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Zeroth, first, and second-order phase transitions in deep neural networks
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We investigate deep-learning-unique first-order and second-order phase transitions, whose phenomenology
closely follows that in statistical physics. In particular, we prove that the competition between prediction error
and model complexity in the training loss leads to the second-order phase transition for deep linear nets with
one hidden layer and the first-order phase transition for nets with more than one hidden layer. We also prove
the linear origin theorem, which states that common deep nonlinear models are equivalent to a linear network of
the same depth and connection structure close to the origin. Therefore, the proposed theory is directly relevant
to understanding the optimization and initialization of neural networks and serves as a minimal model of the
ubiquitous collapse phenomenon in deep learning.
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I. INTRODUCTION

Understanding neural networks is a fundamental problem
in both theoretical deep learning and neuroscience. In deep
learning, learning proceeds as the parameters of different
layers become structured so the model outputs correlate mean-
ingfully to inputs. This is reminiscent of an ordered phase in
physics, where the microscopic degrees of freedom respond to
external perturbations collectively. Meanwhile, regularization
prevents model overfitting by limiting the correlation between
model output and input, like an entropic force in physics
that leads to disorder. One thus expects a phase transition
from the regime where the regularization is negligible to a
regime where it is dominant. In the field of statistical physics
of learning [1–12], a series of works studied the under-to-
overparametrization (UO) phase transition in the context of
linear regression [4,13–15]. Recently, this type of phase tran-
sition has seen a resurgence of interest [16,17]. However, the
UO phase transition is not unique to deep learning because
it appears in both shallow and deep models as well as in
non-neural-network models [18]. To understand deep learn-
ing, we need to identify what is unique about deep neural
networks.

In this paper, we study the loss landscape of a deep neural
network and prove that there exist phase transitions that can be
described as the first- and second-order phase transitions with
a striking similarity to statistical physics. We argue that these
phase transitions can have profound implications for deep
learning, such as the role of symmetry breaking, the qualita-
tive distinction between shallow and deep architectures, and
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why collapses occur so frequently in deep learning. For a
multilayer linear net with stochastic neurons and trained with
L2 regularization:

(1) We identify an order parameter and effective landscape
that describes the phase transition between a trivial phase and
a feature learning phase.

(2) We prove that
(a) depth-0 nets (linear regression) do not have a phase

transition,
(b) depth-1 nets have the second-order phase

transitions,
(c) depth-D nets have the first-order phase transition for

D > 1, and
(d) infinite-depth nets have the zeroth-order phase

transition.
(3) We prove that such networks approximate commonly

used nonlinear networks of the same depth and connectivity
structure.

See Fig. 1 for an illustration of this phenomenology in
comparison with the proposed theory. Our result implies that
one can precisely classify the landscape of deep neural models
according to the Ehrenfest classification of phase transitions.
Lastly, we discuss the relevance of the theory towards under-
standing optimization and initialization of neural networks.

This paper is organized as follows. Section II intro-
duces the theoretical formulation of the problem. Section III
presents the main results. Section IV discusses the impli-
cations of the theory. We present all the proofs in the
Appendices.

II. FORMAL FRAMEWORK

Let �(w, γ ) be a differentiable loss function that is de-
pendent on the model parameter w and a hyperparameter γ .
The loss function � can be decomposed into a data-dependent
feature-learning term �0 and a data-independent term γ R(w)
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FIG. 1. Phase transitions in a linear net. In agreement with the theory, a depth-0 net has no phase transition. A depth-1 net has a second-order
phase transition at approximately γ = 0.45, which is close to the theoretical value of ||E[xy]||, and a depth-2 net has a first-order phase
transition at roughly γ = 0.15. The qualitative distinctions between networks of different depths are clearly seen in the data. Left: Training
loss of a network with zero (linear regression), one, and two hidden layers. Middle: Magnitude of the regularization term at convergence. We
see that for D > 1, there is a discontinuous jump from a nonzero value to 0. These jumps correspond to the latent heat �T S of the first-order
phase transition process. Right: Order parameter b as a function of γ . The inset shows that b scales as t0.5 with t := −(γ − γ ∗) in the vicinity
of the phase transition, in agreement with the Landau theory of phase transitions.

that regularizes the model at strength γ :

�(w, γ ) = Ex[�0(w, x)] + γ R(w). (1)

Learning amounts to finding the global minimizer of the loss
function:

L(γ ) := min
w

�(w, γ )

w∗ := arg min
w

�(w, γ ). (2)

When γ is large, γ R(w) causes w to stay close to zero. If
L changes drastically against a small variation of γ , it is
hard to tune γ to optimize the model performance. Thus,
that L(γ ) is well-behaved is equivalent to γ being an easy-
to-tune hyperparameter. We are thus interested in the case
where the tuning of γ is difficult, which occurs where a phase
transition comes into play. This formalism can be seen as
a zero-temperature theory that ignores the stochastic effects
due to the noise in the stochastic gradient Langevin dynamics.
When the training proceeds with gradient flow and an injected
isotropic Gaussian noise (namely, with the stochastic gradient
Langevin dynamics algorithm), the stationary distribution of
the model parameters obeys the Gibbs distribution,

p(w) ∝ exp[−�(w, γ )/T ], (3)

where T is proportional to the variance of the injected Gaus-
sian noise in the gradient, and the partition function Z is
given by the integral of exp[−�(w, γ )/T ] over w, and the
free energy is given by −T log Z . In the limit T → 0+, the
partition function approaches the global minimizer of the loss
function �:

F (T = 0+, γ ) = − lim
T →0+

T log Z = L(γ ). (4)

Therefore, γ is something like a nontemperature macroscopic
thermodynamic variable, a little bit analogous to pressure.
In fact, this identification of the free energy is common in
the replica-symmetry treatment of the learning of neural net-
works [19]. Also, see Ref. [20] for a Bayesian setup of the
partition function. In this view, optimization of the objective
thus involves balancing the prediction error and the model
complexity [15,21–23].

