PHYSICAL REVIEW RESEARCH 8§, 043242 (2023)

Reduced-order modeling of two-dimensional turbulent Rayleigh-Bénard flow by hybrid

quantum-classical reservoir computing

Philipp Pfeffer®,! Florian Heyder ®,' and Jorg Schumacher® -2

1Institutﬁ}ir Thermo- und Fluiddynamik, Technische Universitdt llmenau, Postfach 100565, D-98684 llmenau, Germany

2Tandon School of Engineering, New York University, New York City, New York 11201, USA
® (Received 5 July 2023; accepted 9 November 2023; published 13 December 2023)

Two hybrid quantum-classical reservoir computing models are presented to reproduce the low-order statistical
properties of a two-dimensional turbulent Rayleigh-Bénard convection flow at a Rayleigh number Ra = 10°
and Prandtl number Pr = 10. These properties comprise the mean vertical profiles of the root mean square
velocity and temperature and the turbulent convective heat flux. The latter is composed of vertical velocity and
temperature and measures the global turbulent heat transfer across the convection layer; it manifests locally in
coherent hot and cold thermal plumes that rise from the bottom and fall from the top boundaries. Both quantum
algorithms differ by the arrangement of the circuit layers of the quantum reservoir, in particular the entanglement
layers. The second of the two quantum circuit architectures, denoted H2, enables a complete execution of the
reservoir update inside the quantum circuit without the usage of external memory. Their performance is compared
with that of a classical reservoir computing model. Therefore, all three models have to learn the nonlinear and
chaotic dynamics of the turbulent flow at hand in a lower-dimensional latent data space which is spanned by the
time-dependent expansion coefficients of the 16 most energetic proper orthogonal decomposition (POD) modes.
These training data are generated by a POD snapshot analysis from direct numerical simulations of the original
turbulent flow. All reservoir computing models are operated in the reconstruction or open-loop mode, i.e., they
receive three POD modes as an input at each step and reconstruct the 13 missing modes. We analyze different
measures of the reconstruction error in dependence on the hyperparameters which are specific for the quantum
cases or shared with the classical counterpart, such as the reservoir size and the leaking rate. We show that
both quantum algorithms are able to reconstruct the essential statistical properties of the turbulent convection
flow successfully with similar performance compared with the classical reservoir network. Most importantly, the

quantum reservoirs are by a factor of four to eight smaller in comparison with the classical case.

DOI: 10.1103/PhysRevResearch.5.043242

I. INTRODUCTION

Quantum computing algorithms have changed our ways
to process, classify, generate, and analyze data [1,2]. New
ways to solve classical fluid-mechanical problems have been
suggested in the form of quantum amplitude estimation
algorithms [3], variational quantum algorithms [4,5], quan-
tum lattice Boltzmann methods [6—10], or quantum linear
system algorithms [11-13] for one-dimensional problems.
Fluid equations for inviscid or viscous fluids have also been
transformed into Schrodinger equations for specific potentials
[14,15]. Following Ref. [16], the applications of quantum
computing can be grouped into three major fields: (1) sim-
ulation of chemical or physical processes, (2) search and
optimization, and (3) processing data with complex structure.
The last field comprises quantum machine-learning methods
[17], such as quantum generative methods [18,19], quantum
kernel methods [20], and quantum recurrent networks, in par-
ticular in the form of quantum reservoir computing [21-23].
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In classical reservoir computing, the reservoir is the central
building block of the neural network architecture. The reser-
voir is a sparse random network of neurons that substitutes the
batch of successively connected hidden layers of deep convo-
lutional neural networks of other machine-learning algorithms
[24,25]. It introduces a short-term memory to process se-
quential data. This is the subject of the present investigation.
Here, we substitute the high-dimensional classical reservoir
network with a small parametric quantum circuit in which n
qubits span a 2"-dimensional complex quantum state space
for a highly entangled reservoir state to save memory and
computational costs. Quantum reservoir computing can be
implemented in two different ways which we describe in brief
in the following.

The dynamics of an interacting many-particle quantum
system—the quantum reservoir—is investigated in a so-called
analog framework. It is characterized by a Hamiltonian H
subject to a unitary time evolution promoted by U (¢). The
time evolution of the density matrix p(z), which describes the
quantum reservoir state, follows then to

o) =U@)pO)UT(t) with U(r) = exp (—%Ht). (D
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The operator H is the (many-particle) Hamiltonian, and U ()
is the adjoint of U (¢). These systems have been implemented
in the form of spin ensembles [26-29], circuit quantum
electrodynamics [30], arrays of Rydberg atoms [31], single
oscillators, and networks of oscillators [32,33]. They establish
a closed quantum system in the ideal case that follows an ideal
unitary time evolution after the input state is prepared. The
pure state density matrix p(¢) is given by the outer product
of the (many-particle) state vector |W(¢)) with itself, p(¢) =
() (W)l

Besides the analog framework, the digital gate-based
framework uses parametric circuits composed of universal
quantum gates. They are composed to a quantum reservoir on
noisy intermediate-scale quantum devices in this case [34,35].
The reservoir state is obtained by a repeated measurement
of the equivalently prepared quantum system and gives the
probabilities p;(t) for j =1,...,2" of the n-qubit quantum
state |W(¢)) to collapse on the jth eigenvector of the stan-
dard observable in a quantum computer, the Pauli-Z matrix
[36]. These probabilities correspond to the diagonal elements
of the density matrix o and are summarized to the vector
p®)=(p1,....pn)" = (p11, ..., pxn)" with N = 2", They
can be read out by a measurement. Again, we assumed that
the initial state p(0) is a pure state. In Ref. [37], the digital
gate-based approach was realized in the form of an open
quantum system which implies that parts of the short-term
memory of the hybrid systems are kept outside the quantum
reservoir. This method allowed us to model the dynamics of
low-dimensional nonlinear systems, such as the Lorenz 63
[38] and its eight-dimensional Lorenz-type model extension
[39] on an actual IBM quantum computer. This algorithm
will be denoted as hybrid algorithm 1, in short H1, in the
following.

