the zero crossings of the order
parameter z; for L = 512, in the region of D > 0 at the (2,2)-(3,1)
phase boundary [(a) and (b)] and the (3,1)-(4,0) boundary [(c) and
(d)]. The mean correlations have a power-law decay; the exponent 7,
at the (3,1)-(4,0) boundary appears to approach 1, consistent with the
theoretical prediction for the RS, phase, while #, at the (2,2)-(3,1)
boundary is much smaller than 1.

On the other hand, the results for the (2,2)-(3,1) phase
boundary are not fully compatible with the scenario of an RS
phase. The mean end-to-end correlations C (L) at the (2,2)-
(3,1) phase boundary, as shown in Figs. 11(a) and 11(b) for the
two critical points (R =1.0,D =0.12) and (R=0.5,D =
0.14), appear to decay much slower than 1/L, contrary to the

1004(a) R=1.0,0=0.12 1004(c)R=1.0,0=0.34
o
—~ 107! 4 —~ 107! 4 “ﬂ
- -
Q Q
= 10724 = 10724
o 1073 4 o 1073 4
-
-15 -10 -5 0 -30 -20 -10 0
In(Cy) In(Cy)
(b)R=0.5,0=0.1 10°4(d) R=0.5,D=0.48
= = 107!y
J 9 l
z = 1024
o - 1073 4
1074 '/T
=20

15 -0 -5 0
In(Cy)

FIG. 12. The distributions of the end-to-end correlations for dif-
ferent sizes at the same critical points as investigated in Fig. 11. The
distributions for (R = 1.0, D = 0.12) [panel (a)] located at the (2,2)-
(3,1) boundary with sufficiently strong disorder and the distributions
at the (3,1)-(4,0) boundary [(c) and (d)] are broad and become
broader with increasing L. The correlations for (R = 0.5, D = 0.14)
[panel (b)] at the (2,2)-(3,1) boundary with smaller R, on the other
hand, are not very broadly distributed, and the data curves for dif-
ferent sizes are very similar, implying the critical phase is not of
infinite-randomness type.

(a)R=1.0,0=0.12 (c)R=1.0,0=0.34

= 1071 4 = 107" 4
[ [
102 4 102 4
10 {4 S y=13| 1073 w=1/2
-3 -2 -1 0 -2 -1 0
x=In(Cy)L™Y x=In(Cy)L™¥

(b) R=0.5,D=0.14 (d)R=0.5,D=0.48

10° 4 10° 4
o] ®L=63 — 1o \.
X 0 L=127 X 0
o] 7 L=255 10-2 ]
1073 4 z=0.41 1073 4 '? py=1/2
-2 0 2 -1.0 -0.5 0.0

x=1In(L?Cy) x=In(Cy)L™¥

FIG. 13. Scaling plots of the distributions in Fig. 12. The correla-
tions in (¢) and (d), at the (3,1)-(4,0) phase boundary, are rescaled as
InCy /LY with ¥ = 1/2, and the data in (a) for a critical point at the
(2,2)-(3,1) phase boundary are plotted in terms of the same rescaled
variable but with ¥ = 1/3 to achieve good data collapse. The cor-
relations in (b), for a critical point at the (2,2)-(3,1) phase boundary
with smaller R and D, are rescaled by assuming P(C;) ~ Cle/z
with z = 0.41, which is estimated from the slopes of the tails at small
values of C.

behavior in an RS phase. In particular, the distribution of the
correlations in the region of small R, such as at (R = 0.5,
D = 0.14) [see Fig. 12(b)], does not broaden with increas-
ing size, implying that the phase is not associated with an
infinite-randomness critical point. Assuming the scaling form
given in Eq. (33), we estimate the dynamic exponent z ~ 0.41
from the slope of the power-law tail of the distribution, which
gives the scaling plot shown in Fig. 13(b). With stronger disor-
der at (R = 1.0, D = 0.12), the distribution becomes broader
with increasing size [see Fig. 12(a)], showing the signature
of infinite randomness. We have used the scaled variable
in Eq. (34) and ¥ = 1/3 to achieve good data collapse, as
shown in Fig. 13(a). Strong finite-size effects and the close
distance from the multicritical point at R = 1.15 may lead to
the discrepancy between the exponent i found here and the
theoretical predicted value ¥ = 1/2 for an RS, phase.