Since we will be considering the phase transitions at zero
temperature, it is worthwhile to remark that in the Ehrenfest
framework, a zero-temperature phase transition for a finite-
size system is not forbidden. For a finite-temperature system,
it is well-known that phase transitions can only happen when
the system size tends to infinity. This is because the Gibbs
measure e−E/T is analytic for any finite T and finite system.
However, functions of the Gibbs measure (such as the free
energy) are not guaranteed to be analytic in the limit T → 0,
which will serve as the mathematical basis behind the finite-
size zero-temperature phase transitions we study in this paper.

We formally define the order parameter and the effective
loss as follows.

Definition 1. b = b(w) ∈ R is said to be an order param-
eter of �(w, γ ) if there exists a function �̄ such that for all
γ , minw �̄(b(w), γ ) = L(γ ), where �̄ is said to be an effective
loss function of �.

In other words, an order parameter is a one-dimensional
quantity whose minimization on �̄ gives L(γ ) [24]. Physi-
cal examples include the average magnetization in the Ising
model and the average density of molecules in a gas-liquid
transition. We establish the correspondence between key
quantities in the learning process and those in statistical
physics as listed in Table I.

The primary minimal model for deep learning is a deep
linear network [25–27]. The most general type of deep linear
nets, with L2 regularization and stochastic neurons, has the
following loss:

Ex,ε

⎛
⎝d,d0,d0,...d0∑

i0,i1,i2,...,iD

D∏
j=0

ε
( j)
i j

W ( j)
i j+1i j

xi0 − y

⎞
⎠

2

+
D∑

i=0

γ ||W (i)||2F ,

(5)

TABLE I. The correspondence between a learning process and
phase transition.

Norm of model (|b|) Magnitude of order parameter
Feature learning regime Ordered phase
Trivial regime Disordered phase
Noise required for learning Latent heat
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where x ∈ Rd is the input data, y = y(x) the label, W (i) the
model parameters, D the number of hidden layers, ε the ran-
domness in the hidden layer (e.g., due to training techniques
such as dropout [28]), d0 the width of the model, and γ the
weight decay strength. As is common practice, we let ε (D) = 1
deterministically. We also denote the weight matrix of the last
layer by U , U := W (D). Comparing this equation with Eq. (1),
one can identify the first term as E[�0] and the second term as
γ R(w).

Let s denote the sign of the first element of U , b =
s||U ||/d0 [29], A0 := E[xxT ], and ai be the ith eigenvalue of
A0. We note that the incorporation of the sign is not essential
in the Ehrenfest framework but will help our discussion of
symmetry breaking later. When D > 0, we can use these con-
ditions in Eq. (5) to reduce it to a one-dimensional effective
loss function [30],

�̄(b, γ ) := −
∑

i

d2D
0 b2DE[x′y]2

i

dD
0 (σ 2 + d0)Daib2D + γ

+ Ex[y2] + γ Dd2
0 b2, (6)

where x′ is a rotation of x: x′ = Rx, where R is the eigenvectors
of A0. By Definition 1, b is the order parameter. See Figs. 2(a)
and 2(b). The complicated landscape for D > 1 implies that
neural networks are susceptible to initialization schemes and
that entrapment in metastable states is common [31].

It is clear that b = 0 is a special point of the effective loss,
and we are interested in the case when b = 0 is the global
minimum of the landscape and how it makes a transition
away from b = 0. The two phases also have a clear meaning
in the context of machine learning: b = 0 is a trivial phase
where no learning happens, and b > 0 is the nontrivial phase
where learning should occur for the model to reach the global
minimum.

Before we present our main results that are exact, we first
provide a perturbative analysis for better understanding. When
γ is large, one can expand the loss function around the origin:

�̄ ∝ γ −2c′
0E[x2]b4D − γ −1c′

1b2D + γ c′
2b2 + const. (7)

Here, c′
0, c′

1, and c′
2 are positive structural constants, de-

pending on both the model (depth, width, etc.) and the data
distribution. The first and third terms monotonically increase
with b, thus suppressing b. The second term monotonically
decreases in b2D, which tends to build a positive correlation
between b and the feature E[xy]. The leading and lowest-order
terms regularize the model, while the second term character-
izes learning. For D = 1, the perturbative loss is identical to
the Landau free energy, and a phase transition occurs when
the second-order term flips the sign: c′

2γ
2 = c′

1. For D > 1,
the origin is always a local minimum, dominated by the
quadratic term. This leads to a first-order phase transition.
When D → ∞, the leading terms become discontinuous in b,
and one obtains a zeroth-order phase transition. This simple
analysis highlights one important distinction between physics
and machine learning: in physics, the most common type of
interaction is a two-body interaction, whereas, for machine
learning, typical interactions are many body and tend to be-
come infinite body as D increases [32]. Now, we present our
main results. We stress that the proof of the main results is
nonperturbative.

FIG. 2. Effective landscape given in Eq. (6) for (a) D = 1 and
(b) D = 2. For D = 1, zero is either the global minimum or a local
maximum. Note that the shape of the loss resembles that of the
Landau free energy for the second-order phase transition. For D = 2,
the landscape becomes more complicated, featuring the emergence
of local minima. In particular, zero is always a local minimum.
(c) Landscape of ResNet18 on CIFAR10 with cross-entropy loss in
supervised learning. (d) The landscape of self-supervised learning for
a ResNet18. A strong data augmentation leads to the trivial phase,
while a stronger data variation leads to the learning phase. (e) The
trivial phase and learning phase also emerge in generative models
such as variational autoencoders (VAEs). (f) The landscape of VAE
changes qualitatively as we change the strength, β, of the prior term
of β-VAE [33].