In the present work, we advance our investigation on quan-
tum reservoir computing with a proof-of-concept application
to a realistic, complex fluid mechanical problem. We seek
to show that it is possible to achieve results for the fol-
lowing low-dimensional simulations which are comparable
to classical reservoir computing. To this end, we present a
full data processing pipeline for a two-dimensional turbulent
Rayleigh-Bénard convection flow [40] which contains a quan-
tum computing module—the quantum reservoir. This flow is
a paradigm for turbulence that is driven by buoyancy forces in
many geophysical and astrophysical processes [41,42]. The
hybrid quantum-classical machine-learning algorithm will
serve as a data-driven reduced-order model of the turbulent
flow without knowledge of the underlying mathematical equa-
tions of motion.

The hybrid nature of the quantum machine-learning model
includes a reduction of the high-dimensional turbulence data
to a low-dimensional latent space. This is done by a classi-
cal snapshot-based proper orthogonal decomposition (POD)
[43]. Similar to classical machine-learning algorithms, this
encoding-decoding step is necessary for a fully turbulent flow
since the dimension of the classical input data is high; the ac-
tual number of degrees of freedom is here Niot = 3 x 384 x
96 = 110592, see also Refs. [44,45]. The quantum machine-
learning algorithm thus operates in a latent data space of
Ngof = 16 in the present case and is able to reproduce relevant
large-scale features and low-order statistics of the turbulent

flow, such as the vertical profile of the mean convective heat
flux across the convection layer. Particularly, the latter point
is of particular interest in the present application.

We also extend our previous study with an improved hybrid
quantum-classical reservoir computing model (RCM) which
integrates more parts of the algorithm into the quantum com-
puting part in comparison with the previous algorithm H1
from Ref. [37]. The present work is a first step away from the
traditional von Neumann architecture, in which computation
and memory are located in distinct components. The new
algorithm will be denoted H2 in the following. It will be
compared in detail with a classical RCM, in short C, and H1,
our previous approach.

The hybrid nature of our algorithm implies additionally
that the optimization of the reservoir output layer is performed
classically by a direct solution of the minimization task. The
full data processing pipeline of the algorithm comprising
a combined POD-RCM model is sketched in Fig. 1. The
figure sketches the classical and quantum reservoir in
Figs. 1(b) and 1(c). The quantum reservoir builds on a
low-qubit-number parametric quantum circuit which spans
a high-dimensional reservoir state space based on a highly
entangled n-qubit quantum state.

The paper is organized as follows: In Sec. II, we present
the turbulent flow and in Sec. III the reduction to the low-
dimensional latent space in which the quantum reservoir
operates. Section IV follows with a compact presentation of
the algorithms C, H1, and H2. Section V discusses the re-
sults in dependence on hyperparameters of all three reservoir
computing models. Moreover, we also compare different error
measures. One is adapted to the specific fluid mechanical
application. A summary and an outlook are given in the last
section.

II. TURBULENT FLOW

A. Model equations and parameters

We consider a two-dimensional Rayleigh-Bénard system
where a fluid is enclosed between two impermeable plates
with constant temperature difference AT = Tpor — Tiop > 0
[40]. The Boussinesq equations connect the incompressible
velocity field u = (u,, u;) with the temperature and pressure
fields T and P. They are given by

V-u=0, 2
ou 2
§+(u-V)u =-VP+vVu+ga(T —Tye,, ()
aT 2
§+(M~V)T=KV T. 4)

Here, o, g, v, and « are the thermal-expansion coefficient,
the acceleration due to gravity, the kinematic viscosity, and
the thermal diffusivity, respectively. We set P =P /p, in
Eq. (3). Furthermore, Ty and py are constant reference val-
ues of the temperature and mass density, respectively. These
equations stand for the differential balances of mass density
(2), momentum density (3), and energy density (4) of a fluid
parcel. In the Boussinesq approximation, it is assumed that
the fluid is incompressible (or divergence-free) and that small
deviations of the density of the fluid from the reference values
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FIG. 1. Pipeline of data processing in the classical and hybrid quantum-classical reservoir computing models. (a) Sketch of the whole
algorithm. Direct numerical simulation snapshots of the turbulent convection flow to the left are encoded in a low-dimensional latent data space
by a proper orthogonal decomposition (POD). A reservoir computing model operates in the latent space receiving the input sequences a;(t,)
withi =1, ..., Min < Noy. Its output is a sequence a;(f,1«) with j =1, ..., Nyor; typically one takes k = 1. The output is finally decoded by a
proper orthogonal expansion (POE) to simulation data at later times and/or a subsequent statistical analysis. The reservoir takes two different
forms in this work. (b) The classical reservoir, which we use for comparison, consists of a sparse random network of neurons that possesses a
dynamic memory for temporal data processing. (¢c) The quantum reservoir is a digital gate-based quantum circuit. In this work, two different
quantum algorithms are employed for the quantum reservoir. Both classical and quantum reservoir contain input and output layers to the left
and right, respectively. The reservoir architectures are further detailed in Sec. IV.

depend linearly on temperature deviations [40]. This leads to
the last term in the momentum equation (3) which couples the
temperature field with the vertical velocity component.

The system is made dimensionless by the choice of
the free-fall velocity scale Uy = JagATH, the free-fall
timescale Ty = H/Uy, and AT . Here, H is the height of the
convection layer, the characteristic spatial scale in the set-
ting. In this way all material parameters and scales can be
summarized in dimensionless parameters that determine the
operating point of the turbulent flow. These parameters are
the Rayleigh and the Prandtl numbers, Ra = agATH?/(vk)
and Pr = v/k, respectively. They take values of Ra = 103 and
Pr = 10 in the present proof-of-concept study. Alternatively,
one can use Ugr = «/H as a characteristic velocity [37,38].
This does not affect the physical outcome. Figure 2 illustrates
the configuration which we want to investigate in the follow-
ing by the hybrid quantum-classical algorithm.