The small dynamic exponent z < 1 estimated for (R = 0.5,
D =0.14) does not lead to divergence of the local
susceptibility [12,24], indicating there is no pronounced
disorder-induced singular behavior. Another way, suggested
in Ref. [12], to identify a nonsingular region with z < 1 or a
singular region with z > 1 is via the so-called inverse average
of the end-to-end correlation, defined as

cm = ()7 (35)

where C| !is the average of the inverses. The inverse average
of C; is finite, C}“V > 0ifz < 1, while it is zero if z > 1. As
shown in Fig. 14, the inverse average CI™ at R = 0.5 is finite
for a wide range of D before it converges to zero at D =~ 0.4
for larger L, while the inverse average vanishes at R = 1
independent of D. The results for the inverse average Ci™
also imply that there is no random-singlet phase at R = 0.5
in the region with small dimerization D < 0.4. This large
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FIG. 14. The inverse average of the end-to-end correlation, de-
fined in Eq. (35), vs the strength of dimerization D.

nonsingular region also gives rise to the weak signature of
infinite randomness in the larger R region at the (2,2)-(3,1)
phase boundary.

V. SUMMARY AND DISCUSSION

Using a tensor network SDRG method, we have explored
the ground-state phases of the random spin-2 antiferromag-
netic chain with alternating bond strength distributions. We
have calculated the twist order parameter, defined as the
ground-state expectation value of the unitary operator in
Eq. (25), to classify the types of random VBS phases depend-
ing on the strength of bond randomness R and the dimerization
D. For a disorder-free VBS phase (0,4 — o) in a clean sys-
tem, the twist order parameter is positive if o is even and
negative if o is odd [34]. In a random VBS domain, there
is nonzero residual VBS order (dimerization) that can be
detected by the disorder average of this order parameter, as we
have demonstrated in this paper. Therefore, the zero crossing
of the disorder-averaged twist order parameter can serve to
determine the phase transition point between different ran-
dom VBS states, in the same way as for clean systems [34].
Our results largely agree with the phase diagram sketched in
Fig. 2(c). There is a multicritical point in the intermediate dis-
order regime with finite dimerization, where the (2,2), (3,1),
and (4,0) three phases meet. The (2,2)-(3,1) phase boundary
and the (3,1)-(4,0) boundary extend to R = 0 and are predicted
to be in the RS/, phase for any R > 0 [19]. However, from
the results for end-to-end correlations we see no signs of an
RS phase at the (2,2)-(3,1) boundary with small R and have
instead found a large nonsingular region, characterized by
z < 1, in the small R regime. Such a nonsingular region with
z < 1 in the weak disorder limit has previously also been iden-
tified in numerical studies of the random undimerized (D = 0)
spin-1 chain [12,13] and spin-3/2 chain [55]. These studies
used the same power-law distribution of bond randomness,
which is also identical to the distribution we consider here for
the undimerized case.

The nonsingular behavior in the weak disorder and weak
dimerization limit and the absence of the RS/, phase there
can have more than one source. Compared to the Haldane

0.10

0.08 4

|LL| 0.06
i<
0.04 %
—4— [ =128 X
0.027 L =256
—4— L=512
0.00 T T T v
0.0 0.1 0.2 0.3 0.4 0.5
D

FIG. 15. The average gap at R = 0.5 as a function of the strength
of dimerization D. The gap for each sample is obtained from the
lowest-lying energy gap of the top Hamiltonian H,,, in the tree tensor
network. The two dashed lines indicate the (2, 2)-(3, 1) boundary
(left line) and the (3, 1)-(4, 0) boundary (right line), based on the
zero crossings of 7, for L = 512.

gap value of ~0.41J in the spin-1 case with nearest-neighbor
coupling J, the finite gap in the clean spin-2 chain is much
smaller, just about ~0.09J. Even so, this small energy gap
appears to have considerable impact on the ground-state prop-
erties of the (2,2) phase at weak disorder. Furthermore, we did
not set a constraint to the strength difference between odd and
even bonds while using the bond strength distribution [given
in Eq. (5)] in our calculations; this may produce unsharp
dimerization for small systems, especially in the small-D
limit, which in turn leads to a weak critical signature or the
absence of the RS, phase at the (2,2)-(3,1) boundary. In this
regard we present in Fig. 15 the average energy gap of the
chain with PBC at R = 0.5, obtained from the lowest-lying
excitation of the top Hamiltonian H,, versus the dimerization
D. Here we observe a clear (local) minimum in the aver-
age energy gap at D = 0.48 for all system sizes, with the
(3,1)-(4,0) transition point indicated by the right dashed line—
estimated from the zero crossing of the twist order parameter.
On the other hand, in the small D region (corresponding to
the nonsingular region), the curve for the largest size L = 512
develops a less clear minimum around the estimated (2,2)-
(3,1) transition point (indicated by the left dashed line), while
the curves for smaller sizes are flat in this region, showing
strong finite-size effects.

