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Light and matter can now interact in a regime where their coupling is stronger than their bare energies.
This deep-strong coupling (DSC) regime of quantum electrodynamics promises to challenge many conventional
assumptions about the physics of light and matter. Here we show how light-matter interactions in this regime
give rise to electromagnetic nonlinearities dramatically different from those of naturally existing materials.
Excitations in the DSC regime act as photons with a linear energy spectrum up to a critical excitation number,
after which the system suddenly becomes strongly anharmonic, thus acting as an effective intensity-dependent
nonlinearity of an extremely high order. We show that this behavior allows for N-photon blockade (with N � 1),
enabling qualitatively new kinds of quantum light sources. For example, this nonlinearity forms the basis for a
new type of gain medium, which when integrated into a laser or maser produces large Fock states (rather than
coherent states). Such Fock states could in principle have photon numbers orders of magnitude larger than any
realized previously, and would be protected from dissipation by a new type of equilibrium between nonlinear
gain and linear loss. We discuss paths to experimental realization of the effects described here.
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I. INTRODUCTION

Recent successes in the coupling of light and matter now
make it possible to realize regimes of light-matter interactions
in which the coupling between light and matter can be much
stronger than in established optical technologies. Because of
the central role the physics of light and matter plays in many
fields, these new coupling regimes are being intensely ex-
plored. One such example is the ultrastrong coupling regime,
where the coupling energy is within an order of magnitude
of the bare energies of the light and matter subsystems [1].
Such regimes promise to give rise to new chemical processes
[2–5], strong modifications of transport and thermodynamic
properties of materials [6,7], new phases of matter, quantum
simulators, and quantum technologies more broadly [1,8].

Taking these ideas to their logical extreme is the so-called
deep-strong coupling regime (DSC), where the strength of the
coupling is greater than the bare energies of the light and mat-
ter. In the past few years, the first experiments in this regime
have emerged [9,10]. Much of the interest in ultrastrong and
DSC is focused on the properties of the ground state of either
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one or many emitters coupled to a cavity mode, leading to
many interesting new phenomena such as light-matter decou-
pling [11,12], population collapses and revivals [13], large
Lamb shifts leading to inversion of qubit energy levels [9,14],
and renormalization of qubit energy levels by a photonic con-
tinuum [10]. Likely, many of the potential applications of this
regime have yet to be identified.

Here we consider the opportunities afforded to us by the
excited states of a DSC system, which are important from
the perspective of quantum and nonlinear optics. For example,
the emission of light in such systems probes the excited states.
First, we show that DSC of a two-level system to a resonant
cavity leads to the formation of excitations (“photonic quasi-
particles” [15], which we refer to as “DSC photons”) with
nonlinear properties much different than those in any known
system. Then, we analyze the coupling of an emitter to this
nonlinear photonic quasiparticle. We find that the coupling of
an excited two-level system to this nonlinear system enables
a phenomenon of N-photon blockade in which N excitations
can be populated, but N + 1 cannot. We show that a laser
or maser based on stimulated emission of DSC photons be-
haves fundamentally differently from a conventional maser or
laser. Specifically, this maser produces close approximations
to Fock states in its steady state, rather than coherent states,
as in conventional lasers. They could have a few hundred
photons, thus being orders of magnitude larger than any Fock
states realized thus far. Moreover, Fock states produced by this
mechanism are stable against dissipation as they arise from a
new type of equilibrium between nonlinear gain and linear
loss. Our results may thus help to address the long-standing
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FIG. 1. High-order nonlinearities in DSC of light and matter.
(a) Schematic of a two-level system coupled to a single resonator
mode, as in circuit or cavity QED. (b) Spectrum of the system from
weak (g = g̃/ω � 1) to DSC (g � 1); λ = 0. (c) Successive excita-
tion energies for a single spin sector for different coupling values.
For g � 1 the excitation energies are constant for small excitation
numbers, as for a bare photon. At large photon number, they deviate
rapidly and nonlinearly from harmonicity, akin to a photon with a
strongly intensity-dependent nonlinearity.

problem in quantum science of generating Fock states. Fi-
nally, we discuss how the concept developed here can be
implemented in superconducting qubit platforms.