III. PHASE TRANSITIONS

A. No-phase-transition theorems

Before we discuss Eq. (6) in detail, it is worth discussing
the case of D = 0, which serves as a basis of comparison.
Here, the global minimum as a function of γ is given by the
ridge linear regression solution: w∗ = [A0 + γ I]−1E[xy]. L is
then everywhere analytic. Thus, there is no phase transition
in any hyperparameter (γ ,E[xxT ],E[xy]). In the parlance of
physics, a linear regressor operates within the linear-response
regime. Formally, one can state this result in the following
way.

Theorem 1. There is no phase transition in any hyper-
parameter (γ , A0, E [xy], E [y2]) in a simple ridge linear
regression for any γ ∈ (0,∞).

We also prove a theorem showing that a finite-depth net
cannot have zeroth-order phase transitions. Note that this the-
orem allows the weight decay parameter to be 0, and so our
results also extend to the case when there is no weight decay.

Theorem 2. For any finite D > 0 and γ ∈ [0,∞), L(γ ) has
no zeroth-order phase transition with respect to γ .
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This theorem can be seen as a worst-case guarantee: the
training loss needs to change continuously as one changes
the hyperparameter. We note that this general theorem applies
to standard nonlinear networks as well. Indeed, if we only
consider the global minimum of the training loss, the training
loss cannot jump. However, in practice, one can often observe
jumps because the gradient-based algorithms can be trapped
in local minima.

B. Phase transitions in deeper networks

The following theorem proves that a second-order phase
transition from the trivial regime to the learning regime hap-
pens at a precise critical point.

Theorem 3. Equation (5) has the second-order phase tran-
sition between the trivial and feature learning phases at [34]

γ = ||E[xy]||. (8)

This critical point is surprisingly clean and invariant to
minor details of the problem. It is independent of the width
of the model, the feature variation A0 of the data, or even the
stochasticity σ 2 in the neurons. In fact, it is easy to show that
close to the critical point b∗ ∝ √||E[xy]|| − γ , featuring the
typical expectation of Landau theory. In machine learning,
γ is the regularization strength and ||E [xy]|| is the signal.
The phase transition occurs precisely when the regularization
dominates the signal. Also, the phase transition for a depth-1
linear net is independent of the number of parameters of the
model. For D > 1, the model size plays a role in determining
the nature of the phase transition. However, γ remains the
dominant variable controlling this phase transition. This inde-
pendence of the model size is an advantage of the proposed
theory because our result becomes directly relevant for all
model sizes, not just the infinitely large ones often adopted
by previous works.

For D � 2, we show that a first-order phase transition be-
tween the two phases at some γ > 0 exists, as the following
theorem shows.

Theorem 4. Let D � 2. There exists a γ ∗ > 0 such that
the loss function Eq. (5) has the first-order phase transition
between the trivial and feature learning phases at γ = γ ∗.

However, an analytical expression for the critical point is
not known. In physics, first-order phase transitions are ac-
companied by latent heat. Our theory implies that this heat
is equivalent to the amount of random noise needed for the
model parameters to escape from a local to the global min-
imum of a deep model. This perspective suggests that noise
can play an indispensable role for successful learning.

While infinite-depth networks are not used in practice, they
are important from a theoretical point of view [35] because
they can be used for understanding a (very) deep network
that often appears in deep learning practice. Our result shows
that the limiting landscape has a zeroth-order phase transition
at γ = 0. See Appendix B 6 for a detailed discussion. The
zeroth-order phase transition does not occur in physics and
is a unique feature of deep learning.

C. Linear origin theorem

In this section, we show that all nonlinear networks of arbi-
trary connection and structure can only be approximated to the

first two nonvanishing orders by a linear model with the same
connection patterns at the origin. This directly establishes the
connection of our theory based on linear networks to nonlinear
networks.

To start, let us define a nonlinear network. For concision,
we ignore the stochasticity of the neurons. We consider the
type of elementwise nonlinearity h(x) that is differentiable
and vanishes at the origin: h(x) = h′(0)x + O(x2). To make
our theoretical statement clearer, we define an interpolation
of this nonlinearity under consideration with the linear activa-
tion,

ga(x) = (1 − a)h(x) + ax, (9)

namely, the model is nonlinear at a = 0 and linear at a = 1.
A fully connected network with trainable weights W (i) can

be written as

∑
iD

W (D)
iDiD−1

ga

⎛
⎝...

∑
i1

W (1)
i2i1

ga

(∑
i

W (0)
i1i0

xi0

)
...

⎞
⎠. (10)

However, one can define a more general version to account
for structured connectivities such as a convolutional neural
network. To achieve this, we introduce a fixed masking matrix
M such that Mi j is fixed to be 1 or 0 throughout training. Thus,
any generic type of feedforward network can be defined as

f (x; a, W) =
∑
iD−1

M (D)
iDiD−1

W (D)
iDiD−1

ga

(
...

∑
i1

M (1)
i2i1

× W (1)
i2i1

ga

( ∑
i0

M (0)
i1i0

W (0)
i1i0

xi0

)
...

)
, (11)

where we have used the notation W to denote all the weight
matrices combined. The following proposition shows that
the leading order expansion of f is equivalent to its linear
counterpart.