The twist order parameter is a useful quantity, also for
disordered systems, to determine the phase transition point
between different random VBS states based on changes of the
sign according to the valence-bond configuration. However,
the phase diagram of the spin-2 chain considered here has a
(2,2)-(4,0) phase boundary where the twist order parameter
does not change the sign, which makes it difficult to detect
this phase transition. It would be desirable to find an order
parameter that can accurately determine the (2,2)-(4,0) phase
boundary which connects two Ps multicritical points.

Recently, there has been an increasing interest in prop-
erties of higher-spin materials both from the theoretical and

043249-10



RANDOM SINGLETS AND PERMUTATION SYMMETRY IN ...

PHYSICAL REVIEW RESEARCH §, 043249 (2023)

experimental perspective, especially in the context of Kitaev
models and quantum spin liquids [56-58]. Like the spin-
2 chain that we consider here, the quasi-one-dimensional
versions of these higher-spin materials exhibit rich phase
diagrams [59,60]. Concerning disorder effects on the low-
temperature phases, the tSDRG method and its variants
[61-66] are certainly the most promising numerical tools for
studying large-scale systems with accuracy.

ACKNOWLEDGMENTS

We would like to thank F. Igléi and J. Hoyos for use-
ful discussions. This work was supported by the National
Science and Technology Council (NSTC) of Taiwan under
Grants No. 111-2119-M-007-009, No. 112-2119-M-007-008,
No. 112-2112-M-004-008, No. 111-2112-M-004-005, and
No. 110-2112-M-007-037-MY3.

[1] F. D. M. Haldane, Continuum dynamics of the 1-D Heisenberg
antiferromagnet: Identification with the O(3) nonlinear sigma
model, Phys. Lett. A 93, 464 (1983).

[2] F. D. M. Haldane, Nonlinear field theory of large-spin Heisen-
berg antiferromagnets: Semiclassically quantized solitons of the
one-dimensional easy-axis Néel state, Phys. Rev. Lett. 50, 1153
(1983).

[3] H. Bethe, Entanglement in the Quantum phase transition of the
half-integer spin one-dimensional Heisenberg model, Z. Phys.
71, 205 (1931).

[4] J. des Cloizeaux and J. J. Pearson, Spin-wave spectrum of the
antiferromagnetic linear chain, Phys. Rev. 128, 2131 (1962).

[5] K. Rommelse and M. den Nijs, Preroughening transitions in
surfaces, Phys. Rev. Lett. 59, 2578 (1987).

[6] I. Affleck and F. D. M. Haldane, Critical theory of quantum spin
chains, Phys. Rev. B 36, 5291 (1987).

[7] D. Guo, T. Kennedy, and S. Mazumdar, Spin-Peierls transi-
tions in § > 1/2 Heisenberg chains, Phys. Rev. B 41, 9592(R)
(1990).

[8] D. S. Fisher, Random antiferromagnetic quantum spin chains,
Phys. Rev. B 50, 3799 (1994).

[9] R. A. Hyman and K. Yang, Impurity driven phase transition in
the antiferromagnetic spin-1 chain, Phys. Rev. Lett. 78, 1783
(1997).

[10] C. Monthus, O. Golinelli, and T. Jolicoeur, Percolation transi-
tion in the random antiferromagnetic spin-1 chain, Phys. Rev.
Lett. 79, 3254 (1997).

[11] C. Monthus, O. Golinelli, and T. Jolicoeur, Phases of random
antiferromagnetic spin-1 chains, Phys. Rev. B 58, 805 (1998).

[12] P. Lajk6, E. Carlon, H. Rieger, and F. 1gl6i, Disorder-induced
phases in the S = 1 antiferromagnetic Heisenberg chain,
Phys. Rev. B 72, 094205 (2005).

[13] Z.-L. Tsai, P. Chen, and Y.-C. Lin, Tensor network renor-
malization group study of spin-1 random Heisenberg chains,
Eur. Phys. J. B 93, 63 (2020).

[14] S. K. Ma, C. Dasgupta, and C.-K. Hu, Random antiferromag-
netic chain, Phys. Rev. Lett. 43, 1434 (1979).