II. NONLINEAR PHOTONIC QUASIPARTICLES BASED
ON DEEP STRONG LIGHT-MATTER COUPLING

Fundamental to our results is the spectrum of a two-
level system (qubit) interacting with a single-mode cavity
[schematically illustrated in Fig. 1(a)], which we review here
[16]. The Hamiltonian, referred to as the (generalized) Rabi
Hamiltonian, is given by1

HRabi/h̄ = 1
2 (ω0σz + λσx ) + ωa†a + g̃σx(a + a†). (1)

Here ω0 is the transition frequency of the two-level system,
σx,z are the x and z Pauli matrices, ω is the cavity frequency,
a(†) is the cavity annhilation (creation) operator, and g̃ is the
Rabi frequency. It will be convenient to nondimensionalize the
coupling as g = g̃/ω. We have also generalized the standard

1Indeed, there can be quadratic contributions to the Hamiltonian of
the form C(a + a†)2. That said, as is shown in Ref. [9], which exper-
imentally demonstrates the DSC regime of the Rabi model, one can
perform a Bogoliubov transformation which eliminates the quadratic
term, leading to the Hamiltonian of Eq. (1), but with renormalized
parameters (in the case of Ref. [9], the renormalization is weak).
This may explain why this Rabi model (as well as the so-called
“generalized Rabi model” we consider in the main text) agrees well
with experiments on superconducting qubits in the DSC regime (see
Refs. [9] and [10]). In this case, the level structure is essentially the
same if the parameters for the Hamiltonian are interpreted as the
renormalized parameters.

Rabi Hamiltonian by including a term λσx which is relevant
in contexts of superconducting qubits with applied bias fluxes
[9]. For simplicity of presentation, we consider the case of
λ = 0, which leads to approximately degenerate spin states
(and in which case the qubit frequency is ω0). In Appendix B,
and in various numerical results, we do consider the effect of
a finite λ term, which yields the same qualitative conclusions.

While the Rabi Hamiltonian cannot be analytically diag-
onalized in general, an approximate spectrum can be found
for the regime g � 1, which forms the basis for our analyt-
ical theory. In Appendix A it is shown that the approximate
eigenstates are labeled by an oscillator quantum number n =
0, 1, 2, . . . and a spin quantum number σ = ±1. These eigen-
states |nσ 〉 and corresponding energies Enσ , for g � 1, are
given by

|nσ 〉 = 1√
2

[D†(g)|n, x+〉 + σD†(−g)|n, x−〉],

Enσ /h̄ = ω
[
n + σ

2
e−2g2

Ln(4g2)
]
, (2)

where D(z) ≡ exp[z(a† − a)] is the displacement operator,
and Ln is the Laguerre polynomial of order n. The state |n〉 on
the right-hand side refers to the Fock basis of the cavity, while
the states |x±〉 refer to the x-polarized spin states of the qubit.
The spectrum is plotted in Fig. 1(b) (adding an g-dependent
offset h̄ωg2 for convenience). As seen in Eq. (2), the spectrum
in the DSC regime is organized into two oscillator-like ladders
(one for each spin). Moreover, for large g, the spectrum ap-
pears almost completely harmonic, indicating the existence of
an effective photon (or photonic quasiparticle, which we will
sometimes call a DSC photon). To understand this, we note
that for g � 1, the σz acts as a perturbation to the remain-
ing Hamiltonian, HDSC/h̄ ≡ ωa†a + gσx(a + a†) = ω(b†b −
g2), where b = D†(gσx )aD(gσx ) = a + gσx. This approximate
Hamiltonian admits a harmonic spectrum, in which the new
oscillator variables b obey canonical commutation relations
[b, b†] = 1, and excitations are constructed by applying fur-
ther b† operators. In other words, the eigenstates of HDSC are
Fock states of b, or equivalently, displaced Fock states of a.

The σz term breaks the even spacing of the ladder, leading
to an anharmonicity (equivalently, nonlinearity) which we
now quantify. Without loss of generality, we will focus on
the lower-energy σ = −1 ladder, enabling us to omit the spin
index in our notation. We assess the “harmonicity” of the
spectrum by plotting successive excitation energies En+1 − En

as a function of n, as in Fig. 1(c) (in units of h̄ω). We will
refer to n as the “photon number.” For strong and ultrastrong
coupling, the spectrum is anharmonic at the level of a single
photon, leading to the familiar phenomenon of photon block-
ade. For DSC the behavior is quite different: the spectrum is
harmonic up to some critical excitation number (nc ∼ g2), and
then rapidly becomes anharmonic. This may be seen directly
from the properties of Ln(x).

