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We present a new automated method for finding integrable symplectic maps of the plane. These dynamical
systems possess a hidden symmetry associated with an existence of conserved quantities, i.e., integrals of motion.
The core idea of the algorithm is based on the knowledge that the evolution of an integrable system in the phase
space is restricted to a lower-dimensional submanifold. Limiting ourselves to polygon invariants of motion, we
analyze the shape of individual trajectories thus successfully distinguishing integrable motion from chaotic cases.
For example, our method rediscovers some of the famous McMillan-Suris integrable mappings and ultradiscrete
Painlevé equations. In total, over 100 new integrable families are presented and analyzed; some of them are
isolated in the space of parameters, and some of them are families with one parameter (or the ratio of parameters)
being continuous or discrete. At the end of the paper, we suggest how newly discovered maps are related to a
general 2D symplectic map via an introduction of discrete perturbation theory and propose a method on how to
construct smooth near-integrable dynamical systems based on mappings with polygon invariants.
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I. INTRODUCTION

Integrable systems play a fundamental role in mathematics
and physics, particularly in dynamical system theory, due
to well-understood dynamics. Integrability is generally de-
fined as the existence of a sufficient number of functionally
independent conserved quantities (integrals of motion) in in-
volution, which are related to intricate hidden symmetries.
Hence, in many cases the construction of integrable systems
often requires some special fine-tuning. This makes them
very difficult to discover. Although integrable models occupy
measure-zero in the space of parameters, they play a crucial
role in the theory of dynamical systems. In fact, they shed
light on the properties of more generic near-integrable cases
via Kolmogorov-Arnold-Moser (KAM) theorem and various
perturbation theories.

While the concept of integrability is most often discussed
in the context of continuous-time systems, it also arises in
discrete-time maps [1]. Mappings are of profound importance
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in the field of dynamical system theory exhibiting a broad
range of behaviours including dynamical chaos, bifurcations,
strange attractors, and integrability [2]. On the one hand, they
can be used as an approximation of a continuous flow (since
in many cases the discretized form can be easier to study)
or, on the other hand, as a reduction to a lower-dimensional
manifold, e.g., considering Poincaré cross-sections.

A particularly valuable class of discrete dynamical systems
are symplectic maps, associated with Hamiltonian flows, e.g.,
a 2D area-preserving map is equivalent to a Hamiltonian sys-
tem with 1 degree of freedom and a potential energy that is
periodic in time. Symplectic maps arise as effective models in
a wide range of domains, such as celestial mechanics, plasma
hydrodynamics, fluid flows, and particle accelerators [3].

Although area-preserving maps of the plane have been
studied for decades, only a handful of integrable cases have
been discovered. The existence of integrals of motion restricts
phase space dynamics to a set of nested tori. Any discovery
of novel integrable maps is highly nontrivial and historically
has been accomplished by scientists making inspired guesses
and applying relevant analytical tools. In many cases, even
the proof of the integrability of a specific mapping is quite
challenging.

An automated search for integrable systems remains
a nontrivial task: Only a few successful examples exist
to date where machine-assisted searches resulted in new
discoveries in nonlinear dynamics. For example, computer-
assisted searches combined with high precision simulations
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found new families of periodic orbits in a gravitational three-
body problem [4–6]. Recent works utilized machine-learning
methods to discover integrals of motion of classical dynami-
cal systems from phase space trajectories, e.g., Refs. [7–10].
These examples employed a computer-assisted search to ei-
ther discover new families of trajectories or to rediscover
previously known invariants of motion in integrable systems.
In contrast, our algorithm has found previously unknown in-
tegrable symplectic maps, advancing the theory of integrable
systems.

In this paper, we propose and describe this new algorithm
for discovering area-preserving integrable maps of the plane.
While scanning over a large space of potential candidate
maps, our algorithm traces out individual orbits and subse-
quently analyzes shapes of invariant manifolds. We restricted
our search to the family of mappings which possess inte-
grals of motion with a polygon geometry, thus constraining
our search to piecewise linear transformations of the plane.
Piecewise linear mappings could be regarded as the simplest
possible dynamical systems with rich nonlinear dynamics,
which makes them an attractive model to study. They could be
viewed as fundamental building blocks of generic integrable
symplectic maps. An arbitrary smooth 2D symplectic map
could be approximated as an n-piece piecewise linear map,
but only in the uniform sense, see Sec. VI B. By applying
a machine-assisted search, we found over a hundred new
integrable mappings; some of them are isolated in the space
of parameters, and some of them are families with one param-
eter (or the ratio of parameters) being continuous (∈ R(+)) or
discrete (∈ Z(+)).

The structure of this article is as follows. In Sec. II we
provide a historical overview of integrability of symplectic
mappings of the plane. In Secs. III and IV we review lin-
ear integrable mappings produced by one- and two-piecewise
linear force functions. At the end of Sec. IV we introduce
new nonlinear integrable maps with polygon invariants, and
in Sec. V we propose an algorithm for the machine-assisted
discovery of integrable systems with more complicated force
functions. Section V B presents the main results of our search,
and finally, in Sec. VI we discuss some practical applications
of mappings with polygon invariants. In Appendix A, we pro-
vide the connection between systems discovered in this article
and some of the ultradiscrete Painlevé equations [11,12]. The
pseudocode for the search algorithm and list of integrable
cases are placed at the end of the article in Appendices B
and C.

II. 2D SYMPLECTIC MAPPINGS AND
INTEGRABILITY: HISTORICAL OVERVIEW

The most general form of an autonomous 2D mapping of
the plane, M : R2 → R2, can be written as

q′ = F (q, p),

p′ = G(q, p),

where ′ denotes an application of the map, and F and G are
functions of both variables. If the Jacobian of a 2D map,
J ≡ ∂qF ∂pG − ∂pF ∂qG, is equal to unity, then the map
is area-preserving and thus also symplectic (for higher

dimensional mappings, area-preservation is necessary but not
sufficient for a map to be symplectic). A map is called inte-
grable in a Liouville sense [13] if there exists a real-valued
continuous function K(p, q) called an integral of motion (or
invariant), for which the level sets K(p, q) = const are curves
(or sets of points) and

∀ (q, p) ∈ R2 : K(p′, q′) = K(p, q).

The first nonlinear symplectic integrable map of the plane
was discovered by E. McMillan [14] when he studied a spe-
cific form of the map

q′ = p,

p′ = −q + f (p), (1)

where f (p) will be called the force function. We will refer
to this mapping as the McMillan-Hénon form or the MH form
for short (please do not confuse with McMillan integrable map
[14], which is a special case when f (p) is given by a ratio of
two quadratic polynomials).

At first, the choice of the MH form (1) might look very
restrictive and unmotivated. McMillan’s original idea was
based on its simplicity and clear symmetries (which will be
described in detail below), which still allowed some degree
of freedom in modifying the dynamics by varying f (p). As
it was demonstrated later by Turaev [15], almost every sym-
plectic map of the plane (and even 2nD symplectic map) can
be approximated by iterations of MH maps. In this article,
we will restrict our consideration to this form; however, our
results can be easily generalized to different representations
of the map.

Below we summarize several important results regarding
the integrability of mappings in a McMillan-Hénon form:

(1) First, the family of integrable mappings of the plane
in the MH form were discovered by McMillan [14] for a
biquadratic invariant in the form

(I) : K(p, q) = A p2q2 + B (p2q + p q2)

+ � (p2 + q2) + � p q + E (p + q),

corresponding to the force function

f (p) = B p2 + � p + E

A p2 + B p + �

and integrable for any values of parameters A, B, �, � and E
[Fig. 1(a)].

(2) Later, Suris [16] studied the integrability of a differ-
ence equation in the form

xn+1 + xn−1 = f (xn),

referred to as the Suris form of the map (sometimes referred
to as the standard type). The Suris form of the mapping has
a clear physical interpretation, since in the continuous-time
limit it takes the form of a 1D Newton equation ẍ = f (x) −
2 x, where the right hand side plays the role of a mechanical
force. Mapping in the Suris form is just another representation
of the MH form by setting qn = xn and pn = xn+1 (one can
think of an analogy between the Lagrangian approach with
a single differential equation of the second order, and the
Hamiltonian approach with two differential equations of the
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(a) (b) (c)

(d) (e) (f)

FIG. 1. Invariant level sets, K(p, q) = const, for integrable map-
pings in the MH form. McMillan-Suris mappings I–III, respectively,
panels (a)–(c), with A, �, �, �1,3 = −�2 = 1 and B, E, ψ, φ = 0.
Brown-Knuth map (d) along with McMillan beheaded (e) and two-
headed (f) ellipses. All mappings are shown for the range q, p ∈
[−2, 2]. The dashed and solid dark green lines show the first and
second symmetry lines.

first order, e.g., see Ref. [13]). Suris proved that for analytic
force functions f (p) and K(p, q), the invariant of the inte-
grable mapping can take only one of the following forms:
(I) biquadratic function of p and q (McMillan map), (II)
biquadratic exponential or (III) trigonometric polynomial:

(II) : K(p, q) = A eα peα q + B (eα p + eα q)

+ � (eα pe−α q + e−α peα q)

+ � (e−α p + e−α q) + E e−α pe−α q,

(III) : K(p, q) = �1 (cos[ω p − ψ] + cos[ω q − ψ])

+ �2 cos[ω (p + q) − φ]

+ �3 cos[ω (p − q)].