We conduct direct numerical simulations using the spectral
element solver Nek5000 [46] to solve the Rayleigh-Bénard
system (2)—(4) in a domain A =L x H with aspect ratio
I'=L/H = 2«/5. Dimensionless coordinates are thus x €
[0, 2«/5] and z € [0, 1]. Dirichlet boundary conditions are
imposed for the temperature field at top and bottom, 7 (z =
0) =1 and T(z = 1) = 0. Furthermore, we choose free-slip
boundary conditions for the velocity field in the z direction,
u,(z=0,1)=0and du,/dz = 0 at z = 0, 1. Periodic bound-
aries for all fields are taken in the horizontal x direction. The
chosen boundary conditions, aspect ratio, and Prandtl number

correspond to a popular standard case for the Lorenz systems
[37], but at a higher Ra and thus fully turbulent in contrast
with our previous work.

cold T(x, 2)

1.0

0.5

0.0

FIG. 2. Two-dimensional Rayleigh-Bénard convection flow. The
fluid with a kinematic viscosity v and temperature diffusivity « is
confined between two impermeable boundary planes at the top (z =
H) and bottom (z = 0). The bottom plane has a uniform temperature
Tior; the top one a uniform temperature T, < Tior. The fluid layer
has a length L = 2+/2 and a height H = 1, such that the aspect
ratio I' = L/H = 2+/2 results. The figure displays a snapshot of the
turbulent flow. Background contours stand for the temperature field
T'; the vectors illustrate the two-component velocity field (u,, u,).
The turbulent heat transfer across the layer from the bottom to the top
is manifest by the thin plume structures which are visible: hot lighter
fluid (in red) rises to the top while cold heavier fluid (in blue) falls
downwards. Since the velocity field is divergence-free a circulation
roll pattern develops
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B. Turbulent fluctuations and heat transfer

A central physical question in convection flows is related
to the turbulent transfer of heat and momentum across the
convection layer in dependence on the two dimensionless
parameters, the Rayleigh number Ra and the Prandtl number
Pr. In response to both, these transfers can be summarized in
two further dimensionless parameters, the Nusselt number Nu
for the turbulent heat transfer and the Reynolds number Re for
the turbulent momentum transfer. They are given by

3T

(T )xs — k=5

_ 0z
Nu = K AT

H

H
and Re = 2™ (5)
V

The symbol (-),, stands for a combined average with respect
to the horizontal x direction with x € [0, I'] and time ¢. The
root mean square (rms) velocity is given by ums = ((u? +
uf) A.1)"/? where the average is now a combination of averages
with respect to the simulation plane A and time ¢. The two
terms in the definition of the Nusselt number stand for two
heat currents across the layer, the convective and the diffusive
one. Their sum is constant and equal to Nu for each height
z € [0, 1]. However, their contributions to the total turbulent
heat flux differ with respect to z, caused for example by the
boundary condition u#, = 0 at the bottom and top.

It is exactly the mean profile of the convective heat flux
(u.T )y, as a function of z, which we want to obtain as a reser-
voir computing model output. The same holds for the vertical
profiles of the root mean square velocity and temperature.
This is the low-order statistics of the turbulent flow which
is generated by the different reservoir computing models
without knowledge of the nonlinear Boussinesq equations of
motion. We come back to these results in Sec. V D.

III. DATA REDUCTION TO LATENT SPACE

The numerical simulations are performed on a nonuni-
form grid of size of 384 x 96 points with a second-order
equidistant time stepping of At =5 x 107*. For the analy-
sis, the simulation data were interpolated to a uniform grid
of size N, x N, = 128 x 32. The dataset consists of a se-
quence of snapshots of the fields u(x, z, t,) and T (x, z, t,,,)
withm = 1,2, ..., 10% they are equidistant in time with 7 =
0.25H/U;. The sequence covers the statistically stationary
regime of the turbulent convection flow. The three turbulent
fields possess an input vector of size 12288. To circumvent
high computational effort for the machine learning model, we
add a preprocessing step.

Here, we apply a POD in the form of a snapshot method
[43,47,48]. It is a linear method, where the data reduction
is realized by a truncation to a set of Galerkin modes. For
this, we decompose the physical fields into time mean and
fluctuations,

ue(x, z, 1) = (), (x, 2) + i (x, 2, 1), (6)
u(x,2,1) = (uz);(x, 2) + u(x, 2, 1), )
T(x,z,t) ={(T);(x,2) +60'(x, z,1). (8)

Finally, we perform the snapshot POD to the fluctuating com-
ponent fields g, into time-dependent coefficients a;(t) and

spatial modes CIDEK)(x, z), such that the truncation error is min-
imized. The degrees of freedom Nuor can then be reduced, by
taking only Ngof < Nyof modes and coefficients with the most
variance into account,

Naof

gx, 2,0~ Y P (x, 2), ©)

i=1

with g = {u}, u, 0} and thus k = 1,2, 3. Figures 3(a)-3(f)
compare the reconstruction of the temperature and velocity
fields from 3 and 16 modes with the original simulation data
at a time instant. The time series of the expansion coefficients
of the three first POD modes, a; (¢) to as(t), will be fed into the
recurrent network in the reconstruction phase after training.

In the following, we use the more compact notation
a = (a1(t), ax(t), ..., ay(t)) with M = Ny, and the discrete
snapshot time superscript ¢. This is our dynamical system state
which has to be learned by the reservoir computing model.
We choose the cutoff at Ngof = 16 and capture 87% of the
variance of the original fields as seen in Fig. 3(g). It also
implies that the notation o(¢) changes to p’ and so on, see
again Eq. (1).

IV. RESERVOIR COMPUTING FRAMEWORKS

A reservoir computing model [24,25] is one realization of
recurrent machine learning besides long short-term memory
networks or gated recurrent units [49,50]. Its fundamen-
tal element is the reservoir state vector ¥ € RMe  which
evolves from 7 to ¢ + 1 by a certain update equation charac-
terizing the approach. As indicated in the introduction, this
work compares three RCMs, algorithm C, a classical RCM
[44,45,48,51-53] with linear memory and nonlinear activa-
tion, see Eq. (10), algorithm H1, a hybrid quantum-classical
RCM [37] with classical linear memory and nonlinear quan-
tum dynamics, see Eq. (12), and algorithm H2, a full quantum
RCM which induces memory by reduced gate parametriza-
tion, see Eq. (14). Figure 4 illustrates the different quantum
circuits of H1 (left) and H2 (right). All algorithms run here
in the open-loop or reconstruction mode [54], where the
reservoir receives al, = (a}, d, a;) at each time step and
outputs the missing expansion coefficients at the next time
step, ait!l = @t ..., &ﬁ;olf) with Ngot = 16 for our study.
The hat symbol always identifies the network prediction in
the following. Note that in this scenario the reservoir receives
the coefficients corresponding to the large-scale fluid motion
while returning the small-scale features of the higher modes.