To understand the relation of this strong anharmonicity to
existing nonlinear optical systems, recall that a single-mode
cavity, with a Kerr nonlinear medium inside of it, can be
described by a Hamiltonian of the form HKerr = h̄ω(a†a +
βa†2a2) [17,18], with β a (typically small) dimensionless
coefficient which is proportional to the refractive index shift
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induced by a single photon. In such a system, the energy
to add an excitation is En+1 − En = h̄ω(1 + 2βn), meaning
that the deviation from harmonic behavior is linear in the
intensity (proportional to photon number). A cavity with this
third-order nonlinearity would have its resonance frequency
shift with intensity. Thus, the plots of Fig. 1(c), for a photon
in a Kerr medium, would be straight lines with slope 2β.
This linear dependence arises from a low-order expansion
of the nonlinear medium polarization in the cavity electric
field: in the case of Kerr, the leading order nonlinear term
would be third order, leading to a refractive index dependent
on intensity. In contrast, for the case of DSC, the excitation
energies do not vary linearly in photon number, but instead
are very high-order near the critical photon number (as the
function Ln(4g2) is practically exponential for n ∼ g2): as if
the cavity contained a nonlinear medium whose polarization
had a nonperturbative dependence on intensity.

In what follows, we show how this nonperturbative non-
linearity arising from the spectrum of the Rabi model leads
directly to the possibility of new effects, such as (1) sys-
tems which become reflective to light when a large but fixed
number of excitations are in the cavity (N-photon blockade),
and (2) lasers which generate intracavity Fock states in their
steady states, as opposed to coherent states, as conventional
lasers do.

III. COHERENT DRIVING AND N-PHOTON BLOCKADE
IN A SYSTEM WITH DEEP-STRONG COUPLING

The nonlinearity perspective presented here, although not
previously noted in the literature, is largely based on the
known spectrum of DSC systems. We now use this perspective
to develop the main new results of this paper.

First, we establish how these systems become reflective to
light when a large, but fixed number of photons are present
in the cavity. In other words, we demonstrate the fundamental
phenomenon of N-photon blockade. To do so, we illustrate the
dynamics of DSC photons under coherent driving by an exter-
nal signal (e.g., an applied microwave signal, or an external
laser, at frequency ω). Thus, to the Hamiltonian of Eq. (1),
we add a driving term of the form Hdrive = η(X (+)e−iωpt +
X (−)eiωpt ), where η and ωp are the strength and frequency
of the drive. Additionally, X (±) are the positive and negative
frequency components of the operator X = b + b†, where b
is the annihilation operator of the DSC boson defined earlier.
Specifically, the positive frequency component is defined in
terms of X as X (+) = ∑

m<n Xmn |m〉 〈n| . The negative fre-
quency operator is then X (−) = (X (+) )†.

In Fig. 2(a) we show the probability distribution p(n) for
the number of DSC photons n, as a function of the time t after
the coherent drive is turned on. We note that n enumerates
over states in the “down” manifold of spin states. For the
parameters we use, the population which leaks out into the up
manifold is small. Figure 2(b) shows slices of this probability
distribution and the corresponding Wigner functions for the
DSC photon (for σ = −1). Immediately after the pump is
turned on, the average excitation number begins to grow in
a manner which is similar to that of a “normal” (i.e., linear)
pumped cavity. This is expected, since for low excitation
numbers, the DSC bosons have an almost perfectly harmonic

FIG. 2. Coherent pumping of DSC bosons leads to N-photon
blockade. (a) Probability distribution p(n) of DSC photon number n
as a function of time t in the presence of a coherent driving field. The
mean photon number initially grows in accordance with a harmonic
spectrum but is abruptly stopped at the blockade number N due to
the sudden anharmonicity in the energy spectrum. (b) Probability
distribution slices and Wigner functions at selected times [shown
by vertical lines in panel (a)]. The probability distribution initially
evolves as an approximate coherent state but then acquires a reduced
variance at the blockade point. Interference fringes in p(n) appear
due to the nonlinear squeezing that occurs. After the blockade point,
the distribution turns around as it is reflected due to the blockade.
Parameters used are g = 5, λ = 0.1, η = 0.005, and ωp set to the
difference between the two lowest energy eigenvalues in the “down”
manifold of spin states.

spectrum. However, as soon as the probability distribution
approaches the strongly anharmonic point N ∼ g2, the prob-
ability distribution begins to compress, as it becomes harder
for photons to be added to the cavity. The driving frequency
which was once resonant for lower photon numbers becomes
highly nonresonant at the blockade point, resisting the popu-
lation of excitations into any state beyond N . As the blockade
point is approached, the quantum state of light deviates further
from the classical coherent state which is produced with a
linear resonance, as evidenced by the Wigner functions which
take on a negative (blue) value with many fringes.