[15] C. Dasgupta and S. K. Ma, Low-temperature properties of the
random Heisenberg antiferromagnetic chain, Phys. Rev. B 22,
1305 (1980).

[16] F. Igléi and C. Monthus, Strong disorder RG approach of ran-
dom systems, Phys. Rep. 412, 277 (2005).

[17] O. Motrunich, S. C. Mau, D. A. Huse, and D. S. Fisher, Infinite-
randomness quantum Ising critical fixed points, Phys. Rev. B
61, 1160 (2000).

[18] K. Damle, Griffiths effects in random Heisenberg antiferromag-
netic § = 1 chains, Phys. Rev. B 66, 104425 (2002).

[19] K. Damle and D. A. Huse, Permutation-symmetric multicritical
points in random antiferromagnetic spin chains, Phys. Rev. Lett.
89, 277203 (2002).

[20] G. Refael, S. Kehrein, and D. S. Fisher, Spin reduction transi-
tion in spin-3/2 random Heisenberg chains, Phys. Rev. B 66,
060402(R) (2002).

[21] R. B. Griffiths, Nonanalytic behavior above the critical point in
arandom Ising ferromagnet, Phys. Rev. Lett. 23, 17 (1969).

[22] B. M. McCoy, Incompleteness of the critical exponent descrip-
tion for ferromagnetic systems containing random impurities,
Phys. Rev. Lett. 23, 383 (1969).

[23] B. M. McCoy and T. T. Wu, Theory of a two-dimensional Ising
model with random impurities. I. Thermodynamics, Phys. Rev.
176, 631 (1968).

[24] T. Vojta, Rare region effects at classical, quantum and nonequi-
librium phase transitions, J. Phys. A: Math. Gen. 39, R143
(2006).

[25] R. A. Hyman, K. Yang, R. N. Bhatt, and S. M. Girvin, Random
bonds and topological stability in gapped quantum spin chains,
Phys. Rev. Lett. 76, 839 (1996).

[26] S. Bergkvist, P. Henelius, and A. Rosengren, Ground state of the
random-bond spin-1 Heisenberg chain, Phys. Rev. B 66, 134407
(2002).

[27] T. Arakawa, S. Todo, and H. Takayama, Randomness-driven
quantum phase transition in bond-alternating Haldane chain,
J. Phys. Soc. Jpn. 74, 1127 (2005).

[28] G. Torlai, K. D. McAlpine, and G. De Chiara, Schmidt gap in
random spin chains, Phys. Rev. B 98, 085153 (2018).

[29] A. M. Goldsborough and R. A. Romer, Self-assembling tensor
networks and holography in disordered spin chains, Phys. Rev.
B 89, 214203 (2014).

[30] Y.-C. Lin, R. Mélin, H. Rieger, and F. Igl6i, Low-energy fixed
points of random Heisenberg models, Phys. Rev. B 68, 024424
(2003).

[31] N. Laflorencie, Scaling of entanglement entropy in the random
singlet phase, Phys. Rev. B 72, 140408(R) (2005).

[32] A. B. Zamolodchikov and A. B. Zamolodchikov, Massless fac-
torized scattering and sigma models with topological terms,
Nucl. Phys. B 379, 602 (1992).

[33] A. Kitazawa and K. Nomura, Critical properties of S = 1 bond-
alternating XXZ chains and hidden Z, x Z, symmetry, J. Phys.
Soc. Jpn. 66, 3944 (1997).

[34] M. Nakamura and S. Todo, Order parameter to characterize
valence-bond-solid states in quantum spin chains, Phys. Rev.
Lett. 89, 077204 (2002).

[35] V. L. Quito, J. A. Hoyos, and E. Miranda, Random SU(2)-
symmetric spin-S chains, Phys. Rev. B 94, 064405 (2016).