Maps (I–III) are integrable for any choice of parameters, see
some examples with invariant level sets in Figs. 1(a)–1(c).
Results by Suris greatly reduce possible forms of f (p) cor-
responding to integrable cases.

(3) In 1983, Morton Brown proposed an interesting prob-
lem in the section “Advanced Problems” of Amer. Math.
Monthly [17].

6439. Let {xn} be a sequence of real numbers satisfying the
relation xn+1 = |xn| − xn−1. Prove that {xn} is periodic with
period 9.

One can notice that this map is in the Suris form (so it can
be written in the MH form as well) with f (p) = |p|.

In 1985, the solution by Slifker was published in Ref. [18]
with a comment below:

Also solved by the proposer and sixty-one others. The
problem turned out to be rather elementary.

Despite its “simplicity,” the map has proven to be interest-
ing for dynamical system theory, combinatorics and topology.
10 years later, in 1993, Brown extended his results to the
formal publication [19]. He reconsidered the equation as the
homeomorphism of the plane and provided a geometrical
proof of periodicity including a description of the polygon

invariant of motion [see Fig. 1(d)]:

K(p, q) = q + |p − |q − |p||| + |q − |p − |q|||
+ |q − |p|| + |p − |q| + |q − |p − |q||||.

Knuth, who provided his own combinatorical proof of period-
icity, wrote a letter to Brown:

When I saw advanced problem 6439, I couldn’t believe that
it was “advanced”: a result like that has to be either false or
elementary!

But I soon found that it wasn’t trivial. There is a simple
proof, yet I can’t figure out how on earth anybody would
discover such a remarkable result. Nor have I discovered any
similar recurrence relations having the same property. So in a
sense I have no idea how to solve the problem properly. Is there
an “insightful” proof, or is the result simply true by chance?

While quite often this map is referred to as Knuth map,
we would like to call it Brown-Knuth map to acknowledge all
contributors.

(4) Finally, in his original article [14], Edwin McMillan
suggested another intricate integrable system with a piecewise
quadratic invariant and a piecewise linear force function

K(p, q) =
{

p2 + a p q + q2, p, q � 0,

p2 − a p q + q2, otherwise,

and

f (p) =
{

a p, q < 0,

0, q � 0,

where a ∈ R is an arbitrary coefficient. He referred to the cor-
responding invariant level sets as beheaded and two-headed
ellipses, see Figs. 1(e) and 1(f). As we will see in Sec. IV A 2,
this map as well as the Brown-Knuth map are examples
of more general integrable systems with the force function
f (p) = a p + b |p| and invariants being a collection of el-
lipses, hyperbolas and straight lines (segments).

(5) Last, we should mention a special class of finite dif-
ference equations, which are integrable (in the sense that they
admit a Lax pair representation), known as discrete Painlevé
equations. Discrete Painlevé equations are closely related to
integrable symplectic maps of the plane. We discuss the con-
nection in Appendix A.

Several properties of MH mappings (1) which will help us
understand and interpret further results are:

(1) A map in the MH form is symplectic for any continu-
ous f (p).

(2) The map M in the MH form is reversible with the
inverse

M−1 :

{
q′ = −p + f (q),
p′ = q.

(3) For any map with f (p) there is a twin map with the
mirrored force function − f (−p), so that their dynamics are
identical up to a rotation of phase space by an angle of π ,
(p, q) → −(p, q). Thus, we will omit twin maps unless it is
necessary.
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(4) An MH map can be decomposed into two transforma-
tions M = F ◦ Rot(π/2), where

Rot(π/2) :

{
q′ = p,
p′ = −q,

F :

{
q′ = q,

p′ = p + f (q),

with Rot(θ ) being a rotation (about the origin by an angle θ ):

Rot(θ ) :

[
q′
p′

]
=

[
cos θ sin θ

− sin θ cos θ

][
q
p

]
and F being a thin lens transformation. The name “thin
lens” comes from optics and reflects that the transforma-
tion is localized so coordinates remain unchanged, q′ = q,
and momentum (or angle in optics) is changed according
to location, �p ≡ p′ − p = f (q). Both transformations are
area-preserving and symplectic. This decomposition is very
important and explains the physical nature of the map repre-
senting a particle kicked periodically in time with the force
f (q). A general model of kicked oscillators includes famous
examples of Chirikov map [20,21], Hénon map [22], and
many others. In particular, this decomposition is often em-
ployed in accelerator physics; a model accelerator with one
degree of freedom consisting of a linear optics insert and a
thin nonlinear lens (such as sextupole or McMillan integrable
lens) can be rewritten in the MH form.

(5) An MH map can be decomposed into the superposition
of two transformations M = G ◦ Ref(π/4), where

Ref(π/4) :

{
q′ = p,
p′ = q,

G :

{
q′ = q,

p′ = −p + f (q),

with Ref(θ ) being a reflection about a line passing through the
origin at an angle θ with the q axis

Ref(θ ) :

[
q′
p′

]
=

[
cos 2θ sin 2θ

sin 2θ − cos 2θ

][
q
p

]
and G being a special nonlinear vertical reflection. Transfor-
mation G leaves the horizontal coordinate invariant, q′ = q,
while a point is reflected vertically with respect to the line
p = f (q)/2, i.e., equidistant condition

p′ − f (q)/2 = f (q/2) − p

is satisfied.
Both reflections are anti-area-preserving (the determinant

of Jacobian is equal to −1) and are involutions, i.e., a dou-
ble application of the map is identical to transformation
Ref2(θ ) = G2 = I2. In addition, each reflection has a line of
fixed points: p = q for Ref(π/4) (further referred to as the
first symmetry line) and p = f (q)/2 for G (further referred to
as the second symmetry line); see Fig. 2.

(6) Fixed points of the map are given by the intersection
of the two symmetry lines and always in I or III quadrants:

p∗ = q∗ = f (q)/2.

(7) Two-cycles (if any) are given by the intersection
of the second symmetry line p = f (q)/2 with its inverse
q = f (p)/2 (so the intersection is always in the II and IV
quadrants). Additionally, if f (p) is an odd function, then two-
cycles are restricted to antidiagonal p = −q.

(8) Finally, the last and most important property we would
like to list here: any constant invariant level set of an in-
tegrable MH map (either a point, set of points, closed and

FIG. 2. Two constant level sets K(p, q) = const for the chaotic
Hénon map, f (p) = a p + b p2. The black curve shows a closed
trajectory encompassing the origin and the gray curves show a set
of islands (i.e., under iterations, points hop from island to island
covering the closed gray curves labeled i1–i5). While the first (reflec-
tion) symmetry is quite obvious from the figure, we will focus on the
second one. The upper branch of the blue curve, �(q), is vertically
equidistant from the lower branch, �−1(q). Island i3 satisfies the
second symmetry in the same manner as does the blue curve. Islands
i1 and i2 satisfy the symmetry in a sense that they are vertical
reflections of islands i5 and i4, respectively (e.g., the lower part of
i1 is equidistant from the upper part of i5 and the upper part of i1
is equidistant from the lower part of i5). The dashed and solid green
lines are the first and second symmetry lines.

open curves, or even collection of closed curves representing
islands) is invariant under both reflections, Ref(π/4) and G.
If f (p) is an odd function, then invariant level sets possess
additional symmetry K(p, q) = K(−p,−q), meaning that the
map coincides with its twin.

Invariance under these transformations results in two geo-
metrical consequences, first noticed in relation to integrability
by McMillan [14]. First, invariant level sets are symmetric
with respect to transformation Ref(π/4):

K(p, q) = K(q, p).

Second, nontrivial symmetry with respect to transformation
G is

K(p, q) = K(−p + f (q), q).

To understand how this symmetry works, let us consider
a closed invariant curve K(p, q) = const encompassing the
fixed point (black curve in Fig. 2). Solving implicit equa-
tion K(p, q) = const for p results in two roots p = �(q) or
p = �−1(q), which correspond to the upper or lower branches
in Fig. 2. Next, using the mapping equation (MH form of map)
the reader can verify that the following important condition
holds:

f (q) = �(q) + �−1(q). (2)
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The condition (2) implies that the symmetry line p = f (q)/2
“splits” closed curve K(p, q) = const into two halves: the
upper �(q) and lower �−1(q) branches with the endpoints lo-
cated at ∂q�(q) = ±∞. For each value of q where K(p, q) =
const is defined, the upper and lower parts are equidistant from
the second symmetry line

f (q)/2 − �(q) = �−1(q) − f (q)/2.

McMillan wrote in regards to this condition: “This is a
remarkable result, of startling simplicity, which fell out almost
without effort on my part. It leads to not just one, but to great
families of functions f (p) giving regions of stability. It also has
a simple geometrical interpretation.”

Here we would like to make two comments. (i) The origin
of these two symmetries is due to the reversibility of sym-
plectic maps [23]; any symplectic map with an inverse can be
decomposed into two involutions similar to a map in the MH
form with the integral of motion being invariant under both
transformations. (ii) Both symmetries also hold for survived
invariant tori in chaotic maps. Figure 2 illustrates symmetry
properties for two classes of survived tori in Hénon map: a
closed curve and a set of islands.