A. Classical reservoir computing algorithm

The classical algorithm C is characterized by the following
iterative equation for the reservoir state vector r¢ [45,48,55],

ridh = (1 — e)ri + e tanh [Wa, + W™rg]. (10)

where W' e RMes*Nes is the sparsely occupied random reser-
voir matrix and W™ € RMe*Nn is the random input matrix.
The scalar ¢ € [0, 1] is called leaking rate because it scales the
influence of the first memory term and the second dynamical
term. This discrete time stepping from snapshot ¢ to # + 1

. . . .
comprises external forcing by the inputs a; as well as a
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FIG. 3. Snapshot of two-dimensional convection flow. Panel (a), (c), and (e) show the temperature field T (x, 1), panels (b), (d), and (f) the

corresponding velocity vector field u(x, fy) = (u.(x, z, to),

u,(x, z, tp)). Panels (a) and (b) display the reconstruction by means of the first three

POD modes, panels (c) and (d) of the first 16 POD modes, and panels (e) and (f) display the full snapshot. (g) Cumulative spectrum of the
proper orthogonal decomposition. The shaded region indicates the chosen cutoff mode at Nyor = 16. The first three POD modes include 63%

of the total energy, the first 16 modes include 87%.

self-interaction with the reservoir state r{.. The hyperbolic
tangent tanh(-) is the nonlinear activation function, which is
applied to the elements of its argument vector. The reservoir
matrix W™ is specified further by the reservoir density D,
its sparsity, and the spectral radius o(W™*), the magnitude
of the maximum eigenvalue. The hyperparameters of the
classical RCM are thereby Ny, €, D, and o(W™). In all
reservoir computing models, the optimization is done directly
for the output layer only, which is represented by the matrix

— R feof @) o m) HEY
— By for m@ Lo m6) HEY
— Rl frot] @) o] w6 HEY
| Bl oy i) Foy ] meG) [EY
| By fedr i) eot] 2@ [EY
— Brlh) oy {BrEh)lior RG) HEY
— By edreol-ed] me HEY

O for 1=4.5,...
with 74, only

woutx ¢ RNouxNes The asterisk stands for the optimized ma-
trix after training, see Refs. [37,48] for the details. Also
there, the Tikhonov parameter y is explained further, which
is used as a prefactor of an additional penalty term in the
cost function. This hyperparameter is only applied in the
classical RCM.

To give an explicit example for the one-step reconstruction
mode in which the model will be used here: the classical RCM
utilizes Eq. (10) to calculate r" from rf. and &, with its three

—1mt(\/P1 o)l JI Ry (edf) I { Ry (eds) F‘E
—m.lt(\/ ) jo I Ry (edb) I b| Ry (o) ’—E
—unt( Pt ))i 4 I Ry (ea}) I o2 | Ry (e€r) H‘ﬂ
—fmit(\/Ph 1)) e Bl o mvid) |HEY
—Jimis pg,m)g S| Ry(cl) 1O By(cdy) %ﬂ
)1 ) ol mrcan HEY
—imit (\/Py)) S| Ry(cls) [P By (en) ’—ﬂ

- ofer =57,
with ¢ only

FIG. 4. Quantum circuits of the two applied hybrid quantum classical algorithms which represent the quantum computing version of the
reservoir. (left) Hybrid quantum-classical reservoir computing algorithm H1, which represents our previous approach of Ref. [37] with a new
hyperparameter / to denote the circuit complexity (or depth). (right) Hybrid quantum-classical reservoir computing algorithm H2 which we
in short denote to as the full quantum reservoir computing model. The new structure incorporates an efficient pseudo-initialization of the
last reservoir time step as well as an efficient memory implementation by the leaking rate &, which now scales the dynamical activation of
the approach without classical postprocessing. In both cases, every qubit of the quantum register starts in the basis state |0) to the left. Each
quantum circuit is shown for seven qubits and / = 3 layers of Ry rotation gate at a discrete time step ¢. The CNOT gates between the Ry gate
connect neighboring qubits and generate entanglement. Since this pairwise two-qubit operation is done successively over all qubits, one ends
up with a fully entangled seven-qubit quantum state. The tilde symbol indicates that the rotation gate arguments are rescaled to cover the

respective range, as given in the text. Also, in the right circuit diagram init(w) =
both panels stands for the measurement to read out the reservoir state.

Ry (2 arccos(w)). The last column of symbols (to the right) in
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components to obtain the estimate

~t+1 outx_f+1
ag, =Word, 11
with @4l = (a,t', ..., aF") in the present turbulent convec-

tion flow study.

B. Hybrid quantum-classical reservoir computing algorithm 1

The algorithm H1 follows the classical reservoir iteration
procedure (10) closely, but the update equation receives an-
other dynamical part. We introduced H1 in Ref. [37]. It is
given by

Al = — ey, +ep™! (12a)
with
2
P =0t = (e |U (¢, o riy) len) | (12b)

where |e;) is the jth basis vector of the n-qubit Hilbert space
C®" with a dimension N = 2". Furthermore, |e;) = |0)®"
is the n-qubit basis vector for which every of the n indi-
vidual qubits is in the base state |0). The quantum circuit

U(¢, d,, ry,) is parametrized with random values ¢, the cur-
rent input @ and the last reservoir state rf;;. We initialize
0

ry; as a uniform-amplitude probability vector at all entries,
which guarantees that rf;; will remain a probability vector for
all times 7.

The structure of the circuit is a repeated pattern of Ry
gates and separating CNOT-gate layers, where the arguments
of the Ry gates are the only difference between the layers.
The circuit always starts and ends with an Ry-gate layer, as
shown in Fig. 4 (left). As a new hyperparameter, we introduce
the depth [ as the amount of Ry-gate layers inside the circuit.
An Ry-gate layer applies an Ry-gate on every qubit, where
the arguments are scaled versions of the aforementioned vari-
ables. The random values ¢ vary in [0, 47r], the probabilities
riy, are multiplied by 7 to vary in [0, ] and the inputs a} are
rescaled to vary in [—m, r]. For example, the random values
¢ can build various unitary matrices, as the matrix definition
of the Ry (¢) gate is given by

_ (cos(/2)  —sin(g/2)
RY((p)_(sin(cp/Z) COS(w/z))' -

Note that the loading of the reservoir state and the dynami-
cal system modes by rotations into H1 and H2 introduces a
nonlinearity in the (linear) quantum dynamics.