Proposition 1. For any x,

f (x; 0, W) = [h′(0)]D f (x; 1, W) + o

(
D∏
i

||W (i)||
)

. (12)

Proof. By definition of g, we have that for the first layer,

g0

(∑
i

M (0)
i1i W (0)

i1i xi

)
= h

(∑
i

M (0)
i1i W (0)

i1i xi

)

= h′(0)
∑

i

M (0)
i1i W (0)

i1i xi + o(||W (0)||). (13)

Since a similar relation holds for every layer, one can deduce
the leading order expansion of f at the origin:

f (x; 0, W)

=
∑

iD,...,i1,i

M (D)
iDiD−1

W (D)
iDiD−1

h
(
...M (2)

i2i1
W (2)

i2i1
h
(
M (1)

i1i W (1)
i1i xi

)
...

)

= [h′(0)]D f

(
x; 1, W) + o(

∏
i

||W (i)||
)

. (14)

This finishes the proof. �
While the proof is a straightforward Taylor expansion, we

note that the insight it implies is rather extraordinary: close
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to the origin, any nonlinear model can be approximated by a
linear model of the same architecture, up to a linear rescaling
factor [h′(0)]D. Also note that, in general, the origin is the
only solution that satisfies this special property. An immediate
corollary of this proposition is that any loss function, with
weight decay, for a neural network with at least one hidden
layer is approximated by the loss function of a linear network
close to the origin:

Lγ (W) =
∑

x

�( f (x; 0, W)) + γ ||W||2

=
∑

x

�

(
f (x; 1, W) + o(

D∏
i

||W (i)||)
)

+ γ ||W||2

=
∑

x

�( f (x; 1, W)) + γ ||W||2 + o

(
D∏
i

||W (i)||
)

.

(15)

Therefore, this explains why different types of models (con-
volutional or fully connected) under different loss functions,
such as MSE or cross entropy, all exhibit a phenomenology
similar to a deep linear model of similar depth in practice
[36,37]. Because the term �( f (x; 1, W)) is often of order
O(

∏D
i ||W (i)||), when D = 1, the first nonvanishing order

term of the loss function agrees with that of a linear model.
When D > 1, the first two nonvanishing terms agree. We
numerically demonstrate these phase transitions and related
phenomenology in nonlinear networks in Appendix A 3.

IV. ALGORITHMIC IMPLICATIONS

In this section, we discuss the implication of our theory for
understanding the phenomenology in deep learning and for
designing algorithms to improve it.

A. Layer structure and collapses

One major phenomenon in deep learning that can be
explained by the proposed theory is the phenomenon of col-
lapses. The collapse problem refers to the case when the
learned representation of a neural network spans a low-rank
subspace of the entire available space. The extreme case
of collapse happens when the learning completely fails and
the learned representation becomes a constant. In the past,
collapses in different scenarios are often treated differently.
Our result, in contrast, provides a unified perspective on the
posterior collapse in Bayesian deep learning [38–41], the
neural collapse problem in supervised learning [42–45], and
the dimensional collapse in contrastive learning [46,47]. For
neural collapse, our result agrees with the recent works that
identify weight decay as a main cause [44,45]. For Bayesian
deep learning, Ref. [41] identified the cause of the posterior
collapse in a two-layer VAE structure as the regularization of
the mean of the latent variable z being too strong, which then
causes a change in the stability of the Hessian matrix at the
origin. Importantly, it is shown that the norm of the model
obeys the square-root scaling, where the norm of the learned
classifier scales as

√
a0 − β in the vicinity of a collapse,

where a0 is the data variance and β is the strength of the

FIG. 3. Time evolution of the training loss when L is close to
the initialized value (≈0.2). For D = 1, the loss decreases monotoni-
cally. For D > 1, in sharp contrast, the loss first increases slowly and
then decreases precipitously, indicating a signature of escaping from
a local minimum: the height of the peak may be interpreted as the
latent heat of the phase transition since this is the energy barrier for
the system to overcome to undergo the first-order phase transition.

prior. More recently, the origin and its stability have also been
identified as a crucial feature for the dimensional collapse
in self-supervised learning [46]. Again, the authors showed
the existence of the square-root scaling in the vicinity of the
collapse. Here, the norm of the classifier scales as

√
a0 − c0,

where c0 is the strength of the data augmentation.
See Figs. 2(c) and 2(d). In the setting of supervised

learning, we consider ResNet18 [48], a modern large-scale
convolutional neural network, trained on the CIFAR-10 data
set [49], a standard image classification data set in machine
learning. For all experiments, we train the model in a non-
trivial phase to convergence and rescale the relevant set of
parameters by a constant a. Figure 2(c) shows the landscape
of a ResNet18 trained on the CIFAR-10 data set for different
values of weight decay when we rescale all the parameters. We
see that the landscape is qualitatively similar to a deep linear
net with D > 1, as expected from our theory [50]. Figure 2(d)
showcases a change in the landscape of a ResNet18 in self-
supervised learning (SSL) when we rescale the output layer.
Here, the strength of data augmentation plays the role of an
effective regularization and the data variation plays the role of
the data signal. The effective two-layer structure arises from
the coupling of the last layer matrix with itself in SSL. We
also perform simulations for generative models in Figs. 2(d)
and 2(e). Here, the regularization effect is due to the KL
divergence from the prior term, and the two-layer structure
comes from the simultaneous use of an encoder and decoder.
We see that the phase transition directly impacts the quality
of the generated images [51] and that in all scenarios, the be-
haviors of deep learning models are similar to those of critical
systems, exhibiting qualitative transitions in the landscape that
cannot be understood in the linear response regime.