III. ONE-PIECE MAPS

In this section, we will consider mappings in the MH form
with f being a simple linear function, f (q) = k q. We will
refer to such mappings as one-piece maps or mappings with
linear force function, purposely avoiding the term “linear
map.” We will reserve the term linear map (in contrast to
nonlinear map) to refer to the independence of dynamics on
amplitude (i.e., the rotation number is independent on am-
plitude for all stable trajectories); mappings in the MH form
with nonlinear force function can possess linear dynamics. To
avoid confusion, we will follow the terminology established
above. As we will see, all one-piece maps are integrable and
linear.

A. Polygon maps with integer coefficients

According to crystallographic restriction theorem [24,25],
if A ∈ SL(2,Z) and An = I2 for some natural n ∈ N, where
I2 = diag (1, 1) is an identity matrix, then the only possible
solutions have periods n = 1, 2, 3, 4, 6, which corresponds
to one-, two-, three-, four-, and six-fold rotational symmetries.
Transformations with a period n = 1, 2 are simply ±I2, which
can be considered as special cases of the rotation of the plane,
Rot(θ ), through the angles equal to θ = 0 or π , respectively.
Three other cases, n = 3, 4, 6, are given by mappings in the
MH form

α :

{
q′ = p,
p′ = −q − p,

β :

{
q′ = p,
p′ = −q,

γ :

{
q′ = p,
p′ = −q + p,

further referred to as α, β, and γ , respectively, and, with
invariant polygons being concentric triangles, squares, and
hexagons (see Fig. 3).

B. Fundamental polygons of the first kind

To understand the nature of invariant polygons from crys-
tallographic restriction theorem, we first will consider a more

FIG. 3. Integer mappings with linear force function and polygon
invariants α, β, and γ (we use the same naming convention as
Refs. [26,27]). Note that the invariant triangle was modified to satisfy
both symmetries. Each figure shows one invariant polygon, with each
colored region i being mapped to region i + 1. Here n is the period
and ν is the rotation number of the map, which represents the average
increase in the angle per map iteration. The dashed and solid dark
green lines show the first and second symmetry lines.

general one-piece map in the MH form

q′ = p,
(3)

p′ = −q + k p,

where parameter k ∈ R is not restricted to integers. This map
is known to be integrable with quadratic invariant of motion
[14]

K(p, q) = p2 − k p q + q2.

Mapping (3) is unstable for |k| > 2, that results in level sets
of the invariant being hyperbolas. However, the mapping is
stable for |k| < 2 with level sets corresponding to a family
of concentric ellipses; see Fig. 4. Within the parameter range
corresponding to stable maps, the rotation number ν is inde-
pendent of the amplitude and given by ν = arccos(k/2)/(2π ).

Thus, one can see that if arccos(k/2) is incommensurate
with π , the motion is quasi-periodic, and according to Kro-
necker’s density theorem, iterations starting from the initial
condition (q0, p0) will result in points densely covering the
ellipse K(p, q) = K(p0, q0). However, if arccos(k/2) is com-
mensurate with π , then the motion is strictly periodic and ν

becomes a rational number. As a result, point (q0, p0) will
return to its initial position after a finite number of iterations
and will not depict an ellipse. In fact, linear mappings with
rational ν are more than integrable, they possess superinte-
grability, meaning that they have more than one functionally
independent invariant of motion K(p, q).

For example, for each map with rational ν ∈ Q, one can
construct two sets of polygon invariants by iterating an initial
point starting on the first, p = q, or second, p = k q/2, sym-
metry lines and using iterations as vertices (Fig. 5). We will
refer to such polygons as first and second sets of fundamental
polygons of the first kind; first or second sets refer to the
position of the initial point on the first or second symmetry
lines, respectively, and “the first kind” refer to the fact that the
force function consists of one piece only. In the case of even
period, two sets of polygons are actually different while for
odd period sets, polygons are identical up to rotation by an
angle π , (q, p) → (−q,−p). In the former case, the first set
of polygons has no vertices on the second symmetry line (and
two vertices on the first symmetry line) while the second set
has no vertices on the first symmetry line (and two vertices on
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FIG. 4. Constant level sets of invariant for one-piece map in the MH form, K(p, q) = p2 − k p q + q2 = const. For |k| < 2 the level sets
are ellipses, for |k| > 2 the level sets are hyperbolas and for |k| = 2 they are parallel lines. The dashed and solid green lines are the first and
second symmetry lines.

the second). In the latter case, both sets of polygons have a
single vertex on each symmetry line.

The only integer values of k corresponding to stable map-
pings (|k| < 2) are k ∈ {−1, 0, 1}. For each integer value of
parameter k, the value of arccos(k/2) (respectively, 2π/3,
π/2, and π/3) is commensurate with π , thus proving that
maps α, β and γ are the only stable one-piece maps in the
MH form with integer coefficients.

In addition, for |k| = 2 invariant level sets are straight lines.
We will denote these mappings as “a” for k = 2 and “b”
for k = −2. While being unstable, both maps have polygonal
chains (connected series of line segments, in this case just the
line itself) as its invariant. In the following sections, we will
see that unstable and stable polygon maps can be combined
together to form more complicated systems.

IV. TWO-PIECE MAPS

A. Linear mappings

1. Polygon maps with integer coefficients

Another remarkably interesting result is given by CNR
Theorem (Cairns, Nikolayevsky, and Rossiter [26,27]). Sup-
pose that M is a periodic continuous mapping of the plane
that is a linear transformation with integer coefficients in each

FIG. 5. Fundamental polygons of the first kind for different val-
ues of rotation number ν. Each plot shows the invariant ellipse
K(p, q) = p2 − k p q + q2 = const (black) and two invariant funda-
mental polygons inscribed into it (blue and red). The dashed and
solid green lines correspond to the first and second symmetry lines.

half plane q � 0 and q < 0. Then M has a period

n = 1, 2, 3, 4, 5, 6, 7, 8, 9, or 12.

All maps discovered by Cairns and others are in the MH
form with force function consisting of two linear segments

f (q) = q ×
{

k1, q < 0,

k2, q � 0.
(4)

In addition to previously described one-piece maps (trivial
cases k1 = k2) with n = 1, 2, 3, 4, 6, now we have five more
mappings with n = 5, 7, 8, 9 (Fig. 6). These maps are stable,
linear and integrable, with polygons being their invariant sets,
and denoted with capital Latin letters D–H. Note how Cairns,
Nikolayevsky, and Rossiter rediscovered the Knuth map, H,
from the first principles.

2. Fundamental polygons of the second kind

Similar to the case of one-piece mappings, to understand
the origin of polygon invariants we should consider a less
restricted map, corresponding to force function (4):

q′ = p,

p′ = −q + k1 + k2

2
p + k2 − k1

2
|p|, (5)

FIG. 6. Integer mappings with two-piece force function and
polygon invariants D–H (named after [26]). Each figure shows one
invariant polygon, with each colored region i being mapped to the
region i + 1. Here n and ν are the period and rotation number of the
map. The solid and dashed dark green lines show the second and first
symmetry lines.
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FIG. 7. The plane of parameters (k1, k2 ) for two-piece maps. The
dashed lines show the area of global stability, p, q < 2 ∧ p q < 4:
the map can be stable (but not necessarily) only within the area of
stability, shown in white. The solid curves show all lines of “constant
topology” passing through integer nodes (k1, k2) ∈ Z2 within the
stable zone: the red line corresponds to a single ellipse k1 = k2,
blue lines corresponds to two ellipses (McMillan beheaded and two-
headed ellipse) k1,2 = 0, green lines refer to three ellipses defined by
k1,2 = 1 and purple and brown hyperbolas are k1k2 = 2 and k1k2 = 3,
respectively. Integer nodes corresponding to stable mappings with
polygon invariants are shown in black, unstable mappings with an
invariant being a polygonal chain in purple, and the remaining integer
nodes within the global region of stability are shown with crosses
(unstable maps with invariant consisting of hyperbolas).

where parameters k1,2 ∈ R. This is a very nontrivial dynami-
cal system considered in great detail in Refs. [28–31]. Here,
we will provide some results contributing to our understand-
ing of polygon maps.

(1) Map (5) is integrable.
(2) Map (5) is linear, i.e., there is no dependence of the

rotation number on the amplitude. Since we are free to choose
units of p and q, using scaling transformation (ε > 0)

q′ = ε q,

p′ = ε p,

one can reconstruct dynamics on any ray of initial conditions
(starting at the origin) from a single trajectory.

(3) Dynamics of map (5) can be either stable or unstable
depending on the values of k1,2, that creates a nontrivial fractal
area on the stability diagram (see Ref. [28] for more detail).
While we are not considering the fine structure of the fractal
area, we would like to note that all pairs (k1, k2) resulting in
stable mappings are within the area defined by (Fig. 7)

p, q < 2 ∧ p q < 4 for p, q < 0.

Stable maps are either periodic when the rotation number ν is
rational or quasi-periodic for irrational ν.

(4) The invariant of motion is a combination of segments
of ellipses, straight lines or hyperbolas “glued” together and

defined by

C1 p2 + C2 p q + C3q2 = const.

In the plane of parameters (k1, k2) there are lines of constant
topology. Along these lines, the number of segments remains
constant.

(5) For example, the simplest case corresponds to the fam-
ily of one-piece maps, k1 = k2, (red line in Fig. 7). As we
learned above, in this case the phase space consists of only
one ellipse (or two sets of hyperbolas conjugate to each other)
defined by

K(p, q) = p2 − k1 p q + q2.