The CNOT-gate layer uses n CNOT gates such that ev-
ery qubit is control and target qubit once. The specific
arrangement is random but fixed. We always assure that it
is impossible to separate any subgroup of qubits from the
remaining one; see Ref. [37] on the importance of the entan-
glement for the reconstruction quality measured by the mean
squared error. The sorting of the Ry gate arguments is such
that the last layer is filled with random values, all other layers
receive probabilities, and the first three entries in the second
layer are always the inputs. There are too many possibilities
to prove that this specific circuit construction is the optimum,
but we tested many architectures and chose the described one
due to its best overall performance.

C. Hybrid quantum-classical reservoir computing algorithm 2

The new hybrid algorithm H2 is modified such that the
complete execution on a quantum computer is enabled. It is
given by

rhl=pt, (14a)
with
p’]Jrl = p;;rl l(e;|U (e¢, ed} )|r’H2)| ) (14b)
An identity transformation is imposed by
U(0,0) = Iy. 5)

This is a consequence of the inclusion of the leaking rate ¢
in the arguments for H2, the major difference to H1. Further-
more, the approximate reservoir vector is

) = ®[

i=1

Pyloy+ /PLyIn] (16)

where P/|;, denotes the probability of measuring qubit i of
the whole n-qubit register in basis state |1) at reservoir time
step ¢. In other words, the two probabilities, 1 — z|1 and
P! |1 are the diagonal elements of the 2 x 2 density matrix o
Wthh is obtained by the following partial trace of the original
density matrix of the n-qubit state p’, which traces out all
qubits except qubit i. It is given by

imtitt,.n(P"). 17

In a quantum algorithm, this is realized by an individual
measurement at qubit i of the whole quantum register only.
We thus structure the circuit such that it is initialized by
a completely separable approximation of the last reservoir
state and thus ease the reservoir initialization at each step,
see Refs. [23,56] for alternative solutions to circumvent
this bottleneck in analog quantum reservoir computing. This
combines two advantages: It is a minimal initialization for
the quantum circuit with only n operations which contains
the integral information on the reservoir. Combined with the
adapted definition of the unitary U in Eq. (14), we include the
previously external memory in the quantum circuit iteration
step. That is, the dynamics will correspond to an identity
transformation, see Eq. (15), once the leaking rate is ¢ = 0.

Here, the structure of the quantum circuit starts with the
preparation of |7;,), which comes down to an Ry-gate layer
parametrized with the P/ 1)» as done in upcoming Eq. (23). The
following circuit layer has pairwise CNOT-gate layers, where
every second CNOT layer is the inverse of the first CNOT layer,
as indicated in the right panel of Fig. 4. Thereby, we satisfy the
central condition of Eq. (15), as Ry (0) = Z,. Beside the input
gates, all Ry gates are filled with random values ;. Further
details of the circuit are adopted from H1. Note however, that
the circuit ends with a CNOT layer for an even number of Ry
layers.

~1
o =Tro

D. Advantages of hybrid reservoir computing approaches

There are several aspects which motivate the presented
hybrid quantum-classical approaches H1 and particularly H2.
First, we want to investigate whether the nonlinear activation
of the quantum circuits is preferable over tanh(-) of Eq. (10).
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The inherent nonlinearity of product concatenations from the
unitary gates to larger matrices approximates the inherent
nonlinearity of the original flow problem, see the second term
on the left-hand side of Eq. (3).

Second, we note that for online processing of the data, we
can strongly reduce the required memory once the output of a
time step is generated. For instance, one needs to save the used
probabilities only, i.e., for H1 the r;“ and for H2 the Pl’ 1ys
to recompute the reservoir state at the subsequent time step
again. This would not be possible for the classical reservoir.
Especially for H2, this always means that for a reservoir
of size N, one keeps log,(N) values only to store sufficient
information of the reservoir evolution. If necessary, it is then
possible to reconstruct all 2" reservoir states in parallel.

Third, H2 is in contrast with H1 fully executable on a
quantum computer, as the leakage rate of the reservoir step
is included in the rotation gate parameters of the quantum cir-
cuit. Therefore, no external memory is required, cf. Eq. (12a)
for H1. Additionally, it might be possible to extend the present
scheme H2 to a multistepping approach on the quantum com-
puter if one implements the output weights as well. This could
be done by encoding the output on an ancilla qubit to either
measure it directly or insert it back for the next time step via
a rotation controlled by this ancilla qubit. Future work in this
direction might elaborate whether this approach can strongly
reduce the computational complexity in comparison to the
classical approach by reducing the number of sampling steps
(or shots) for multiple time steps in the hybrid case.

V. COMPARISON OF THE MODELS

A. Error quantification measures

To evaluate the reconstruction quality of the proposed
RCMs, we need appropriate error measures. The first standard
is the root mean squared error of the prediction. Since multiple
modes have to be reconstructed, we take the normalized error
with respect to each mode and combine the Ny, = 13 individ-
ual errors of the reconstructed modes to the normalized root
mean squared error (NRMS). This results in

1 Naof ;b:zl (a’] _ &;)2
ExrMS = — 18
NRMS NoutT N1 mtax (alj) _ Il’ltin (a‘tl) ’ ( )

where 7 = 1, — t, is the length of the testing phase (measured
in discrete time steps as discussed in Sec. III). The maxima
and minima are determined with respect to the time interval
[taa th]~

A second popular approach is the correlation error, also
known as the coefficient of determination, or R2-score, which
computes the correlation between the original and predicted
modes [23]. Here, we average the square of correlation, such
that the correlation error is given by

1 Nt cov(a;,a’j) g

. — I 19)
out U(“/)U(aj)

Here, o(-) is the standard deviation and cov(:,-) the co-

variance of the arguments. Note that by the square of the
correlation, we value anticorrelation as much as positive

ECO[T =1-
=N

correlation, thus 0 < Eqor < 1. Strongly correlated time se-
ries send E., — 0. Both error measures are applicable to
any dynamical system. However, in the present work, we
consider a turbulent flow; the RCM application is focused
to reconstructed statistical properties, as motivated in the in-
troduction and in Sec. II. Such properties can be the mean
vertical profiles of the velocity components or the temperature
field.

Therefore, we define an additional measure which is
directly related to the low-order statistical reconstruction re-
sults, the normalized average relative error (NARE), which
has been used in classical RCM applications [48,57] and is
given by the L; norm,

1! N
Enare = / [(u.T )y — (0. )y, |dz, (20)
max J0

with the normalization constant

Cmax = 2 max |<MZT>X,Z|- (21)
z€[0,1]

Here, i, and T are the reconstructed flow values which are
obtained by the proper orthogonal expansion (POE) from the
modes &’j. As the convective heat flux is prone to the error
of two fields; it is a suited measure of the accordance of the
inferred convection flow. We compare these three errors for
the hybrid quantum RCMs H1 and H2 in Fig. 5 as a function
of the reservoir size controlled by the qubit number » and for
different amplitude encoding methods, which will be detailed
in the next section.