B. Sensitivity to the initial condition

Our result suggests that the learning of a deeper network
is quite sensitive to the initialization schemes we use. In
particular, for D > 1, some initialization schemes converge to
the trivial solutions more easily, while others converge to the
nontrivial solution more easily. Figure 4 plots the converged
loss of a D = 2 model for two types of initialization: (a) large
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FIG. 4. Sensitivity of the obtained solution to the initialization
of the model. We initialize the model around zero with the stan-
dard deviation s. The experiment shows that a large initialization
variance (s = 0.3) favors the nontrivial solution over the trivial one,
while a small initialization variance (s = 0.01) leads to the opposite
tendency.

initialization, where the parameters are initialized around zero
with the standard deviation s = 0.3 and (b) small initialization
with s = 0.01. The value of s is thus equal to the expected
norm of the model at initialization—a small s means that it
is initialized closer to the trivial phase and a large s means
that it is initialized closer to the learning phase. We see that
over a wide range of γ , one of the initialization schemes gets
stuck in a local minimum and does not converge to the global
minimum. In light of the latent heat picture, the reason for
the sensitivity to initial states is clear: one needs to inject
additional energy for the system to leave the metastable state;
otherwise, the system may be stuck for a very long time. See
Fig. 3 for an illustration. The existing initialization methods
are predominantly data dependent. However, our result (also
see Ref. [52]) suggests that the size of the trivial minimum is
data dependent, and our result thus highlights the importance
of designing data-dependent initialization methods in deep
learning.

C. Removing the trivial phase

We also explore our suggested fix to the trivial learning
problem. Here, we regularize the model by γ ||w||D+2

2 rather
than γ ||w||22. The training loss �(b) and the model norm b are
plotted in Fig. 5. We find that the trivial phase now completely
disappears even if we go to very large γ . However, we note
that this fix only removes the local maximum at zero, but zero
remains a saddle point from which it takes the system a long
time to escape.

V. CONCLUSION

The similarity between phase transitions in neural net-
works and statistical physics lends a great impetus to a
more thorough investigation of deep learning through the lens
of thermodynamics and statistical physics. Our theory also
serves as a bridge between conventional machine learning
and the statistical mechanics approaches to deep learning.
One interesting future problem is to investigate whether we

FIG. 5. Training loss L(γ ) (upper) and the model norm b (lower)
when we train with a regularization term of the form γ ||w||D+2,
which is a theoretically justified fix to the trivial learning problem.
We see that the trivial phase disappears under this regularization.

can classify neural networks by symmetry and topological
invariants instead of by the order of nonanalyticity.
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APPENDIX A: ADDITIONAL EXPERIMENTS

1. Empirical validation of the theory

In Fig. 1, we show phase transitions in a linear net, where
we validate the existence of the phase transitions discussed in
the main text. In agreement with the theory, a depth-0 net has
no phase transition, a depth-1 net has a second-order phase
transition at approximately γ = 0.45, close to the theoretical
value of ||E[xy]||, and a depth-2 net has a first-order phase
transition at roughly γ = 0.15. The qualitative distinctions
between networks of different depths are clearly seen in the
data.

2. Experimental details

a. Supervised learning

We train a standard ResNet18 with roughly 107 parameters
under the standard procedure, with a batch size of 256 for
100 epochs [53]. For the linear models, we use a hidden
width of 32 without any bias term. The training proceeds
with stochastic gradient descent with batch size 256 for 100
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FIG. 6. Phase transition of a fully connected tanh network. Top: D = 1, which exhibits a second-order phase transition: the training loss
L(γ ) (left), first derivative (middle), and the second derivative (right). Bottom: D = 2, which exhibits a first-order phase transition: the training
loss L(γ ) (left) and first derivative L′(γ ) (middle). For D = 2, we initialize the model with three initialization at different scales and use the
minimum of the respective loss values as an empirical estimate of the actual global minimum.

epochs with a momentum of 0.9. The learning rate is 0.002,
chosen as the best learning rate from a grid search over
[0.001, 0.002, . . . , 0.01].

b. Self-supervised learning

We train a Resnet18 on CIFAR10 with the SimCLR loss
with a normalization of the last layer output [54] and with a
weight decay strength of 10−3. The training proceeds until the
converged weights W ∗ are obtained. The representation has
a dimension of 128. We rescale the weight matrix of the last
layer W ∗

last by a factor of a and compute the loss as a function
of a.

c. Variational autoencoder

The experiment is performed on the MNIST data set. We
use two-layer fully connected neural networks for the en-
coder and decoder with the ReLU activation functions and
hidden dimension dh. The dimension of the hidden layer is
dh = 2048. The model is optimized by Adam with a learning
rate of 10−3. The reported results are the converged values.

3. Nonlinear networks

We expect our theory to also apply to deep nonlinear net-
works that can be locally approximated by a linear net at
the origin, e.g., a network with tanh activations. As shown
in Fig. 6, the data shows that a tanh net also features a
second-order phase transition for D = 1 and a first-order
phase transition for D = 2.

One notable exception that our theory may not apply is the
networks with the ReLU activation because these networks
are not differentiable at the origin (i.e., in the trivial phase).
However, there are smoother (and empirically better) alterna-
tives to ReLU, such as the swish activation function, to which
the present theory should also be relevant.