As we move along the line k1 = k2, the ellipses bifurcate into
hyperbolas at k1 = |2| and the trajectories lose stability.

(1) The next line of constant topology is given by k2 = 0
and line k1 = 0 corresponding to a family of twin maps, see
blue solid lines in Fig. 7. This is the aforementioned beheaded
and two-headed ellipses discovered by McMillan with the
invariant defined by two ellipses glued together:

K(p, q) =
{

p2 + k1 p q + q2, p, q � 0,

p2 − k1 p q + q2, otherwise.

Here is his explanation on how this map works: In an earlier
paragraph a promise was made that cases could be constructed
with boundaries that more than double valued. I shall now
fulfill the promise by describing a procedure by which this can
be done. Take any known case with a center of symmetry at
the origin, and erase the part of the boundary lying in the
+, + quadrant. Replace f (q) by f (q) = 0 to the right of the
origin. Fill in the erased part of the boundary by reflecting
the part in the +, − quadrant about the q axis. The resulting
completed boundary is an invariant under the transformation
with the original f (q) to the left of the boundary, and f (q) =
0 to the right. Starting with ellipses, we can get beheaded
ellipses (first row of Fig. 8, case 0 < k1 < 2) or double headed
ellipses (first row of Fig. 8, case −2 < k1 < 0), and here we
see a four-valued function acting as an invariant boundary.
Note that to have only two ellipses as invariants of motion,
the second ellipse has to be added to the +, + quadrant (or
to −, − quadrant for twin maps with k1 = 0). Otherwise, an
addition of an ellipse into the +, − quadrant will result in its
reflection in the quadrant −, + (due to the first symmetry line
p = q), making the number of ellipses equal to three. In the
case when the second segment of the force function has zero
slope, k2 = 0, the map in Eq. (5) is stable for |k1| < 2 (see first
row of Fig. 8). For the slopes k1 = ±2 the invariant level sets
become polygonal chains with one- and threefold symmetries,
respectively. When stable, the rotation number is given by

ν = arccos(k1/2)

π + 2 arccos(k1/2)
.

As in the case k1 = k2, when arccos(k/2) is commensurate
with π , we have a rational rotation number ν ∈ Q resulting
in a periodic map. The only integer values of k1 satisfying
this condition are k1 ∈ {−1, 0, 1} (mappings F, β, and G,
respectively).

In fact, this line of constant topology is just one of many
defined by k2 = 2 cos(π/n) for n � 2. On each line the map is
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FIG. 8. Invariant level sets along lines of constant topology for a two-piece map in the MH form. The first and second rows illustrate the
transformation of the invariant for cases k2 = 0 and k2 = 1 (blue and green lines in Fig. 7). The three left plots in the third row show bifurcation
along hyperbola k1k2 = 2 and the three right plots are for k1k2 = 3 (purple and brown hyperbolas in Fig. 7). The solid and dashed green lines
are the second and first symmetry lines.

stable for |k1| < 2, it produces a polygonal chain as invariant
for k1 = ±2 and when stable, has a rotation number

ν = arccos(k1/2)

π + n arccos(k1/2)
.

Along each line of constant topology, the invariant consists of
n ellipses (hyperbolas) with n − 1 of them in the first quarter.

Among these lines, there is another line we should focus
on: case n = 3 with k2 = 1 (and twin k1 = 1). As we can see,
in addition to line k2 = 0, this is the only line with integer k1.
The invariant of motion is

K(p, q) =

⎧⎪⎨
⎪⎩

p2 − (2 − k1)(p q − q2), p > q > 0,

(2 − k1)(p2 − p q) + q2, 0 < p < q,

p2 − k1 p q + q2, otherwise,

second row of Fig. 8. From this line we have two more map-
pings with polygonal chain (k1 = ±2) and three periodic maps
with integer coefficients (k1 = −1, 0, 1, i.e., maps α F and H).

(1) As one can notice, lines k1 = k2 and k1,2 = 0, 1 are
covering most integer nodes (k1, k2) ∈ Z2 within the area
of global stability (see Fig. 7). The remaining nodes belong
to two lines of constant topology from the family given
by k1k2 = 4 cos2(π/(2n)) with k1,2 < 0 and n � 2. Those
lines are for n = 2 and 3. Along those lines, the map is al-
ways stable and periodic with the rotation number ν = (2 n −
1)/(4 n). The invariant of motion consists of segments of
(2 n − 1) different ellipses: the central ellipse, (n − 1) ellipses
in II quadrant, and another (n − 1) in IV quadrant (placed
symmetrically with respect to p = q). For example, for n = 2
the invariant is

K(p, q) =

⎧⎪⎨
⎪⎩

p2 − (
4
k1

− k1
)

p q + (
4
k2

1
− k1

)
q2, p > q > 0,(

4
k2

1
− k1

)
p2 − (

4
k1

− k1
)

p q + q2, 0 < p < q,

p2 − k1 p q + q2, otherwise.

Third row of Fig. 8 illustrates this case. For k1,2 = −1 from
lines n = 2, 3 we have two remaining periodic maps with
integer coefficients, E and D.

Thus, similar to the case of the one-piece map (degenerate
line k1 = k2), we can define fundamental polygons of the
second kind: for each line of constant topology, its stable maps
with a rational rotation number are degenerate and have more
than one invariant of motion including polygons. In contrast
to the case k1 = k2, when we had two sets of polygons, now
we only have a single set of fundamental polygons. These
polygons have two vertices on the second symmetry line for
maps with an even period or a single vertex on both symmetry
lines for odd periods. Figure 9 shows a few examples of this
degeneracy illustrating fundamental polygons of the second
kind inscribed in an alternative invariant set of ellipses. Note
that the first example is for the Brown-Knuth map showing an
alternative three-headed ellipse which is also an invariant of
motion.

FIG. 9. Shapes of fundamental polygons of the second kind cor-
responding to different families of maps represented in Fig. 7. Each
plot shows invariant ellipses (black) and invariant polygons inscribed
into it (red). From left to right: line k2 = 1 for k1 = −1 (Brown-
Knuth map, H), line k1k2 = 2 for k1 = −1, line k1k2 = 3 for k2 = −3
(map E). The dashed and solid green lines correspond to the first and
second symmetry lines.
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FIG. 10. Integer linear mappings with two-piece force function
and polygon invariants (stable and unstable maps). The black poly-
gons (or polygonal chains for unstable mappings) show constant
level sets of the invariant, red level sets are separatrix for unstable
mappings with stable periodic dynamics, and the green line is the
second symmetry line.

3. Ingredients of mappings with polygon invariant

Hereby, one can see that there is one condition and two
mechanisms determining polygon shapes (including unstable
mappings with the invariant level set being a connected se-
ries of line segments—nonintersecting polygonal chains). The
condition is that the force function f should be in a piecewise
linear form that follows from the second symmetry: the sum of
vertically opposed polygon sides is proportional to the value
of the force function. The two mechanisms are:

(1) Superintegrability in linear maps. The rational rotation
number causes degeneracy when more than one invariant of
motion exists, including polygons (e.g., fundamental poly-
gons of the first and second kind).

(2) Loss of stability. Ellipses are transitioned to hyperbolas
via the straight lines in linear two-piece maps, e.g., see cases
|k1| = 2 for the first two rows in Fig. 8.

These mechanisms are respectively responsible for stable
and unstable polygons. As we will see further, more com-
plicated nonlinear mappings with polygon invariants can be
constructed, but at lower [(q, p) → 0] or higher amplitudes
[(q, p) → ∞], they reduce to one of the already described
transformations; we will observe that both mechanisms can
be combined in one map resulting in very nontrivial dynamics.
Below, in Fig. 10 we illustrate all integer linear mappings with
two-piece force function and polygon invariants (stable and
unstable).

B. Nonlinear mappings

Here we begin our exploration of nonlinear symplectic
mappings. So far we considered only mappings with force
function in the form (4). The simplest modification we can

(a) (b)

(c) (d)

FIG. 11. Zoo maps: Gingerbreadman (a), Rabbit (b), Octopus
(c), and Crab (d) mappings. The light and dark gray areas represent
alternating zones of instability which are sectioned by two families
of concentric invariant polygons resembling animals. Within each
zone of instability there are three different scenarios. First, orbits
that result from initial conditions (q0, p0 ) within any gray zone such
that both q0, p0 ∈ Q. Those are stable orbits with an exact periodic
motion and rational rotation number resulting in an invariant set
of points. The second scenario includes all other initial conditions
within the gray zones with any or both q0, p0 being irrational, q, p0 ∈
R \ Q. Those are chaotic orbits never returning to initial conditions
and densely covering the zone of instability. The third and last sce-
nario is for any initial condition within the colored regions of phase
space. Those are chains of linear islands; the initial condition from
these regions of phase space hops from island to island of the same
group (each group is shown with its own color related to the relative
orbit period). Such initial condition returns to itself and the motion is
strictly periodic with the rotation number being mode-locked within
the island. To view an “animal” you must rotate each image 135
degrees clockwise.

make is to add a constant shift parameter, d:

f (q) = k1 + k2

2
q + k2 − k1

2
|q| + d.

The map becomes nonlinear and we cannot reconstruct dy-
namics along the ray of initial conditions using scaling
transformation (q, p) → ε(q, p), ε > 0. Instead, now we have
a choice of natural units ε = d , and one can show that without
the loss of generality for two-piece maps, d can be restricted
to ±1 or 0.