043249-11


https://doi.org/10.1016/0375-9601(83)90631-X
https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1007/BF01341708
https://doi.org/10.1103/PhysRev.128.2131
https://doi.org/10.1103/PhysRevLett.59.2578
https://doi.org/10.1103/PhysRevB.36.5291
https://doi.org/10.1103/PhysRevB.41.9592
https://doi.org/10.1103/PhysRevB.50.3799
https://doi.org/10.1103/PhysRevLett.78.1783
https://doi.org/10.1103/PhysRevLett.79.3254
https://doi.org/10.1103/PhysRevB.58.805
https://doi.org/10.1103/PhysRevB.72.094205
https://doi.org/10.1140/epjb/e2020-100585-8
https://doi.org/10.1103/PhysRevLett.43.1434
https://doi.org/10.1103/PhysRevB.22.1305
https://doi.org/10.1016/j.physrep.2005.02.006
https://doi.org/10.1103/PhysRevB.61.1160
https://doi.org/10.1103/PhysRevB.66.104425
https://doi.org/10.1103/PhysRevLett.89.277203
https://doi.org/10.1103/PhysRevB.66.060402
https://doi.org/10.1103/PhysRevLett.23.17
https://doi.org/10.1103/PhysRevLett.23.383
https://doi.org/10.1103/PhysRev.176.631
https://doi.org/10.1088/0305-4470/39/22/R01
https://doi.org/10.1103/PhysRevLett.76.839
https://doi.org/10.1103/PhysRevB.66.134407
https://doi.org/10.1143/JPSJ.74.1127
https://doi.org/10.1103/PhysRevB.98.085153
https://doi.org/10.1103/PhysRevB.89.214203
https://doi.org/10.1103/PhysRevB.68.024424
https://doi.org/10.1103/PhysRevB.72.140408
https://doi.org/10.1016/0550-3213(92)90136-Y
https://doi.org/10.1143/JPSJ.66.3944
https://doi.org/10.1103/PhysRevLett.89.077204
https://doi.org/10.1103/PhysRevB.94.064405

LIN, LIU, CHEN, AND LIN

PHYSICAL REVIEW RESEARCH §, 043249 (2023)

[36] V. L. Quito, P. L. S. Lopes, J. A. Hoyos, and E. Miranda,
Emergent SU(N) symmetry in disordered SO(N) spin chains,
Eur. Phys. J. B 93, 17 (2020).

[37] V. L. Quito, P. L. S. Lopes, J. A. Hoyos, and E. Miranda, Highly
symmetric random one-dimensional spin models, Phys. Rev. B
100, 224407 (2019).

[38] M. Oshikawa, Hidden Z, x Z, symmetry in quantum spin
chains with arbitrary integer spin, J. Phys.: Condens. Matter 4,
7469 (1992).

[39] Y. Hatsugai, String correlation of quantum antiferromagnetic
spin chains with § =1 and 2, J. Phys. Soc. Jpn. 61, 3856
(1992).

[40] G. Refael and J. E. Moore, Entanglement entropy of the random
s = 1 Heisenberg chain, Phys. Rev. B 76, 024419 (2007).

[41] T. Hikihara, A. Furusaki, and M. Sigrist, Numerical
renormalization-group study of spin correlations in one-
dimensional random spin chains, Phys. Rev. B 60, 12116
(1999).

[42] Y.-P. Lin, Y.-J. Kao, P. Chen, and Y.-C. Lin, Griffiths singulari-
ties in the random quantum Ising antiferromagnet: A tree tensor
network renormalization group study, Phys. Rev. B 96, 064427
(2017)

[43] Y.-R. Shu, D.-X. Yao, C.-W. Ke, Y.-C. Lin, and A. W.
Sandvik, Properties of the random-singlet phase: From the dis-
ordered Heisenberg chain to an amorphous valence-bond solid,
Phys. Rev. B 94, 174442 (2016).

[44] U. Schollwock, The density-matrix renormalization group in
the age of matrix product states, Ann. Phys. 326, 96 (2011).

[45] E. Westerberg, A. Furusaki, M. Sigrist, and P. A. Lee, Random
quantum spin chains: A real-space renormalization group study,
Phys. Rev. Lett. 75, 4302 (1995).

[46] E. Westerberg, A. Furusaki, M. Sigrist, and P. A. Lee, Low-
energy fixed points of random quantum spin chains, Phys. Rev.
B 55, 12578 (1997).

[47] E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an
antiferromagnetic chain, Ann. Phys. 16, 407 (1961).

[48] I. Affleck and E. Lieb, A proof of part of Haldane’s conjecture
on spin chains, Lett. Math. Phys. 12, 57 (1986).

[49] M. Oshikawa, M. Yamanaka, and I. Affleck, Magnetization
plateaus in spin chains: “Haldane gap” for half-integer spins,
Phys. Rev. Lett. 78, 1984 (1997).

[50] D. S. Fisher, Critical behavior of random transverse-field Ising
spin chains, Phys. Rev. B 51, 6411 (1995).

[51] F. Igléi, R. Juhdsz, and H. Rieger, Random antiferromagnetic
quantum spin chains: Exact results from scaling of rare regions,
Phys. Rev. B 61, 11552 (2000).