APPENDIX B: DERIVATION AND PROOF

Here, we present detailed and rigorous derivations of the
main equations presented in the main text. We first note that
the main loss in Eq. (3) can be written as

ExEε (1),ε (2),...,ε (D)

(
d0,d0,d0,...d0∑
i,i1,i2,...,iD

D∏
j=1

UiDε
(D)
iD

...ε
(2)
i2

W (2)
i2i1

× ε
(1)
i1

W (1)
i1i xi − y

)2

+ γ ||U ||22 +
D∑

i=1

γ ||W (i)||2F . (B1)

1. Linear regression

Here, the loss function becomes

�(W ) = Ex

(∑
i

Wixi − y

)2

+ γ ||W ||2, (B2)

from which we prove the theorem.
Proof of Theorem 1. The global minimum of Eq. (B2) is

W∗ = (A0 + γ I )−1E [xy]. (B3)
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The loss of the global minimum is thus

L = Ex

(∑
i

Wixi − y

)2

+ γ ||W ||2

= W T A0W − 2W TE[xy] + E[y2] + γ ||W ||2

= E[xy]T A0

(A0 + γ I )2
E[xy] − 2E[xy]T 1

A0 + γ I
E[xy]

+ E[y2] + γE[xy]T 1

(A0 + γ I )2
E[xy]

= −E[xy]T (A0 + γ I )−1E[xy] + E[y2], (B4)

which is infinitely differentiable for any γ ∈ (0,∞) (note that
A0 is always positive semidefinite by definition). �

2. Finite depth cannot have zeroth-order phase transitions

As discussed in the main text, the theorem shows that for a
finite depth, L(γ ) must be continuous in γ .

Proof of Theorem 2. For any fixed and bounded w, �(w, γ )
is continuous in γ . Moreover, �(w, γ ) is a monotonically
increasing function of γ . This implies that L(γ ) is also an
increasing function of γ (but may not be strictly increasing).

We now prove by contradiction. We first show that L(γ )
is left-continuous. Suppose that for some D, L(γ ) is not left-
continuous in γ at some γ ∗. By definition, we have

L(γ ∗ − ε) = min
w

�(w, γ ∗ − ε) := �(w′, γ ∗ − ε), (B5)

where w′ is one of the (potentially many) global minima of
L(γ ∗ − ε). Since L(γ ) is not left-continuous by assumption,
there exists δ > 0 such that for any ε > 0,

L(γ ∗ − ε) < L(γ ∗) − δ, (B6)

which implies that

�(w′, γ ∗ − ε) = L(γ ∗ − ε) < L(γ ∗) − δ � �(w′, γ ∗) − δ,

(B7)

namely, the left discontinuity implies that for all ε > 0:

�(w′, γ ∗ − ε) � �(w′, γ ∗) − δ. (B8)

However, by definition of �(w, γ ), we have

�(w, γ ) − �(w, γ − ε) = ε||w||2. (B9)

Thus, by choosing ε < δ/||w||2, the relation in Eq. (B7) is
violated. Thus, L(γ ) must be left-continuous.

In a similar manner, we can prove that L is right-
continuous. Suppose that for some D, L(γ ) is not right-
continuous in γ at some γ ∗. Let γ > 0. By definition, we have

L(γ ∗ + ε) = min
w

�(w, γ ∗ + ε) := �(w′, γ ∗ + ε), (B10)

where w′ is one of the (potentially many) global minima of
L(γ ∗ + ε). Since L(γ ) is not right-continuous by assumption,
there exists δ > 0 such that for any ε > 0,

L(γ ∗ + ε) > L(γ ∗) + δ, (B11)

which implies that

�(w′, γ ∗ + ε) = L(γ ∗ + ε) > L(γ ∗) + δ � �(w′, γ ∗) + δ,

(B12)

namely, the right discontinuity implies that for all ε > 0,

�(w′, γ ∗ + ε) � �(w′, γ ∗) + δ. (B13)

However, by definition of �(w, γ ), we have

�(w, γ + ε) − �(w, γ ) = ε||w||2. (B14)

Thus, by choosing ε < δ/||w||2, the relation in Eq. (B12) is
violated. Thus, L(γ ) must be right-continuous.

Therefore, L(γ ) is continuous for all γ > 0. By definition,
this means that there is no zeroth-order phase transition in
γ for L. Additionally, note that the above proof does not
require γ 
= 0, and so we have also shown that L(γ ) is right-
continuous at γ = 0. �

3. Order parameter and the effective loss

Theorem 5. Let b = s||U ||/d0, and let

�̄(b, γ ) := −
∑

i

d2D
0 b2DE[x′y]2

i

dD
0 (σ 2 + d0)Daib2D + γ

+ Ex[y2] + γ Dd2
0 b2. (B15)

Then, b is an order parameter of Eq. (3) for the effective loss
�̄.

Proof. By Theorem 3 of Ref. [52], any global minimum of
Eq. (3) is given by the following set of equations:

U =
√

d0|b|rD

W (i) = |b|rirT
i−1

W (1) = r1E[xy]T d
D− 1

2
0 |b|D[

dD
0 (σ 2 + d0)Db2DA0 + γ

]−1
,

(B16)

where ri = (±1, . . . ,±1) is an arbitrary vertex of a di-
dimensional hypercube for all i. Therefore, the global
minimum must lie on a one-dimensional space indexed by
b ∈ [0,∞). Let f (x) specify the model as

f (x) :=
d,d1,d2,...dD∑
i,i1,i2,...,iD

UiDε
(D)
iD

...ε
(2)
i2

W (2)
i2i1

ε
(1)
i1

W (1)
i1i x, (B17)

and let η denote the set of all random noises εi.
Substituting Eq. (B16) in Eq. (3), one finds that within this

subspace, the loss function can be written as

�(w, γ ) = ExEη( f (x) − y)2 + L2 reg

= Ex,η[ f (x)2] − 2Ex,η[y f (x)] + Ex[y2] + L2 reg

=
∑

i

d3D
0 (σ 2 + d0)Db4DaiE[x′y]2

i[
dD

0 (σ 2 + d0)Daib2D + γ
]2

− 2
∑

i

d2D
0 b2DE[x′y]2

i

dD
0 (σ 2 + d0)Daib2D + γ

+ Ex[y2] + L2 reg,

(B18)
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where the L2 reg term is given by

L2 reg = γ Dd2
0 b2 + γ

∑
i

d2D
0 b2DE[x′y]2

i[
dD

0 (σ 2 + d0)Db2Dai + γ
]2 .