The introduction of d not only adds the dependence on
amplitude, but might result in a loss of integrability causing
chaotic behavior. A famous example is the Gingerbreadman
[32] map—a chaotic two-dimensional map in the MH form
with f (q) = |q| + 1 (see first plot in Fig. 11). The remarkable
property of this map is that some invariant tori survived pertur-
bation and after deformation remained polygons. The chaotic
dynamics is sectioned by concentric polygons making this
map the simplest model for area-preserving twist mappings
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FIG. 12. Integer nonlinear integrable maps with polygon invari-
ants and two-piece force function. The top and bottom rows of the
figures show level sets of the invariant for d = ∓1. The middle row
shows cases for d = 0, and, in each column the transformations
have the same slopes k1,2 as for d = 0 (see Fig. 10); note that the
invariant level set of the outer nonlinear layer at the large amplitude
is asymptotic to the level set of the corresponding map. The black
(blue) level sets are linear (nonlinear) trajectories. The red level
sets represent the separatrix isolating the inner linear from the outer
nonlinear layers. The green line shows the second symmetry line,
p = f (q/2).

with zones of instability. It shares many properties of the
smooth mappings and has an advantage of having an exact
arithmetic on rational numbers. Another mapping we would
like to mention here is the Rabbit map for f (q) = |q| − 1. To
the best of our knowledge, this map has not been mentioned
before, but we are certain that Robert Devaney, the discoverer
of Gingerbreadman, knew about it due to the close connection
between the maps (second plot in Fig. 11).

1. Zoo mappings

After reading the article of Cairns, Nikolayevsky, and
Rossiter [26], our first idea, which predetermined discover-
ies made in this article, was to produce objects similar to
Devaney map using newly discovered mappings D–G. First
we tried mapping D, and amazingly, it worked! We intro-
duce two new dynamical systems, the Octopus and the Crab
mappings for f (q) = |q| − 2q ± 1, respectively [33] (last two
plots in Fig. 11). Informally, we grouped them together with
the Rabbit and Gingerbreadman, and, called them zoo maps.
The mappings are again chaotic and “sectioned” by infinitely
many concentric invariant polygons. The basic dynamics of
these maps are described in the caption to Fig. 11.

2. Nonlinear integrable maps with polygon invariants

When d = ±1, not all mappings experience chaotic be-
havior like Gingerbreadman or zoo maps. Unexpectedly,
transformations E, F, and G produced nonlinear integrable
systems with polygon invariants if the vertical shift parameter
d is added [33] (see Fig. 12). Since d �= 0, the fixed point
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FIG. 13. Flowchart representing the machine-assisted discovery
of integrable maps. The algorithm verifies if the map defined by the
input (0) is integrable with the invariants being concentric polygons.
If the map has a fixed point (1), then the algorithm performs tracking
for different initial conditions (2), and if all orbits are bounded (3),
then it proceeds to the construction of orbit polygons via ordering
(4). Finally, after counting the number of vertices V (5), if for each
polygon V < V cutoff , then the map is sent for analytic verification.
The search process terminates when any conditional operation is
false (NO).

moves from the vertex to one of the linear pieces (depending
on the sign of d) of the force function. As a result, the area
of mode-locked motion around the fixed point is formed with
the invariant level sets being triangles, squares, hexagons or
line segment p = −q with period 2 for map b0. For larger
amplitudes, the motion is still integrable, but the rotation
number becomes amplitude dependent (trajectories shown in
blue). The inner linear and outer nonlinear layers are separated
by a separatrix matching the dynamics (shown in red). The
dynamical properties for all mappings are listed in Table I as
functions of amplitude along q axis x.

V. MACHINE-ASSISTED DISCOVERY OF INTEGRABLE
MAPS WITH POLYGON INVARIANTS

After discovering six nonlinear polygon maps shown in
Fig. 12 and performing a few more numerical experiments,
we realized that the force function can be further generalized
to have n > 2 linear segments, potentially producing new
families of integrable systems. To automate the search, we
designed a relatively simple algorithm that finds integrable
mappings based on the analysis of individual trajectories; first,
we verified some of its principles in Ref. [34], and then we
significantly modified it and performed an extensive search.

A. Search algorithm

The detailed pseudocode of the search algorithm is pre-
sented in Appendix B and its Python implementation is
available at Ref. [35]. The algorithm is illustrated via
flowchart in Fig. 13 and its blocks with processes and deci-
sions are described below.
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TABLE I. Dynamical properties of integer nonlinear integrable mappings with polygon invariants and two-piece force function. Here ν0 is
the rotation number in the inner linear layer, ν1, J1, and J ′

1 are, respectively, rotation number, action, and partial action in the outer nonlinear
layer, x is the linear amplitude in a nonlinear layer defined as the horizontal or vertical distance from the separatrix to the trajectory under
consideration.

Map ν0 ν1 J1 J ′
1

b0 1
2

1+3x
2+8x 4x2 + 2x 3

2 x2 + x

α1 1
3

1+3x
3+8x 4x2 + 3x + 1

2
3
2 x2 + x + 1

6

α2 1
3

1+2x
3+7x

7
2 x2 + 3x + 1

2 x2 + x + 1
6

β1 1
4

1+2x
4+7x

7
2 x2 + 4x + 1 x2 + x + 1

4

β2 1
4

1+x
4+5x

5
2 x2 + 4x + 1 1

2 x2 + x + 1
4

γ 1 1
6

1+x
6+5x

5
2 x2 + 6x + 3 1

2 x2 + x + 1
2

0. Input. We decided to focus on piecewise linear forces
with integer coefficients, f (q, k, l, d ) with integer vectors k, l
and d . While we performed a scan only for integer slopes k,
we were able to analytically generalize some of the results for
more general values of the shift parameter d ∈ R and lengths
of segments li ∈ R+.

1. Fixed point. For a map to be stable, i.e., all phase space
orbits are bounded, it should have at least one fixed point ζ ∗ =
(q∗, p∗). Mappings that do not have a fixed point, ∀ q ∈ R :
q �= f (q)/2, are out of scope.

2. Tracking. If a map is selected, then we trace out its
orbits ζ = (ζ1, . . . , ζN ) for different initial conditions ζ0 =
(q0, p0).

3. Stability. Mappings with a fixed point still can have
unstable trajectories at larger amplitudes. If for some initial
condition we detect an unbounded growth of the radial dis-
tance from the fixed point, ∃ i : |ζi − ζ ∗| > rmax, then the map
is excluded from further analysis.

4. Ordering. At the next stage, the points of each individ-
ual trajectory are ordered according to their polar angle φ =
arctan [(p − p∗)/(q − q∗)], such that the angle φ is mono-
tonically increasing. After arranging the trajectory points
according to φ we join the consecutive points resulting in an
orbit polygon.

5. Vertex count. To count the number of vertices, V ,
for each orbit polygon we use scalar products of two
vectors built on three consecutive points (v1 = ζi − ζi−1

and v2 = ζi+1 − ζi),

V =
∑

i

θ (αi − 1), αi = v1 · v1

|v1||v2| ,

where θ (x) = 1x>0 is a Heaviside step function. In numeric
experiments, when v1 ‖ v2, the normalized scalar product
might be slightly different from unity, so a small cutoff pa-
rameter should be introduced, ε < |(v1 · v2)/(|v1||v2|) − 1|.

6. Vertex cutoff. At the final stage we are left with stable
integrable or chaotic maps which we would like to separate.
The key insight is that we are looking for transformations
with all invariant tori being polygons and assume that the
phase space consists of concentric layers; in each layer the
orbit polygons have the same finite number of vertexes which
remains bounded when increasing the number of iterations
N → ∞. Conversely, for a chaotic trajectory, the number of

vertices linearly grows with the number of iterations, V =
O(N ). Such drastic difference in the growth of V with the
iteration number allows us to automatically separate between
the two cases. In a numeric experiment, we check that for all
initial conditions the number of vertices is bounded by some
cutoff parameter, V < V cutoff � N .

In addition, for each mapping found by the search al-
gorithm, we manually verify the McMillan integrability
condition, thus rigorously proving their integrability. Al-
though the search algorithm described here is quite powerful,
there are some caveats to bear in mind:

(1) Maps with strongly nonconvex layers of polygon in-
variants can be missed by the algorithm. In cases when the
orbit polygon is not convex with respect to the fixed point
(q∗, p∗), the points of the trajectory cannot be ordered ac-
cording to the polar angle. While we do not have a particular
example, we should keep it in mind.

(2) Inside integrable nonlinear layers fibrated with poly-
gons there are two types of orbits: those with rational and
those with irrational rotation numbers. The latter are quasi-
periodic with the entire polygon being densely covered.
However, the former are strictly periodic with the orbit vis-
iting only a finite number of points, thus potentially showing
a smaller number of vertexes. All rotation numbers within a
layer are in the form ν(q0) = (α + β q0)/(γ + δ q0), where
α, β, γ , and δ are integer parameters. To avoid periodic orbits
which complicate the analysis, we can add a small irrational
perturbation η to all initial conditions, q0 → q0 + η. In fact,
from this formula, one can see that in numeric experiments all
observed orbits are periodic. This is not a problem as long
as the period is sufficiently large compared to the number
of polygon sides, so the points of orbit visit all sides of the
polygon covering them densely enough.