Once the blockade point is hit, the distribution actually
turns around and then repeats the cycle. This extreme form
of the behavior occurs when the timescale associated with the
field growth is faster than those associated with dissipation
in the system. In the Appendixes we show the influence of
dissipation. When this dissipation is present, the dynamics
are similar for short times to what is shown in Fig. 2: after
dissipation begins to act, the system reaches a steady state
which can be squeezed in DSC excitation number, having
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FIG. 3. Fock lasing due to equilibrium between high-order nonlinearity and dissipation. (a) Light emission of DSC photons can be
understood in terms of the coupling of an emitter (e.g., a probe qubit) weakly coupled to the DSC system, as might be realized by coupling a
superconducting qubit to a flux-qubit-LC-resonator system. The probability to stimulatedly emit DSC photons scales as n + 1 for small n, and
then sharply decreases due to the sudden anharmonicity for n > nc ∼ g2. “TLS” denotes two-level system. (b) This behavior leads to a gain
medium whose gain coefficient (green lines) is highly nonlinear. The quantum state of DSC photons will depend on how this nonlinear gain
comes into equilibrium with the loss (red lines). (c) Steady-state intensity and power fluctuations of lasers in different coupling regimes as a
function of pump intensity. For the “harmonic” regimes (weak and deep-strong), a rapid growth in intensity at threshold is seen. In contrast
to the weak coupling regime (as in a “normal” laser; light blue curve), a laser operating in the DSC regime has its intensity saturate, and its
fluctuations vanish at high pump, converging to a high-number Fock state (dark blue and purple curves), leading to Fock-like statistics (right).
(c, bottom) Statistics for different pump strengths for a single coupling, showing evolution from thermality to Fock-like statistics.

a variance which is below the mean (steady-state squeezing
tends to be fairly modest in this configuration, about 3 dB).

IV. LIGHT EMISSION IN THE DEEP-STRONG
COUPLING REGIME

Specifically, we study how light emission is modified by
these photonic quasiparticles. Unlike most studies of light
emission with photonic quasiparticles (reviewed, for example,
in [15]), here we look at the unique modifications coming
from the nonlinear properties. Consider an external qubit (de-
noted “em,” for emitter) coupled to this DSC photon. The
exact form of the coupling depends on the circuit implemen-
tation. To keep the discussion concrete, we will consider a
simple coupling Hamiltonian of the type

H = HRabi + ωem
0

2
σ em

z + V,

V/h̄ = εσ em
x (b + b†) ≈ ε(σ em

+ b + b†σ em
− ), (3)

which couples the emitter directly to the DSC photon. Regard-
ing the assumed form of the Hamiltonian, we note that our
conclusions are not particularly sensitive to the exact form
of the interaction.2 What we do assume however is that ε is
small, so that the coupling of the external emitter to the DSC

2The term σ em
x (b + b†) contains an interaction between the dipole

moment of the emitter and that of the qubit. Such interactions are to
be generically expected, as especially emphasized in recent works on
superradiant phase transitions, as well as gauge invariance in ultra-
strong coupling cavity and circuit quantum electrodynamics [49–53].

system is weak (ε � ω). Thus, the system in mind is a single
resonator coupled to two qubits, one with weak coupling and
one with DSC, as illustrated in Fig. 3(a).

To understand emission and absorption of DSC photons,
consider the case in which the qubit is in its excited state |e〉
and there are n DSC photons present of spin −1 (e.g., occupy-
ing the state |n,−1〉 of Eq. (2)). If the qubit is at frequency ω

[the same as in Eq. (2)], then the qubit transition will be nearly
resonant with the transition n → n + 1 of the DSC photon,
provided n � nc. The dynamics can be restricted to the sub-
space {|e, n〉, |g, n + 1〉}, and the probability of (stimulated)
emission P(n + 1) is simply given by

P(n + 1) = (n + 1)ε2

�2
n+1 + (n + 1)ε2

sin2
(√

�2
n+1 + (n + 1)ε2t

)
,

�n+1 = ω

2

(
δ − 1

2
e−2g2

[Ln(4g2) − Ln+1(4g2)]

)
. (4)