First, it can be observed that E,, is relatively large with
a minimum for eight to nine qubits. The reason is that the
accurate reconstruction of the POD modes is difficult as fre-
quent deviations of the time series & from the ground truth are
inevitable in this higher-dimensional, turbulent flow problem.
In contrast with low-dimensional dynamical systems, such as
the Lorenz model, a reservoir computing model will not re-
construct the exact systems trajectory in the high-dimensional
phase space with a sampling time step of 0.25¢¢, but generate
a trajectory which gives the right low-order statistics. This is
even the case for the classical RCMs [45,48,52,57]. Thus it is
not appropriate to optimize the network on the basis of Ec;.
Particularly weak correlations are not directly linked to the
dynamical quality of the reconstruction.

Second, we observe from the figure that both Engms and
Enare grow eventually with a large qubit number n. However,
it can be observed that particularly for eight, nine, and ten
qubits, the physical error Exarg improves by almost one order
of magnitude while Exgrms remains relatively constant and
insensitive. We thus conclude that while the accuracy of the
reconstructed modes is difficult to improve further, the physi-
cal properties of the flow are more sensitive. Thereby, for most
of the remaining analysis, we continue our RCM evaluation
with Exarg only because it is the physically relevant measure
for the fluid-mechanical application of the quantum algorithm.

B. Different amplitude encodings of classical data

Besides the hyperparameters, which will be discussed fur-
ther below, the quantum circuits need to encode the classical
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FIG. 5. Comparison of three error measures, which are defined in Egs. (18)—(20) and three amplitude encoding methods, which are defined
in Egs. (22)—(24) for both hybrid RCM cases, H1 and H2. They are termed R, R, and R3. Here, each data point is the median obtained from ten
different random reservoir seeds ¢. The hyperparameters / and ¢ are optimal in each case. For the optimization, 2 </ < 7and 0.05 < e < 1.
We trained for 5000 and evaluated on the subsequent 500 discrete time steps.

input data a'.. This can be realized in different ways. We
discuss the following three amplitude encoding methods:

a, - 1-a?
Ry :=Ry[2cos™" (Ez;)] = ,
1 —a'’? a
J J
(22)
T a  —\J1-4
R2 = Ry[ZCOS ( Clt])] = | — p s
J J
(23)

L) —sin (wd,

) >) o
j) cos (na j)

The tilde symbol in the equations indicates, again, that the in-
put mode a’]- needs to be rescaled such that it only varies in the
interval [— 1, 1]. Encoding R; ensures that Zz’j is the component
of the corresponding qubit, while encoding R, reveals (”1’j after
a measurement. Encoding Rj3 is a natural encoding inside the
Ry gate, where we only rescale the input to harness the largest
but still unique range of the trigonometric functions.

Each approach induces a specific nonlinear characteristic
and the superiority of each encoding may change for different
learning tasks. We come back to Fig. 5 where we plotted all
three error measures versus qubit number # for R; to R3. The
error measure Exgys shows an approximate independence on
the specific encoding scheme for n < 9 for both H1 and H2.
Only for the larger qubit numbers R3 performs best. In the case
of Exagre a local minimum can be observed for each encoding
scheme. All three amplitude encodings have their optimum at
a magnitude of approximately 1072, This is obtained for R,
and R, already at a smaller number of eight qubits. Again, for
the lower reservoir dimensions of n = 6 and n = 7 all errors
are of the same order of magnitude. As already said, for the
largest reservoir dimensions, the error increases, similar to
Exrwms, for n > 10. In conclusion, we do not fix the specific

amplitude encoding for the following analysis, but use it as a
further degree of freedom to be optimized.

C. Hyperparameter dependence

Table I summarizes all hyperparameters that appear either
in the classical or in the hybrid quantum-classical RCMs. The
hyperparameters, which exist in the quantum case only, are
the circuit layer depth [/ and the type of amplitude encoding.
The latter was already discussed in the past section. Joint
parameters of the classical and quantum case, which will be
studied in the following, are the reservoir size N, and the
leaking rate . We also mention at this point that all studies
for H1 and H2 are conducted with the IBM Qiskit statevector
simulator where the measurements are not subject to shot
noise [58].

We train all cases for 5000 output time steps and validate
the trained network on the subsequent 500 output time steps.

1. Quantum circuit layer depth

The quantum circuits H1 and H2 can be parametrized by
the number of Ry layers [ and the positions of the CNOT gates.

TABLE 1. List of hyperparameters for the classical and both
hybrid quantum-classical algorithms. The number of used qubits
follows by n = log, (Nrs) in H1 and H2. The hyperparameters, which
are not plotted, in the figures are always pre-optimized; that is, we
take the optimal values such that the single-best representation is
illustrated.

Algorithm Hyperparameter Symbol
Classical Reservoir density D
Spectral radius p(Wres)
Tikhonov parameter y
Quantum (H1,H2) Circuit layer depth l
Input encoding R;
Joint Reservoir size Nres

Leaking rate

™
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FIG. 6. Evaluation of the NARE as a function of circuit depth
[ for the hybrid quantum cases H1 and H2. Each data point is the
median of Enagrg, obtained from ten random reservoir seeds, using
the optimal leaking rate ¢ and optimal input amplitude encoding. In
nearly all cases, the optimal values are ¢ = 0.2 and R, for the input
encoding.

The latter aspect showed no significant influence during our
analysis; that is, the performance of both algorithms is rela-
tively constant as long as all qubits are connected, as described
in Sec. IV B. Meanwhile, the depth of the circuit is of interest
because it is directly proportional to the computational effort
of the approach, i.e., the number of operations, as well as the
realizability on real quantum computers. Figure 6 displays the
dependence of Exarg on the layer depth for H1 and H2. We
collect the results for n = 7, 8, 9, and 10. Except for n = 10,
the overall trend of the error Enagg is a decrease with growing
circuit depth /. For n = 10, we observe a clear advantage of
H2 compared with H1. For n = 8 and n = 9, the cases H1
and H2 perform similarly well, almost at their optimal error

measure. We finally mention that the median was taken over a
rather small number of different reservoir realizations.