[52] F. Igléi, Y.-C. Lin, H. Rieger, and C. Monthus, Finite-size
scaling of pseudocritical point distributions in the random
transverse-field Ising chain, Phys. Rev. B 76, 064421 (2007).

[53] D. S. Fisher and A. P. Young, Distributions of gaps and end-
to-end correlations in random transverse-field Ising spin chains,
Phys. Rev. B 58, 9131 (1998).

[54] F. Igléi and H. Rieger, Random transverse Ising spin chain and
random walks, Phys. Rev. B 57, 11404 (1998).

[55] E. Carlon, P. Lajké, H. Rieger, and F. 1gl6i, Disorder-induced
phases in higher-spin antiferromagnetic Heisenberg chains,
Phys. Rev. B 69, 144416 (2004).

[56] S. Trebst and C. Hickey, Kitaev materials, Phys. Rep. 950, 1
(2022).

[57] H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E.
Nagler, Concept and realization of Kitaev quantum spin liquids,
Nat. Rev. Phys. 1, 264 (2019).

[58] P. P. Stavropoulos, D. Pereira, and H.-Y. Kee, Microscopic
mechanism for a higher-spin Kitaev model, Phys. Rev. Lett.
123, 037203 (2019).

[59] D. Sen, R. Shankar, D. Dhar, and K. Ramola, Spin-1 Kitaev
model in one dimension, Phys. Rev. B 82, 195435 (2010).

[60] J. S. Gordon and H.-Y. Kee, Insights into the anisotropic spin-S
Kitaev chain, Phys. Rev. Res. 4, 013205 (2022).

[61] A. M. Goldsborough and G. Evenbly, Entanglement renormal-
ization for disordered systems, Phys. Rev. B 96, 155136 (2017).

[62] K. Seki, T. Hikihara, and K. Okunishi, Tensor-network strong-
disorder renormalization groups for random quantum spin
systems in two dimensions, Phys. Rev. B 102, 144439 (2020).

[63] K. Seki, T. Hikihara, and K. Okunishi, Entanglement-
based tensor-network strong-disorder renormalization group,
Phys. Rev. B 104, 134405 (2021).

[64] G. Ferrari, G. Magnifico, and S. Montangero, Adaptive-
weighted tree tensor networks for disordered quantum many-
body systems, Phys. Rev. B 105, 214201 (2022).

[65] T. Hikihara, H. Ueda, K. Okunishi, K. Harada, and T. Nishino,
Automatic structural optimization of tree tensor networks,
Phys. Rev. Res. 5, 013031 (2023).

[66] K. Okunishi, H. Ueda, and T. Nishino, Entanglement biparti-
tioning and tree tensor networks, Prog. Theor. Exp. Phys. 2023,
023A02 (2023).

043249-12


https://doi.org/10.1140/epjb/e2019-100576-6
https://doi.org/10.1103/PhysRevB.100.224407
https://doi.org/10.1088/0953-8984/4/36/019
https://doi.org/10.1143/JPSJ.61.3856
https://doi.org/10.1103/PhysRevB.76.024419
https://doi.org/10.1103/PhysRevB.60.12116
https://doi.org/10.1103/PhysRevB.96.064427
https://doi.org/10.1103/PhysRevB.94.174442
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevLett.75.4302
https://doi.org/10.1103/PhysRevB.55.12578
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1007/BF00400304
https://doi.org/10.1103/PhysRevLett.78.1984
https://doi.org/10.1103/PhysRevB.51.6411
https://doi.org/10.1103/PhysRevB.61.11552
https://doi.org/10.1103/PhysRevB.76.064421
https://doi.org/10.1103/PhysRevB.58.9131
https://doi.org/10.1103/PhysRevB.57.11404
https://doi.org/10.1103/PhysRevB.69.144416
https://doi.org/10.1016/j.physrep.2021.11.003
https://doi.org/10.1038/s42254-019-0038-2
https://doi.org/10.1103/PhysRevLett.123.037203
https://doi.org/10.1103/PhysRevB.82.195435
https://doi.org/10.1103/PhysRevResearch.4.013205
https://doi.org/10.1103/PhysRevB.96.155136
https://doi.org/10.1103/PhysRevB.102.144439
https://doi.org/10.1103/PhysRevB.104.134405
https://doi.org/10.1103/PhysRevB.105.214201
https://doi.org/10.1103/PhysRevResearch.5.013031
https://doi.org/10.1093/ptep/ptad018