Here δ is the dimensionless detuning of the emitter and
ω, such that ωem

0 − ω ≡ ωδ. Equation (4) is the direct

We could write the term in question as ασ em
x σx. Here α = 2εg. Be-

cause this dipole-dipole term leads only to changes in spin quantum
number, and not changes in excitation number (see the Appendixes),
and because the spins are not separated by ω, these terms have little
effect on the dynamics of the photon number probabilities that we
consider. For example, we find that ignoring this term altogether
leads to the same conclusions. Hence, for the purposes of the paper,
we have taken a simple coupling that illustrates the physics best
(emission of a “b” particle by an emitter).
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consequence of the Jaynes-Cummings dynamics of a two-
level system (emitter) with a boson (DSC photon) with some
detuning. The detuning depends on excitation number due to
the nonlinearity of the DSC photon, and the detuning sharply
rises near nc [Fig. 1(c)]. In Fig. 3(a) we plot the stimulated
emission probability as a function of n after a small evolution
time t � ε−1 and for δ = 0. For n < nc, �n+1 ≈ 0, that prob-
ability is simply (n + 1)(εt )2, corresponding to stimulated
emission proportional to n + 1, as expected for conventional
photons. For n � nc, the emission probability drops rapidly,
because of the corresponding rapid increase in �n. This can
be understood as a type of N-photon blockade, in which a
system can readily accept N excitations, but not N + 1. For
N = 1, this corresponds to the conventional photon blockade
observed and discussed extensively in strong coupling cav-
ity QED (in which the polariton anharmonicity is strong at
the level of one photon) [19]. In the “conventional” strong-
coupling cavity QED case, this N = 1 blockade corresponds
to single-photon nonlinearity which is highly desired for many
applications. Here the spectrum is such that the photon block-
ade is delayed to N = Nc photons, leading to an exotic and
strong quantum nonlinearity that operates at N � 1 photons.

A. A new type of laser

Equation (4) displays one of the main results: that the high-
order nonlinearities arising from nonperturbative quantum
electrodynamical coupling lead to a type of gain (stimulated
emission) that is correspondingly nonperturbative in inten-
sity. One may imagine that this type of nonlinear stimulated
emission would have implications for lasers, or in this case,
masers, given that the most imminent implementations, based
on circuit QED, would be at microwave frequencies. We will
stick to the term “laser” since it has largely subsumed masers.
In this section, we show that the DSC-based gain discussed
before creates lasing into high-order Fock states (rather than
coherent states).

We now show how the nonlinear gain provided by the
coupling of an excited two-level system to DSC photons can
result in a laser with new steady-state photon statistics. To
capture the resulting lasing dynamics in a quantum mechani-
cal way, we shall find an equation of motion for the reduced
density matrix ρ of the DSC photon (tracing out the gain
medium). This equation takes into account both the stimulated
emission dynamics and the loss dynamics associated with,
for example, leakage from the cavity (which we take here
for simplicity as the primary loss mechanism for the DSC
photon). In Appendix B we derive the equation using several
methods, all in agreement with each other. Here we focus on
the equation for the DSC photon occupation probabilities, ρnn.
Assuming that excited states of the gain medium are pumped
at rate r, the equation of motion for the DSC photon density
matrix is found to be

ρ̇nn = Rnnρn−1,n−1 − (Rn+1(n + 1)ρnn + κnnρnn)

+ κn+1(n + 1)ρn+1,n+1 (5)

Here Rn = 2rε2

2+Fn
is the stimulated emission coefficient,

with Fn ≡ 4nε2 + 1
4ω2e−4g2

(Ln(4g2) − Ln−1[4g2)]2. The Rn

are plotted (green curves) in Fig. 3(b) for different coupling

strengths. For weak coupling, it is simply saturable gain
R(n) ∼ 1/(1 + n/ns) with ns the saturation photon number.
For DSC, we see that the gain coefficient is given by the
standard saturable form for n < nc and then rapidly decays
for n � nc (with occasional oscillations arising from the os-
cillatory behavior of the Laguerre polynomials). Here κn =
κ|〈n − 1|a + a†|n〉|2, with κ the decay rate of the cavity in
the absence of DSC (see Appendix B for derivation). We
note that for simplicity, the gain medium has been taken
to have population and coherence decay rates arising from
the same source (so that  = 1/T1 = 2/T2). This simpli-
fies the calculations but does not qualitatively change our
conclusions.