(B19)

Combining terms, we can simplify the expression for the loss
function to be

−
∑

i

d2D
0 b2DE[x′y]2

i[
dD

0 (σ 2 + d0)Daib2D + γ
] + Ex[y2] + γ Dd2

0 b2.

(B20)
We can now define the effective loss by

�̄(b, γ ) := −
∑

i

d2D
0 b2DE[x′y]2

i[
dD

0 (σ 2 + d0)Daib2D + γ
]

+ Ex[y2] + γ Dd2
0 b2. (B21)

Then, the above argument shows that for all γ ,

min
b

�̄(b, γ ) = min
w

�(w, γ ). (B22)

By Definition 2 in the main text, b is an order parameter of �

with respect to the effective loss �̄(b, γ ). This completes the
proof. �

4. D = 1

In this section, we prove Theorem 3
We first prove a lemma that will simplify the proof of

Theorem 3 significantly.
Lemma 1. If L(γ ) is differentiable, then for at least one of

the global minima b∗,

d

dγ
L(γ ) =

∑
i

d2D
0 b2D

∗ E[x′y]2
i

[dD
0 (σ 2 + d0)Daib2D∗ + γ ]2

+ Dd2
0 b2

∗ � 0.

(B23)
Proof of Lemma 1. Because L is differentiable in γ , there

exist at least one global minima b∗ such that

d

dγ
L(γ ) = d

dγ
�̄(b∗(γ ), γ ) (B24)

= ∂

∂b∗ �̄(b∗, γ )
∂b∗

∂γ
+ ∂

∂γ
�̄(b∗, γ ) (B25)

= ∂

∂γ
�̄(b∗, γ ) (B26)

=
∑

i

d2D
0 b2D

∗ E[x′y]2
i[

dD
0 (σ 2 + d0)Daib2D∗ + γ

]2 + Dd2
0 b2

∗ � 0,

(B27)

where we have used the optimality condition
∂

∂b∗ �̄(b∗(γ ), γ ) = 0 in the second equality. �
Proof of Theorem 3. By Definition 1, it suffices only to

prove the existence of phase transitions on the effective loss.
For D = 1, the effective loss is

�̄(b, γ ) = − d1b2E [xy]T [b2(σ 2 + d1)A + γ I]−1E [xy]

+ E [y2] + γ d1b2. (B28)

By Theorem 1 of Ref. [52], the phase transition, if it exists,
must occur precisely at γ = ||E[xy]||. To prove that there is a
second-order phase transition at γ = ||E[xy]||, we must check
both its first and second derivatives.

When γ → ||E [xy]|| from the right, all derivatives of L(γ )
vanish because the loss is identically equal to E[y2]. We now
consider the derivative of L when γ → ||E [xy]|| from the left.
We first need to find the minimizer of Eq. (B28). Because
Eq. (B28) is differentiable, its derivative in b must be equal
to 0 at the global minimum:

−2γ d1bE[xy]T [b2(σ 2 + d1)2A + γ I]−2E[xy] + 2γ d1b = 0.

(B29)

Finding the minimizer b is thus equivalent to finding the real
roots of a high-order polynomial in b. When γ � ||E[xy]||,
the solution is unique [52],

b2
0 = 0, (B30)

where we label the solution with the subscript 0 to emphasize
that this solution is also the zeroth-order term of the solu-
tion in a perturbatively small neighborhood of γ = ||E [xy]||.
From this point, we define a shifted regularization strength:
� := γ − ||E[xy]||. When � < 0, the condition Eq. (B29)
simplifies to

E[xy]T [b2(σ 2 + d1)A + γ I]−2E[xy] = 1. (B31)

Because the polynomial is not singular in �, one can Taylor
expand the (squared) solution b2 in �:

b(γ )2 = β0 + β1� + O(�2). (B32)

We first substitute Eq. (B32) in (B29) to find [55]

β0 = 0. (B33)

One can then again substitute Eq. (B32) in Eq. (B29) to find
β1. To the first order in b2, Eq. (B29) reads

1

γ 2
||E[xy]||2 − 2b2 (σ 2 + d1)

γ 3
||E[xy]||2A0

= 1 (B34)

⇐⇒ −2β1�
(σ 2 + d1)

γ 3
||E[xy]||2A0

= 2
�

||E[xy]|| (B35)

⇐⇒ β1 = − 1

(σ 2 + d1)

||E[xy]||2
||E[xy]||2A0

. (B36)

Substituting this first-order solution to Lemma 1, we obtain

d

dγ
L(γ )|γ=||E [xy]||− ∼ b2

∗ = 0 = d

dγ
L(γ )|γ=||E [xy]||+ . (B37)

Thus, the first-order derivative of L(γ ) is continuous at the
phase transition point.