(3) Finally, while we’ve been only looking for maps with
invariant layers being concentric polygons, while phase space
can involve polygon islands. In the case of completely mode-
locked islands (linear islands) with all orbits visiting each
island only once, our algorithm will successfully handle this
case. But in the case of nonlinear islands (i.e., a trajectory
visits sequentially each island under iterations and traces out
invariant tori around centers of islands) our algorithm indeed
will fail; as in the case of nonconvex polygons, the points of
orbit cannot be arranged by the polar angle since now they are
a multiple valued function.
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B. Search results

To construct more complex piecewise linear symplectic
maps one can add more segments to the force function f .
When the number of segments is equal to three, in total we
have four parameters: three slopes k1,2,3 and a shift parameter
d . By performing the rescaling of coordinates, one can see that
without loss of generality, the length of the middle segment
can always be assumed to be equal to one. In addition, unlike
the case of the two-piece force function when d = 0,±1, now
the shift parameter belongs to reals.

For the force function with four pieces, the addition of
an extra segment results in a total of six parameters: four
slopes k1,2,3,4, shift parameter d and ratio r = l2/l3; the scale
transformation allows us to normalize one of two finite pieces
(l2 or l3) to unity so only one of them is independent.

We performed the search for three- and four-piece integer
force functions using our algorithm across a wide range of the
parameter values. The integer valued slopes of the segments of
the force function are selected from the range −10 � ki � 10
and the shift parameter −50 � d � 50. In the case of four-
piece maps, the ratio of the lengths of segments were selected
in the range r ∈ [1/10, 1/9, . . . , 1, 2, . . . , 10]. However, the
search space can be further reduced when relying on our prior
knowledge about the properties of piecewise linear mappings
with two segments, which approximate a generic n-piece map-
ping at small or large amplitudes. Since integer two-piece
maps with polygon invariants are confined to −3 � k1,2 � 2,
the values of the slopes of the outer segments can be restricted
to the same range. Similarly, in the vicinity of the fixed point
(q∗, p∗) the mapping behaves as a single-piece or two-piece
map (depending on whether the fixed point belongs to the
segment of the force function or coincides with one of the
vertexes separating adjacent segments) allowing reduction of
possible values of k1,2.

The values of the shift parameter d and the length ratio r
are less restrictive, because they are only responsible for the
position of the fixed point. While we performed a scan only

for integer d and r we were able to analytically generalize
some of these results for d ∈ R and r ∈ R(+).

Figure 14 presents most, but not all, mappings discovered
by the search algorithm. They are grouped by a similarity
of dynamics around the fixed point while arrows are pointed
toward systems with more segments in f , thus showing hier-
archy. The values of parameters for all discovered systems are
listed in Appendix C.

VI. APPLICATIONS OF MAPPINGS
WITH POLYGON INVARIANTS

A. Near-integrable systems

Since the force function is piecewise linear and is not
smooth (not differentiable at a discrete set of points), it might
seem that these polygon mappings are somewhat impracti-
cal. However, the polygon mapping can be smoothed using
some parameter ε. Below we will demonstrate how one can
construct not integrable, but quasi-integrable systems. One of
the possible ways to perform this was first done by Cohen
[36,37] in an application to the Brown-Knuth map (map H)
by introducing a new force function as

f (q) =
√

q2 + ε2 →
ε→0

|q|.

As one can see, it tends to |q| as ε → 0 or at large amplitudes
as q → ∞. Figure 15 shows a comparison between Cohen
and Brown-Knuth maps. Looking at the tracking results, one
can see that new f (q) produces a system with surprisingly
regular behavior. However, detailed numerical experiments
reveal multiple island structures at small scales [see Fig. 15
case (c)], indicating that an analytic invariant does not exist.

Thus, in a similar manner, one can first rewrite a general
n-piece linear function using one linear and (n − 1) modulus
function in the form ki|q − qi| where qi is a location of ith
vertex, then substitute all modulus with square roots ki|q −
qi| → ki [(q − qi )2 + ε2]1/2, resulting in f (q):

n = 2 :
k1 + k2

2
q + k2 − k1

2

√
q2 + ε2 + d →

ε→0
d + q ×

{
k1, q < 0,

k2, q � 0,

n = 3 :
k1 + k3

2
q + k2 − k1

2

√
q2 + ε2 + k3 − k2

2

√
(q − 1)2 + ε2 − k3 − k2

2
+ d →

ε→0
d + q ×

⎧⎨
⎩

k1, q < 0,

k2, 0 � q < 1,

k3, q � 1,

. . . . . . .

Figure 16 shows examples of how the “smoothening” pro-
cedure can be used to produce new nearly integrable systems.
More importantly, in addition to being near integrable, these
mappings are stable since the limiting polygon at larger am-
plitudes provides an isolating integral.

Note that from a practical standpoint, the fact that produced
systems are quasi- and not exactly integrable is not a problem
as long as ε is sufficiently small and the chaotic formations are
within the needed tolerances. Even if a system is originally
designed as integrable, small errors (e.g., rounding errors
for simulations, or tolerance errors for physical experimental
setups) will destroy integrability on a small scale. Also, the

square root function is only one of the infinitely many ways
of smoothing the force function (e.g., one can use arctan, tanh
or others) and is used here as an example.

B. Discrete perturbation theory

Finally, knowledge of all possible integrable mappings
with polygon invariants will not only help to construct
new near integrable systems, but to understand the dy-
namics and phase space of more general nonintegrable
mappings with smooth f (p). This can be done by discretiz-
ing f (p) by a piecewise linear function; so we have a
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FIG. 14. Most (but not all) mappings discovered by an algorithm: one- through four-piece force functions. Maps are organized by dynamics
around the fixed point; systems with the same rotation number around the fixed points are presented in the same solid box. The dashed boxes
indicate that the map belongs to a discrete or continuous family.

perturbation theory where the order is determined by the
number of pieces and the smallness parameter is defined by
the smallest piece of the force function. To demonstrate the
idea, we provide a comparison of a phase space for chaotic
quadratic

f (p) = a q + q2

and cubic Hénon maps

f (p) = a p + q3

around specific resonances (ν = 1/4 and stop band ν = 1/2)
and corresponding polygon maps. As one can see in Fig. 17
below, even low order approximations can reveal important
qualitative dynamical features, including the shapes of trajec-
tories in phase space and the topological structure of the phase
portrait.

An interesting observation can be made looking at the
smaller alignment index (SALI) color maps. SALI is an
indicator (alternative to traditional maximal Lyapunov expo-
nent) distinguishing between ordered and chaotic motion [38].
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(a) (b) (c)

FIG. 15. The left plot (a) illustrates invariant level sets for the
Brown-Knuth map, force function f (q) = |q|. The middle plot
(b) displays invariant level sets for the Cohen map, f (q) = √

q2 + 1.
The right plot (c) again provides invariant level sets for the Cohen
map, but on a different scale showing one of the island structures.
The level sets for Cohen map are obtained by tracking. The green
curve is the second symmetry line p = f (q)/2.

As one can see, there is a significant area around a fixed
point with almost the same color (white). It means that in
this area the motion is quasi-integrable and almost linear (a
very small variation of the rotation number). One can note that
this area resembles a separatrix of the inner linear layer from
the corresponding polygon map; thus, we learn that linear
dynamics in the inner layer of the integrable polygon map is
not just a consequence of an oversimplified discretization of
the force function, but a reflection of actual dynamics—the
negligible spread of rotation numbers. In contrast to smooth
perturbation theory when in zeroth order we have an el-
lipse K(p, q) = p2 − a p q + q2, here we have a polygon with
degenerate motion. While in both approaches the rotation
number is independent of amplitude, discrete perturbation the-
ory gives a better boundary of the linear area when the system
is close to some resonant condition, while smooth perturba-
tion theory will work better when far away from any major
resonances or very close to the origin where ellipses are not
distorted.

FIG. 16. Examples of quasi-integrable systems produced by
“smoothening” three-piece integrable polygon maps using ε = 0.05.
For each plot the label shows parameters {k1, k2, k3; d}. All level sets
are obtained by tracking. The green curve is the second symmetry
line f (q)/2 and the black dashed curve is the force function f (q).

FIG. 17. The middle row of plots (a.1)–(c.1) shows tracking for
Hénon map with quadratic f (q) = a q + q2 [cases (a) and (c)], and
cubic force functions f (q) = a q + q3 [case (b)]. The value of pa-
rameter is (a) a = a1/4 − 0.005, (b) a = a1/4 + 0.005, and (c) a =
a1/2 + 0.05, where a1/4 = 0 is the main octupole resonance with
ν = 1/4 and a1/2 = −2 is the linear-half integer stopband ν = 1/2.
The green curve is the second symmetry line f (q)/2 and the black
dashed curve is the force function f (q). All plots correspond to a
range p, q ∈ [−1, 1]. The top row shows corresponding low order
approximation via mappings with polygon invariants. The bottom
row of plots (a.2)–(c.2) shows log of SALI values for the same cases,
by courtesy of Ivan Morozov (BINP).

VII. SUMMARY

In this article, we presented an algorithm for the automated
discovery of new integrable symplectic maps of the plane
with polygon invariants, and as a result, we reported over
100 new integrable families. The algorithm successfully re-
discovered some famous ultradiscrete Painlevé equations (see
Appendix A for details) as well as some of the McMillan-
Suris integrable maps.