The steady-state photon probability distribution is entirely
different from that of a traditional laser, which produces a
dephased coherent state. To quantify this, we solve a recur-
sion relation to obtain the steady-state probability distribution
ρn,n = Z−1∏n

m=1 Rm/κm, with Z a normalization coefficient
enforcing

∑
n ρn,n = 1. In Fig. 3(c) we show the intracavity

photon number and photon fluctuations for DSC in compari-
son with weak coupling. We also present the corresponding
photon statistics. In the weak coupling regime, the photon
number as a function of pump follows the canonical “S-curve”
relating the input pump and output intensity of a laser. The
output intensity grows sharply for pump beyond the threshold
pump level, rth = κ2/2ε2. The fluctuations below thresh-
old are essentially those of a thermal state, and far above
threshold, grow according to shot noise (as

√
n, as for a

Poissonian distribution corresponding to a randomly phased
coherent state): this is the textbook result of the laser theory
of Lamb and Scully [20,21]. In contrast, the “Fock laser”
(g = 5, 10, 18), saturates (at nc ∼ g2), and the photon number
fluctuations go to zero, leading to the quantum statistics of a
Fock state [Fig. 3(c), right] as the pump increases. Figure 3 c
(bottom) further shows how the photon statistics evolve with
pump and coupling (taken for g = 10; additional results are
shown in the Appendix C). Beyond threshold, the distribution
of photons (for DSC) approaches that of a thermal state of
negative temperature. Such states, as the pump is increased
(and T → 0−), approach states where only the highest-most
level is filled, with minimal spread, which closely approxi-
mates a Fock state of nc DSC photons.

To understand this Fock lasing effect, it is helpful to refer to
the gain and loss curves of Fig. 3(b), as well as the steady-state
distribution ρn,n = Z−1∏n

m=1 Rm/κm. The steady-state distri-
bution has the property that the probabilities are maximized
where gain equals loss, and probabilities are suppressed if one
of gain or loss far exceeds the other. In particular, the larger
the angle between the gain and loss curves (at the crossing
point), the tighter the concentration of probabilities about the
mean. Increasing the pump rate r further will scale the gain
curve up, leading to a steeper slope and further suppression of
photon number fluctuations, leading asymptotically to a Fock
state.

Beyond these close approximations to high-photon-
number Fock states, other unusual states can arise from the
equilibrium between gain and loss, due to this sudden an-
harmonicity for n � nc. For example, near threshold, where
the number fluctuations increase dramatically, the resulting
distribution is nearly steplike, going to zero rapidly for nc.
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FIG. 4. Uniform and tunneling states arising at the harmonic-to-
anharmonic crossover. (a) The function (1 + Gn)−1 which propagates
the photon probability distribution from n to n + 1, plotted as a
function of coupling strength and photon number (Gn = Fn/). A
harmonic-to-anharmonic crossover occurs for a maximum photon
number nmax ∼ g2 for which the propagation function goes to zero.
When this happens, the probability of having photons larger than
nmax vanishes. Near threshold (where the effective temperature of the
photon goes to infinity), this leads to nearly uniform states of the
electromagnetic field sharply cutoff at the maximum photon number
(right panel). (b) When the decay rate of the gain medium is large, the
anharmonic region becomes narrower (bottom left), and for sufficient
pump intensity, the photon distribution can “tunnel” through the
barrier, evolving effectively as a coherent state. In this tunneling
regime, the distribution becomes bimodal, taking on the character-
istics of the Fock and coherent states for some pump parameters
(bottom right).

This anharmonicity provides a “wall” for the photon proba-
bility distribution that is too hard to pass through, even as the
fluctuations get very large near threshold. These effects also
depend on the decay rate of the gain medium: if the decay rate
is high, then it provides gain over a large bandwidth, and so
changes in the DSC photon frequency have a reduced effect
on the stimulated emission rate Rn. As a result, for increasing
pump, the distribution can “tunnel” through the wall, leading
to states that interpolate between Fock and coherent states, as
well as pure coherent states for large enough pump (see for
example Fig. 4).

V. DISCUSSION AND OUTLOOK

A. Comparison to existing approaches

The new type of infinite-order nonlinearity realized by the
Rabi Hamiltonian in the DSC regime, in principle, enables the
deterministic creation of large Fock states, which has proven
challenging in general. In this section, we briefly review other
approaches to generating Fock states, especially those rel-
evant at microwave frequencies. It is currently possible to
deterministically produce Fock states of order roughly 15 in
microwave resonators through a combination of external driv-

ing of the cavity by microwave pulses and superconducting
transmon qubits [22]. Fock states have also been generated
in microwave cavities by strongly coupling them to transmon
qubits that are repeatedly pumped to inject photons into the
cavity at deterministic times [23]. Older foundational work in
the field of cavity quantum electrodynamics made use of Ry-
dberg atoms strongly coupled to microwave cavities in order
to generate low-order Fock states using principles such as the
one above, as well as quantum feedback protocols [24–26].
Such Rydberg atom-cavity interactions form the basis for
new theoretical proposals to extend microwave Fock states to
higher photon numbers [27,28].