We now find the second-order derivative of L(γ ). To
achieve this, we also need to find the second-order term of
b2 in γ . We expand b2 as

b(γ )2 = 0 + β1� + β2�
2 + O(�3). (B38)
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To the second order in b2, Eq. (B29) reads

1

γ 2
||E[xy]||2 − 2b2 (σ 2 + d1)

γ 3
||E[xy]||2A0

+ 3b4 (σ 2 + d1)2

γ 4
||E[xy]||2A2

0
= 1 (B39)

⇐⇒ γ 2||E[xy]||2 − 2b2(σ 2 + d1)γ ||E[xy]||2A0
+ 3b4(σ 2 + d1)2||E[xy]||2A2

0
= γ 4 (B40)

⇐⇒ �2E2
0 − 2β2�

2(σ 2 + d1)E0E2
1 − 2β1�

2(σ 2 + d1)E2
1 + 3β2

1�2(σ 2 + d1)2E2
2 = 6E2

0 �2 (B41)

⇐⇒ β2 = 3β2
1 (σ 2 + d1)2E2

2 − 5E2
0 − 2β1(σ 2 + d1)E2

1

2(σ 2 + d1)E0E2
1

, (B42)

where, from the third line, we have used the shorthand notations E0 := ||E[xy]||, E1 := ||E[xy]||A0 , and E2 := ||E[xy]||A2
0
.

Substituting in β1, we obtain

β2 = 3E0
(
E2

2 − E2
1

)
2(σ 2 + d1)E4

1

. (B43)

This allows us to find the second derivative of L(γ ). Substituting β1 and β2 into Eq. (B28) and expanding the result up to the
second order in �, we obtain

L(γ ) = −d1b2E [xy]T [b2(σ 2 + d1)A + γ I]−1E [xy] + E [y2] + γ d1b2 (B44)

= −d1(β1� + β2�
2)E[xy]T [(β1� + β2�

2)(σ 2 + d1)A0 + γ I]−1E[xy] + γ d1(β1� + β2�). (B45)

At the critical point,

d2

dγ 2
L(γ )|γ ||E[xy]||−

= −d1β2E0 + d1β
2
1 (σ 2 + d1)

E2
1

E2
0

+ d1β1 + d1β1 + d1β2E0

= 2d1β1 + d1β
2
1 (σ 2 + d1)

E2
1

E2
0

= d1β1

= − d1

σ 2 + d1

||E[xy]||2
||E[xy]||2A0

. (B46)

Notably, the second left derivative of L is only dependent on
β1 and not on β2:

d2

dγ 2
L(γ )|γ=||E[xy]||− = − d1

σ 2 + d1

||E[xy]||2
||E[xy]||2A0

< 0. (B47)

Thus, the second derivative of L(γ ) is discontinuous at
γ = ||E[xy]||. This completes the proof. �

Remark. Note that the above proof suggests that close to
the critical point, b ∼ √

�, in agreement with the Landau
theory.

5. D > 1

Proof of Theorem 4. It suffices to show that d
dγ

L(γ ) is not
continuous. We prove the statement by contradiction. Suppose
that d

dγ
L(γ ) is everywhere continuous on γ ∈ (0,∞). Then,

by Lemma 1, one can find the derivative for at least one of the
global minima b∗:

d

dγ
L(γ ) =

∑
i

d2D
0 b2D

∗ E[x′y]2
i[

dD
0 (σ 2 + d0)Daib2D∗ + γ

]2 + γ Dd2
0 b2

∗ � 0.

(B48)

Both terms on the right-hand side are nonnegative, and so one
necessary condition for d

dγ
L(γ ) to be continuous is that both

of these two terms are continuous in γ .
In particular, one necessary condition is that γ Dd2

0 b2
∗ is

continuous in γ . By Proposition 3 of Ref. [52], there exist
constants c0, c1 such that 0 < c0 � c1, and

b∗ = 0 if γ < c0

b∗ > 0, if γ > c1. (B49)

Additionally, if b∗ > 0, b∗ must be lower-bounded by some
nonzero value [52]:

b∗ � 1

d0

(
γ

||E[xy]||
) 1

D−1

>
1

d0

(
c1

||E[xy]||
) 1

D−1

> 0. (B50)

Therefore, for any D > 1, b∗(γ ) must have a discontinuous
jump from 0 to a value larger than 1

d0
( c0
||E[xy]|| )

1
D−1 , and can-

not be continuous. This, in turn, implies that d
dγ

L(γ ) jumps
from zero to a nonzero value and cannot be continuous. This
completes the proof. �

6. D → ∞
The following theorem formally studies the case

of D → ∞.
Theorem 6. Let L(D)(γ ) denote the loss function for a fixed

depth D as a function of γ . Then, for γ ∈ [0,∞) and some
constant r,

L(D)(γ ) →
{

r if γ = 0
E[y2] otherwise.

(B51)

Proof. It suffices to show that a nonzero global minimum
cannot exist at a sufficiently large D, when one fixes γ . By
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Proposition 3 of Ref. [52], when γ > 0, any nonzero global
minimum must obey the following two inequalities:

1

d0

[
γ

||E[xy]||
] 1

D−1

� b∗ �
[ ||E[xy]||

d0(σ 2 + d0)Damax

] 1
D+1

,

(B52)

where amax is the largest eigenvalue of A0. In the limit
D → ∞, the lower bound becomes

1

d0

[
γ

||E[xy]||
] 1

D−1

→ 1

d0
. (B53)

The upper bound becomes[ ||E[xy]||
d0(σ 2 + d0)Damax

] 1
D+1

→ 1

σ 2 + d0
. (B54)

But for any σ 2 > 0, 1
d0

< 1
σ 2+d0

. Thus, the set of such b∗ is
empty.

On the other hand, when γ = 0, the global minimizer has
been found in Ref. [56] and is nonzero, which implies that
L(0) < E[y2]. This means that L(γ ) is not continuous at 0.
This completes the proof. �
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