While the discovered systems have a piecewise linear force
and polygon invariants, thus lacking differentiability, we sug-
gested a “smoothening” procedure which can produce new
quasi-integrable systems without singularities. Such “smooth”
polygon maps have potential applications in physics, engi-
neering, dynamical system theory, and signal processing. For
example, in accelerator physics, such near-integrable systems
could reduce unwanted particle losses in accelerators and,
thus, improve their performance and the achievable beam in-
tensities. So far, the design of integrable accelerator focusing
systems is at its very beginning, even conceptually. Fermilab
presently operates the first accelerator [39], designed to test
some of these concepts.

Finally, we introduced a discrete perturbation theory to
relate our polygon mappings to a general symplectic map
of a plane. The theory furthers our understanding of shapes
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of phase space curves and approximates dynamics for more
realistic chaotic systems such as Hénon or Chirikov mappings
or even integrable ones, such as McMillan-Suris maps.

It remains an open question whether one can understand
the totality of all maps with polygon invariants, and not only
corresponding to force functions with integers coefficients.
For example, it is not clear whether there exists some sort of
generating formula which would allow us to derive integrable
maps with n + 1 piece force function from mappings with
n-pieces.
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APPENDIX A: CONNECTION TO PAINLEVÉ EQUATIONS
AND SURIS MAPPINGS

Some integrable mappings with polygon invariants have a
direct connection to discrete Painlevé equations (dP). Painlevé
equations are nonlinear difference equations with canonical
form being [11,12]:

dPI : Xn+1 Xn−1 = λnXn + 1

X σ
n

, σ = 0, 1, 2,

dPII : Xn+1 Xn−1 = α(λn + Xn)

X ρ
n (1 + λnXn)

, ρ = 0, 1,

dPIII : Xn+1 Xn−1 = (Xn + α λn)(Xn + α−1λn)

(1 + β λnXn)(1 + β−1λnXn)
. (A1)

We will be interested in the autonomous (i.e., mappings do not
have explicit dependence on n) limit of dPI−III corresponding
to λ → 1. It is worth mentioning that autonomous limit of
Eqs. (A1) could be written in the Suris form by introducing
a new set of variables

Xn = exn/ε, α = eA/ε, β = eB/ε,

leading us to

dPS
I : xn+1 + xn−1 = ε log

[
exn/ε + 1

eσ xn/ε

]
,

dPS
II : xn+1 + xn−1 = A − ρ xn,

dPS
III : xn+1 + xn−1

= ε log

[
(exn/ε + eA/ε )(exn/ε + e−A/ε )

(exn/ε + eB/ε )(exn/ε + e−B/ε )

]
. (A2)

While the force function for dPS
II is simply a linear function,

two other cases are specific examples of integrable exponen-
tial Suris mapping.

The ultradiscretized form of Painlevé equations (udP)
could be obtained by taking the limit ε → 0 in Eqs. (A2).
At this point we should clarify the terminology: by saying
“discrete” Painlevé equation we refer to the difference nature
of the equation in contrast to nonlinear second-order ordinary
differential Painlevé equations. The addition “ultra” refers
to another level of discretization when the force function is
transitioning from a smooth continuous to a piecewise linear
function. Using identity

lim
ε→0

ε log [exp (x/ε) + exp (y/ε)] = max(x, y),

we arrive to

udPI : xn+1 + xn−1 = max (xn, 0) − σ xn,

udPII : xn+1 + xn−1 = A − ρ xn,

udPIII : xn+1 + xn−1 = max (xn, A) − max (xn, B)

+ max (xn,−A) − max (xn,−B).

(A3)

The udP equations (A3) have a symplectic Suris form xn+1 +
xn−1 = f (xn) with following ultradiscrete piecewise linear

FIG. 18. Constant level sets of invariant on (xn, xn+1) plane for
discrete Painlevé map dPS

III in Suris form with A = 0 and x measured
in units of B. For ε = ∞ map degenerate to linear with f (x) = 0 and
level sets degenerate to concentric circles. When ε = 0 we observe
ultradiscrete limit udPIII corresponding to polygon map α3.1′ with
ratio of finite pieces restricted to unity, r = 1. Black and blue level
sets show trajectories in linear and nonlinear areas of phase space, red
level sets are separatrices of motion between different layers. Green
curve is the second symmetry line f (x)/2 and black dashed curve is
the force function f (x).
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force functions

fI(x) = |x| + x

2
− σ x =

{
(1 − σ ) x, for x � 0,

−σ x, for x < 0,

fII(x) = A − ρ x,

fIII(x) = |x + A| + |x − A| − |x + B| − |x − B|
2

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, for x ∈ [B,∞),
x − B, for x ∈ [A, B),
A − B, for x ∈ [−A, A),
−B − x, for x ∈ [−B,−A),
0, for x ∈ (−∞,−B).

(A4)

The force function fI (corresponding to the first equa-
tion udPI) is the simplest two-piece linear force without
shift parameter, d = 0, and with slopes defined as (k1, k2) =
(−σ, 1 − σ ). Since σ can only take values 0, 1, and 2, we ob-
tain previously considered mappings G, F, and E, respectively
(see Fig. 10). The second ultradiscretized Painlevé equa-
tion has a trivial linear force function fII and is integrable for
any values of parameters A and σ . In the case of integer slopes
this results in three mappings with stable trajectories [26] α,
β, γ and 2 unstable mappings a, b (see Fig. 10). Finally, for
the third ultradiscretized Painlevé equation udPIII (assuming

B > A > 0), we obtain force function containing five pieces.
Taking the limit A = const and B → ∞, from Eq. (A4) we
have the linear map α with slope of force function k1 = −1.
Considering another limiting case A → 0, one can see that
f (x) could be reduced to one of our four-piece polygon maps
α3.1′ (slope coefficients {k1, k2, k3, k4} = {0,−1, 1, 0} and
d = 2B) with ratio parameter restricted to r = 1 (note that
our map α3.1′ is integrable for arbitrary r). Figure 18 shows
invariant level sets for this last case for different values of ε.
As one can see, approaching the ultradiscrete level ε → 0,
the force function transitions to piecewise linear and level
sets transform to polygons. When ε = ∞ map becomes linear
with ν = 1/4; note that invariant level sets are chosen as
circles and not polygons. As we previously discussed linear
mappings with rational rotation numbers are degenerate and
allow infinitely many invariants of motion, but in this case the
shape is chosen as a limiting case ε → ∞ for the exponential
Suris invariant.

We emphasize that our polygon mappings represent a much
richer family of integrable systems beyond ultradiscreteza-
tions of known Painlevé equations udPI–III ; ultradiscretized
equations of Painlevé type are limited to only five-piece force
functions and the set of parameters is very restricted (e.g.,
slopes of outer pieces of five-piece force functions can only
be equal to zero).

APPENDIX B: PSEUDOCODE FOR THE SEARCH ALGORITHM

Algorithm 1. Map analyzer. The algorithm verifies if a map is integrable with invariant level sets being polygons. The algorithm needs the
function vertex(q) and force function.

Input: V cutoff ∈ Z—cutoff parameter for polygon vertex count,
qmax

ini ∈ Z (
∑n

i=2 li < qmax
ini < rmax) — max initial condition.

Output: integrable ∈ B—integrability of map.
/∗ Map is integrable unless unstable or chaotic orbit is detected ∗ /

integrable ← True
/∗ Scan over all initial conditions from fixed point q∗ to qmax ∗/

for q = q∗, . . . , qmax
ini

{
/∗ Compute number of vertexes for given orbit ∗/

V ← vertex(q)
/∗ If motion is stable ∗/

if V �= −1 then
/∗ If the number of vertices in the orbit polygon is larger than a cutoff value, V cutoff ∗/

if V > V cutoff then
/∗ Exclude map if any of orbits is chaotic ∗/

integrable ← False
/∗ Exclude map if any of orbits is unstable ∗/

else integrable ← False
{
return integrable
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Algorithm 2. Continuous piecewise linear force function f (q, k, l) with first vertex at the origin.

f (ls−1 < q � ls, k, l) = ks(q − ∑s−1
i=2 li ) + ∑s−1

i=2 kili, l1 = 0, l0,n = ∓∞.

Input: n ≡ dim k � 2—number of segments,
q ∈ R—coordinate,
k = (k1, k2, . . . , kn ) ∈ Zn — vector of slopes of segments,
l = (l2, l3, . . . , ln−1) ∈ Rn−2 — vector of finite segments’ length.

Output: f (q, k, l) ∈ R — value of force function.
/∗ Compute force function value depending on segment ∗ /

switch q
{

/∗ 1-st segment ∗ /

case q � 0
f ← k1q

/∗ 2-nd segment ∗ /

case 0 < q � l2

f ← k2q
/∗ 3-rd segment ∗ /

case l2 < q � l2 + l3

f ← k3(q − l2) + k2l2

...
/∗ (n − 1)-th segment ∗ /

case
∑n−2

i=2 li < q � ∑n−1
i=2 li

f ← kn−1(q − ∑n−2
i=2 li ) + ∑n−2

i=2 kili

/∗ n-th segment ∗ /

case q > q
∑n−1

i=2 li

f ← kn(q − ∑n−1
i=2 li ) + ∑n−1

i=2 kili

}
return f

APPENDIX C: MACHINE-DISCOVERED MAPPINGS WITH POLYGON INVARIANTS

The search results were classified as isolated, discrete and continuous with respect to parameters, when d and/or r is a finite
set of integer values, take all integer values (∈ Z) or belongs to reals (∈ R), respectively. The results of the machine-assisted
search for the three-piece force function are summarized in Fig. 19.