Compared to these approaches, the approached outlined
here has some notable advantages. The “Fock laser” shown
here, which populates a cavity with N excitations based
on stimulated emission, does so because of a strong anhar-
monicity of the spectrum. As a result, any approximately
monochromatic pump of energy which incoherently pumps
the cavity can lead to population of a Fock state. This is in
contrast to approaches such as the “micromaser” in which
Rydberg atoms, which interact with the cavity in the conven-
tional strong-coupling regime, are injected into a cavity one
at a time. There Fock states can in principle based on the
concept of “trap states” [24,25]: for a certain photon num-
ber N and interaction time between atom and cavity τ , the
probability of adding a photon can vanish (due to a vanishing
matrix element), leading to a fixed point where a Fock state
of order N can be populated. This effect therefore is not
robust against loss, multiple atoms being present at a time,
inhomogeneities in the interaction time, etc. This is why it
has proven difficult to produce good approximations to high-
number Fock states in practice. We should note that N-photon
blockade has also been proposed by very different routes,
such as using N-photon parametric drives and Kerr nonlinear
resonators [29,30]. Compared to transient approaches such as
in [22,23] an approximate N-photon state is a steady-state
solution, even in the presence of loss. As a result, the Fock
state can be maintained for arbitrarily long, in contrast to
“transient” approaches, in which the Fock state lasts only for
the cavity lifetime.

Finally, we mention one other line of approaches which
falls under the heading of N-photon guns or bundles, first
described in [31]. The essential difference is that in the present
work, it can be said that the cavity itself is in the state |N〉
with the photon probability distribution being sharply cen-
tered around this value of N : as is described in Ref. [31], the
N-photon gun does not have this property, instead having a
fairly smooth probability of having different photon numbers
in the cavity. On the flip side, in the N-photon gun, the N
photons are emitted in bursts having a timespan set by the
cavity decay rate, while for the DSC case, this is not expected
in the current configuration. This is not expected because if
there are N photons in the cavity in the steady state (getting
continuously replenished by gain), and photon leakage is one
at a time, one expects a steady stream of photons.3

3That said, the physical setup can be altered so that the pump is
switched off after the steady state is reached. In that case, one may
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B. Implementation

Of course, the primary limitation in our approach has to do
with using deep-strong light-matter coupling, which requires
extremely strong light-matter coupling strengths. That said,
recent work on realizing DSC of superconducting qubits to
a microwave (LC) resonator, as in [9,14], provides a path to
observing the effect predicted here. It is already possible to
have control over g from weak coupling to a value of nearly
2. With a g of 2, one can see from Fig. 1 that a Fock state
of three or four excitations could be pumped. For smaller g,
in the ultrastrong coupling regime where 0.1 < g < 1, only
one excitation can be created, as a manifestation of the con-
ventional photon blockade effect [32,33]. Thus, the behavior
of our model from weak to (modest) DSC can already be
realized.

Regarding the gain medium, it is important to point out that
while a typically gain medium consisting of many emitters,
the physics can also be realized by a gain medium consisting
of a single qubit. The qubit should be weakly coupled to
the same cavity as the strongly coupled qubit, and will lase,
provided that the gain from this one qubit is above threshold
[21]. Single-qubit gain is responsible for much of the exciting
experiments on “one-atom lasers” (in real atoms [34,35] and
artificial atoms [36–38]), in which a single atom or artificial
atom provides enough gain to lase.

Thus, a conceptually simpler—and perhaps more
attractive—approach to realize our predictions is to consider
a gain medium consisting of a continuously pumped
superconducting qubit which is weakly coupled to the
same resonance as the strongly coupled qubit (which for
example happens if ε � κ). In Fig. 3 we took ε = 10−5ω,
and  = 10−3ω. Thus, for a single gain qubit, threshold is
reached provided the quality factor of the resonator is above
5 × 106. There are two advances that would support reaching
larger g values: the rapidly increasing coupling constants that
have been realized with superconducting qubits (see Fig. 1 of
[8]), and early estimates in this field suggesting the possibility
of g values of roughly 20 [39]. Another important point
is that while we have focused in this paper on incoherent
pumping (based on emission from two-level systems), the
nonlinear emission physics described in this paper could also
be extended to coherent pumping of the DSC photon by an
external microwave signal. In that case, we expect that by
combining the high-order nonlinearity of the DSC photon
with a frequency-dependent leakage loss (e.g., loss coming
from a reflection filter), one could engineer a highly nonlinear