2. Reservoir size and leaking rate

In Fig. 7, we show the median of Exagrg in dependence on
the leaking rate ¢ for different reservoir sizes N5 = 2". For
all points, we averaged here over 100 seeds for C and 10 seeds
for H1 and H2, while all other parameters are pre-optimized;
that is, we choose the optimal spectral radius p(W™*) and
the Tikhonov parameter y in the classical RCM case, the
optimal input encoding R; and the amount of layers / in the
hybrid quantum-classical cases. We choose this optimum such
that the single-best median is illustrated for the respective ap-
proach and reservoir size. We observe that H1 and H2 seem to
outperform the classical approach for qubit numbers n < 10.
The global optimum, i.e., the minimal amplitudes of ENare,
are obtained for the new architecture H2 at n = 9, although
the other RCMs can perform similarly well if the reservoir is
large enough.

D. Statistical analysis of the reconstructed fields

Of particular relevance in turbulent convection is the mean
vertical convective heat flux profile, which is the one-point
correlation of the vertical velocity component and the temper-
ature field, (1,7 (2)),;, see Sec. I B. It is a measure of the
amount of heat transported by fluid motion from the bottom
of the layer to the top of the layer. Such a vertical profile
is more difficult to reconstruct, as it combines the statistics
of two reconstructed fields. In addition, we monitor the root
mean square profiles of the velocity components and the tem-
perature. These are essential low-order statistical properties of
the flow at hand. They are also important when the turbulence
cannot be modeled down to the smallest physically relevant
scale and has to be parametrized. This is the case for subgrid-
scale parametrizations in global circulation models, e.g., in
atmospheric turbulence [41].

We illustrate in Fig. 8 the single best reconstruction of each
RCM model combined with the mean statistical profiles of the

n==a6 n=717 n=3~, n=9 n=10 n=11
10°
—x—-H1
H2
——C T
m |
e 107 X
B~ i | \ \ i
i o 0_9.9.@‘6‘@’9'9’?’( \ SHHRHHK
) Db ,(x.xxx*x**xxxx ¥ M xx"*xx
X
X%/( \
5 )Xx x-,;x.xxx‘ D
10 xﬁf{‘
0.1 05 09 0.1 05 09 0.1 05 09 0.1 0.5 09 0.1 05 09 0.1 05 0.9
g > 3 € (> g

FIG. 7. Comparison of the error Exarg for the convective heat flux (u,T),, versus the leaking rate . We show the results for the three
reservoir computing approaches C, H1, and H2 and for different reservoir sizes 2". Displayed are the median values for 10 seeds with H1 and
H2 and 100 seeds for C. The optimum of each curve is the single-best median for the respective approach at the given reservoir size. Note that
the best classical reservoir performance is achieved at substantially larger reservoir sizes (n = 11) as compared with the quantum algorithms

(n = 8 for H1 and n = 9 for H2).
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FIG. 8. Single-best reservoir computing results for N, = 3. We compare the ground truth (GT) with a classical reservoir computing model
(C) with N,s = 2048 and the hybrid quantum-classical quantum algorithms (H1, H2) with N, = 512 and six layers in both cases. All networks
output 500 time steps. Panels (a) display the time series of modes as(?) to ag(?). Panels (b) show vertical mean profiles of essential low-order

statistical measures. These are the thermal variance (6"), ;, the horizontal velocity fluctuations (uf)l_/,z, the vertical velocity fluctuations (1),

and the convective heat flux (u,T),,.

flow. We evaluated the previous grid search over the hyperpa-
rameters for the single best results. Figure 8(a) displays the
reconstructed time series of four POD expansion coefficients
from C, H1, and H2 in comparison to the ground truth (GT).
It is seen that the curves are not followed exactly, but that the
overall trends and thus the low-order statistics are represented
well. Note that this is not only for the case for H1 and H2 but
also for C. Illustrated are the best cases for the physical error
measure Enarg. In other words, we optimized for the lower
part of the figure.

The mean convective heat flux profile in the rightmost
panel of Fig. 8(b) is the most sensitive, which is the reason
why we utilized it for the hyperparameter optimization. This
statistical correlation is connected to the hot rising and the
cold falling plumes which are visible in Fig. 3(e). Figure 9
displays finally the spatial reconstruction of velocity and heat
flux fields for all three cases. We find that both quantum
algorithms, as well as the classical counterpart, produce sta-
tistical profiles that are in good accordance with the ground
truth, for both, the root mean square profiles of the velocity
components and temperature as well as for the convective
heat flux. This demonstrates the applicability of the hybrid
quantum-classical reservoir computing model as a reduced-
order model in combination with the encoder-decoder module
in the form of POD or POE, respectively.

VI. FINAL DISCUSSION

Two central objectives can be given for the present proof-
of-concept study. First, we wanted to extend the application
of hybrid quantum-classical reservoir computing algorithms

172

towards more complex classical dynamical systems. Start-
ing with the well-known Lorenz 63 benchmark case and its
extension to eight degrees of freedom in Ref. [37], we in-
creased here the complexity of the task to be learned further
by proceeding to a furbulent convection flow at the same
geometry and Prandtl number as in the Lorenz cases, but at
a significantly higher Rayleigh number (the latter of which
measures the driving of the flow by buoyancy forces). We
integrated the quantum circuit therefore into a combined
encoder-decoder—reservoir computing pipeline which has to
be used as well when classical machine learning is applied to
turbulent flows [44], see again Fig. 1. Since the phase space
of the Rayleigh-Bénard system is higher-dimensional and
thus the dimensionality of the turbulent attractor, the reser-
voir computing algorithm is only able to predict low-order
turbulence statistics rather than exactly following a specific
dynamical systems trajectory for a longer time. But this is ex-
actly the task that we had in mind, reproducing second-order
statistics, such as the convective heat flux, in a data-driven
model without solving the full nonlinear partial differential
equation system of Rayleigh-Bénard convection.