For force functions with four segments the results of a search are summarized in Tables II and III. In addition, more cases
which were harder to classify are listed below. When r = 1, we found 2 dynamical systems which are integrable for any d ∈ R:
{0,−1, 0,−1} and {1, 0, 1, 0}. In addition, map with slopes {−2,−1,−2,−1} is integrable for any d � 4 (and its twin map
{−1,−2,−1,−2} is integrable for any d � 3). For values of r different from 1, the situation is getting more complicated and
more families of mappings appear. For example, for previously semi-continuous map {−2,−1,−2,−1}, we have at least four

FIG. 19. Integrable polygon mappings corresponding to a piecewise linear force function with three segments. Each table corresponds
to its own value of k2 and shows the value of the shift parameter d . Black cells represent degenerate cases when three-piece force function
becomes two-piece (k1 = k2 or k2 = k3), white cells represent cases with isolated integer d showing its values, orange cells represent mappings
integrable for any integer d ∈ Z (“D”), cyan cells represent mappings integrable for continuous d ∈ R (“C”) and red cells represent unstable
nonlinear polygon mappings where the numbers in the cell shows the values of d corresponding to integrable maps.

043241-17



T. ZOLKIN, Y. KHARKOV, AND S. NAGAITSEV PHYSICAL REVIEW RESEARCH 5, 043241 (2023)

Algorithm 3. Function vertex(q). The algorithm counts the number of vertexes V for a given orbit with initial condition on second
symmetry line (q, p) = (qini, f (qini )/2) or returns value of (−1) if trajectory is unstable.

Input: qini ∈ R—initial coordinate on a second symmetry line,
k = (k1, k2, . . . , kn ) ∈ Zn — vector of slopes of segments,
l = (l2, l3, . . . , ln−1) ∈ Rn−2 — vector of finite segments’ length,
d ∈ R—force function shift parameter,
N ∈ Z—number of iterations,
rmax ∈ R (� ∑n−1

i=2 li ) — max distance allowed in simulation,
η ∈ R \ Q (� 1)—small irrational parameter to shift initial conditions,
ε ∈ R (� 1)—collinearity cutoff parameter.

Output: V —number of vertex of orbit (V = −1 if orbit is unstable).
V ← 0
/∗ Initial condition on 2-nd symmetry line with small irrational shift ∗ /

q ← qini + η

p ← [ f (q, k, l) + d]/2
/∗ Orbit, ζ = (ζ1, ζ2, . . . , ζN ) ∗ /

for i = 1, . . . , N
{

ζi ← (q, p)
q′ ← p
p′ ← −q + f (p) + d
q ← q′

p ← p′

/∗ Stop if radius of point in the phase space is > rmax ∗ /

if q2 + p2 > r2
max then

{
V ← −1
break

}
else
{

/∗ Stop if orbit is periodic ∗ /

if q′ = qini ∧ p′ = [ f (qini, k, l) + d]/2 then
break

}
}
/∗ Compute number of polygon vertexes, V, if the orbit is stable (V �= −1) ∗ /

if V �= −1 then
{

Sort ζ = (ζ1, . . . , ζN ): ∀ 0 < k < N [arctan pk
qk

> arctan pk+1
qk+1

]

Add ζ1 and ζ2 to the tail of ζ : ζ ← (ζ1, ζ2, . . . , ζN−1, ζN , ζ1, ζ2)
for j = 1, . . . , N
{

/∗ Compute dot product between displacement vectors ∗ /

α j = (p j+2−p j+1 )(p j+1−p j )+(q j+2−q j+1 )(q j+1−q j )√
(p j+2−p j+1 )2+(q j+2−q j+1 )2

√
(p j+1−p j )2+(q j+1−q j )2

/∗ New polygon vertex detection ∗ /

if ||α j | − 1| > ε then
V++

}
}
Return V

families with different behaviours of d:

d = 4 L2 + 1 (L2 � 1),
d = 4 L2 + 2 (L2 = 1, 2, 3, . . .),
d = 4 L2 + 3 (L2 = 1, 3, 4, 6, 7, 9, 10, . . .),
d = 5 L2 (L2 � 1);
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TABLE II. Integrable polygon mappings with four-piece force function and isolated integer d and r. Such mappings were found only for
r = 1, 2, 3 and corresponding values of parameter d (in units of l2) are presented for each quadruplet of integer slopes.

r r

[k1, k2, k3, k4] 1:1 1:2 1:3 1:3 1:2 1:1 [k1, k2, k3, k4]

[−1, −2, −1, −2] 4,7 [−2,−1, −2, −1]
[0, −2, 0, −1] 2 0 2 4 [−1, 0, −2, 0]
[0, −1, 1, −1] 2 4 2 [−1, 1, −1, 0]
[1, −2, 0, −1] 0 [−1, 0, −2, 1]
[1, −1, 0, −1] 1 1 4 [−1, 0, −1, 1]
[1, 0, 1, −1] 1,2 4 2,1 [−1, 1, 0, 1]
[1,0,2,0] 0 [0,2,0,1]
[1,2,0,1] 0 [1,0,2,1]

we say at least because our algorithm was limited to the range of r = [1, 2, ..., 9, 10] and we cannot guarantee the absence of
integrable mappings out of this range. Finally, three following groups of families were discovered

{0,−1, 0,−1} : {−1, 0,−1, 0} :
d = L2 (L2 � 0), d = 2 L2 (L2 � 0),
d = L2 + 1 (L2 � 0), d = 2 L2 + 1 (L2 � 0),
d = 2 L2 + 1 (L2 � 0), d = 3 L2 + 1 (L2 � 0),
d = 2 L2 + 2 (L2 = 1, 2, 3, . . .), d = 3 L2 + 2 (L2 = 1, 2, 3, . . .),
d = 2 L2 + 3 (L2 = 1, 3, 4, 6, 7, 9, 10, . . .), d = 3 L2 + 3 (L2 = 1, 3, 4, 6, 7, 9, 10, . . .),
d = 3 L2 (L2 � 1/2), d = 4 L2 (L2 � 1/2).

{1, 0, 1, 0} : {0, 1, 0, 1} :
d = 0 (L2 � 0), d = L2 (L2 � 0),
d = 1 (L2 � 0), d = L2 + 1 (L2 � 0),
d = L2 + 1 (L2 � 0), d = 2 L2 + 1 (L2 � 0),
d = L2 + 2 (L2 = 1, 2, 3, . . .), d = 2 L2 + 2 (L2 = 1, 2, 3, . . .),
d = L2 + 3 (L2 = 1, 3, 4, 6, 7, 9, 10, . . .), d = 2 L2 + 3 (L2 = 1, 3, 4, 6, 7, 9, 10, . . .),
d = 2 L2 (L2 = 1/2 and L2 � 1), d = 3 L2 (L2 = 1/2, 3/2 and L2 � 2).
d = 2 (L1 : L2 = 1 : 4),

TABLE III. Integrable polygon mappings with four-piece force function and isolated integer d and discrete or continuous r. Values of
parameters d (in units of l2) and r are presented for each quadruplet of integer slopes.

[k1, k2, k3, k4] d r r d [k1, k2, k3, k4]

[0, −1, −2, −1] 0 1 N+ 4 + 3/r [−1,−2, −1, 0]
1 R+ R+ 4 + 2/r

[0, −2, −1, 0] 0 R+ R+ 3 + 4/r [0, −1, −2, 0]
2 + 1/r R+ R+ 2 + 2/r
4 + 2/r R+ R+ 1

[0, −1, 1, 0] 2 R+ R+ 1 + 1/r [0, 1, −1, 0]
[0,1,2,0] 1 R+ R+ 0 [0,2,1,0]
[1, −1, −2, −1] 0 1 N+ 4 + 3/r [−1,−2, −1, 1]
[1, −1, 0, −1] 0 1 N+ 2 + 3/r [−1, 0, −1, 1]
[1, 0, −2, −1] 2, 4, 6, . . . 4 + 3/(2r) [−1, −2, 0, 1]
[1, −2, −1, 0] 0 R+ R+ 3 + 4/r [0, −1, −2, 1]
[1, 0, −1, 0] 0 R+ R+ 3 + 2/r [0, −1, 0, 1]

1 R+ R+ 3 + 1/r
1 + 1/r R+ R+ 2 + 1/r

[1,2,1,0] 0 R+ R+ 1 [0,1,2,1]
1/r N+ 1 0
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{0,−1, 0, 1} : {1, 2, 1, 0} :
d = L2 + 2 (L2 � 0), d = 1 (L2 = 3, 4, 5, . . .),
d = L2 + 3 (L2 � 0), d = (L2/2) + 1 (L2 = 2, 6, 10, 14, . . .).
d = 2 L2 + 1 (L2 = 1, 2, 4, 5, 7, 8, 10, . . .),
d = 2 L2 + 2 (L2 = 1, 2, 3, . . .),
d = 2 L2 + 3 (L2 � 0),
d = (3/2) L2 + 7/2 (L2 = 1, 3, 5, 7, . . .),
d = (3/2) L2 + 3 (L2 = 2, 4, 6, 8, . . .),
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