The second objective is related to the modified architec-
ture of H2 in comparison to H1. We have compared both
hybrid quantum-classical algorithms with respect to various
hyperparameters and found that they mostly perform equally
well for the reconstruction tasks. Nonetheless, the update of
the circuit architecture H2 can be evaluated completely on
a quantum computer, which enables further steps of the hy-
brid algorithm on the quantum device and avoids additional
external memory as H1. Additionally, the simulation with
the circuit architecture H2 can be realized more efficiently
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FIG. 9. POD reconstruction based on the latent space variables in Fig. 8. We show the horizontal and vertical velocity fluctuation fields, u;
in panels (a), (d), (2), and (j) and . in panels (b), (e), (h), and (k). Furthermore, the local convective heat flux . T is displayed in panels (c),
(), (i), and (1). The fields of the classical reservoir algorithm reconstruction are shown in panels (d)—(f), while the quantum algorithm results
for HI and H2 are shown in panels (g)—(i) and (j)—(1), respectively. For comparison, the ground truth, i.e., the POD model, is shown in panels
(a)—(c). It can be seen that both quantum reservoirs, as well as the classical counterpart, reproduce well the spatial features of all three fields of

the ground truth (GT).

than the one for H1 once the layer depth is ! > 3. The
reason is that in H2 every operation that follows the input
encoding can be summarized to one precomputable matrix
which acts on the time-dependent inputs. This is not possible
for the architecture H1, as further subsequent circuit layers
also have to be filled with the time-dependent components
of the probability amplitude vector p’. We also investigated,
if a random value encoding which is used in H2 works for
the original hybrid algorithm H1, but it was found that this
method strongly impairs the performance of H1. Therefore it
can be concluded that H2 is a more efficient implementation
of the reduced-order model of the turbulent convection flow
by means of a hybrid quantum-classical reservoir computing
algorithm; it is comparable to the best-case scenarios of the
classical reservoir computing approaches which however need
at least twice as large reservoirs in the present case, see Fig. 7.
In future applications, this could reduce the numerical effort
for both, hyperparameter optimization and production runs.

The demonstration of the capabilities and potential of the
present framework, but also its current limitations, has to our
point of view its value for following studies in this subject in
the future applied to realistic fluid flow problems.

A first open point for our future work is to solve the sam-
pling problem. We used the ideal Qiskit statevector simulator
for both algorithms H1 and H2, which circumvents the crucial
problem of approximating the necessary probabilities [58]. A
deeper analysis of this aspect shows that the computational
overhead to approximate the probabilities, both, for the best
cases of HI and H2, is big. In detail, more than 22 samples
(or shots) are necessary for comparable results. This seems
to damp the prospects for an application on current noisy
intermediate-scale quantum devices. However, a repetition of
the hyperparameter grid search with sample-based probabili-
ties and the additional implementation of weak measurements
as in Ref. [22] might ease this problem. Furthermore, it has
to be evaluated if the hybrid reservoir computing approach
can be further scaled up to more vigorous turbulence, i.e.,
flows at higher Rayleigh number. This would imply a higher
dimension of the latent data space and possibly a different
encoding-decoding scheme, see Refs. [44,45] for the classical

cases. These investigations are going on and will be reported
elsewhere.
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APPENDIX: QUANTUM COMPUTING BASICS

In this Appendix, we summarize some basic definitions of
quantum computing. Further details can be found in the text-
book of Nielsen and Chuang [36] or a review by Bharadwaj
and Sreenivasan [11]. While a single classical bit can take
two discrete values only, namely {0, 1}, a single quantum bit
(in short, qubit) is a superposition of the two basis states of
the vector (or better Hilbert) space C2. This is sometimes
illustrated as an arbitrary point on the surface of the so-called
Bloch sphere (a unit sphere). One writes

lg1) = c1l0) + eall) = q(é) +c2<(1’),

with ¢1, ¢, € C and (|¢1]? + |c2/*)'/? = 1. Vectors |0) and |1)
are the basis vectors in Dirac notation [36]. A qubit can be
considered as the simplest quantum system. In other words,
the qubit can be consequently found in infinitely many su-
perposition states, all the points that fill the surface of the
unit sphere. It is the building block of an n-qubit system, also
denoted as an n-qubit quantum register. They are formed by
successive tensor products of qubits. For example, a two-qubit
state vector is the tensor product of two single-qubit vectors,

(A2)

(AD)

lg1) ® I4}) € C* ® C2.

The basis of this tensor product space is given by four
vectors: |j;) = 10) ® 10), [j2) = [0) ® [1), |j;3) = [1) ®0),
and |j,) =11) ®[1). An n-qubit quantum state |W¥) is
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TABLE II. Logical table of CNOT gate.

Input Output
Control Target Control Target
I90) lg1) Iq0) lg1)
|0) 0) 10) |0)
0) 1) 10) 1)
1) 10) 1) 1)
1) 1) 1) |0)

consequently an element of a 2"-dimensional tensor product
Hilbert space H = (C?)®". The state vector is given by

2" 2"
W) = cili) with D lef* = 1.
k=1 k=1

An n-qubit state vector is called fully separable if it can be
written as a tensor product,

W) = Xlg:).
i=1

where |g;) are single qubit quantum states given by Eq. (A1).
It is called separable if a tensor product decomposition of
|¥) into blocks is possible with at least one multiqubit quan-
tum state |g;) that is not fully separable. Multiqubit quantum
states which are not separable are called entangled. An n-
qubit quantum state is called fully entangled if no subspace

(A3)

(A4)

of separable qubits exists. Fully entangled quantum states
are characterized by correlations which do not classically
exist. The entanglement is a unique property of quantum
computing; it is supposed to be responsible for the quan-
tum advantage of some quantum algorithms with respect to
their classical counterparts, such as prime factorization [36],
as single qubit operations act nontrivially on a large quan-
tum state and produce global parallel processing by a single
computational step.

The time evolution of a quantum state is described by a
unitary transformation,

W) (1) = U ()| W) (0) with U (1) = U@t)". (A5)
Elementary unitary transformations are supplied by quantum
gates, for example, rotations of a single qubit. Note that they
are reversible transformations. The Ry rotation gate is defined
by Eq. (13) in Sec. IV B. A second central gate is the con-
trolled NOT gate (in short CNOT) which connects two qubits.
It represents a flip of the target qubit once the control qubit
is in state |1). The logical table of the two-qubit CNOT gate
is shown in Table II, which can be transformed into a 4 x 4
unitary matrix. Rotation and CNOT gates are elementary gates
which are composed to quantum circuits that are required for
the input of the classical data into a quantum algorithm as
well as for the unitary evolution of the same. The quantum
version of the reservoir is composed of exactly these gates.
The readout of information is done by a measurement process
which causes the collapse of the n-qubit quantum state.
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