expect a bundle of N excitations is expected to be emitted out of the
cavity in a time of a few cavity decay rates. By repetitively cycling,
one can get repetitive N-photon pulses emitted from the cavity. That
said, the exact input-output dynamics for Fock lasers are left for
future work. We however briefly mention, in the steady state, one
approximately has, for large pumping rates, for the zero-time-delay
intracavity bundle second-order correlation function defined in [31]
approximately vanishes for N ∼ g2/2. Similar results can be derived
in the higher-order zero-time-delay correlation functions, and finite-
time-delay correlation functions can be calculated from the standard
quantum regression analysis

loss which would be “dual” to the highly nonlinear gain
introduced in Fig. 3.

Summarizing, we have shown a physical principle—using
nonperturbative photonic nonlinearity—which could enable
lasers that produce deterministic, macroscopic quantum states
of light, such as Fock states. Part of the new physics uncov-
ered here, related to lasing in systems with sharply nonlinear
gain, would be of great interest to extend into the optical
regime. In fact, in [40–42], inspired by the developments in
this manuscript, we discuss how trying to mimic the new
“Fock lasers” predicted here, but at optical frequencies. This is
done essentially by combining a highly frequency-dependent
loss with Kerr nonlinearities to get an effectively nonpertur-
batively nonlinear loss. Further, recent efforts in achieving
strong third-order (Kerr) nonlinearities at mesoscopic scales,
without gain, but with laser driving (as in Refs. [43–45]), may
also give a variety of new approaches to emulate this physics
in optics with Kerr nonlinear systems. Even in regimes
where the nonlinearities are not sufficiently strong to realize
photon-number-uncertainties approaching zero, the concepts
here enable strong intensity squeezing, or alternatively stated,
strongly sub-Poissonian light states with fluctuations far be-
low the quantum shot noise limit [46,47], which are useful in
a variety of sensing and metrological applications. As a result,
we largely expect that the physical principles established here
for controlling fluctuations, independently of DSC, should
also give rise to new ideas and experiments in the optical
domain.
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APPENDIX A: FOCK LASING BASED ON DEEP-STRONG
LIGHT-MATTER COUPLING

In this and the following Appendixes, we derive and extend
the results of the main text. Consider a system involving mat-
ter coupled to a cavity mode very strongly, so that the system
is in the ultra- or DSC regime. This system is described by
the Rabi Hamiltonian of Eq. (1) (Hamiltonian and variables
redefined here for self-containedness):

HRabi/h̄ = 1
2 (ω0σz + λσx ) + ωa†a + g̃σx(a + a†). (A1)

Here ω0 is the transition frequency of the two-level system,
σx,z are the x and z Pauli matrices, ω is the cavity frequency,
a(†) is the cavity annhilation (creation) operator, and g̃ is the
Rabi frequency. We also nondimensionalize the coupling as
g = g̃/ω.
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Let us now transfer energy into this system by means of
external emitters, treated as two-level systems of energy ω0.
Let us assume the emitter is primarily interacting with the
cavity (as it is too far for direct interactions with the dipole of
the matter). Let us then take the full Hamiltonian describing
the coupling of one emitter to the light-matter system as

H/h̄ = ωem
0

2
σ em

z + HRabi + εσx,em(b + b†), (A2)

which couples the emitter directly to the DSC photon. We
can also consider interactions solely between the emitter and
the resonator field, replacing b → a. We consider this case as
well, to show that the exact nature of the emitter-qubit dipole-
dipole coupling does not qualitatively change our conclusions.

If the emitter is in the excited eigenstate |e〉, and it is reso-
nant with a transition of the Rabi Hamiltonian, the emitter can
transfer energy to the light-matter system. Upon interaction
with a second emitter, if the next transition of the Rabi model
has nearly the same frequency, the system can get further ex-
cited. A key observation is that in the DSC regime g � ω, the
eigenstates are approximately equally spaced, and the excita-
tions are oscillator-like, quite similarly to the zero-coupling
case. This should allow the possibility of reaching a very high
excitation number in the presence of many emitters, based on
stimulated emission of these oscillator modes (we will call
them DSC photons). When the coupling is not infinite, as in
a realistic case, the levels are no longer fully equally spaced.
This detuning is photon-number dependent, thus acting as a
nonlinearity which may qualitatively change the steady state
of this type of laser.

To begin, we need to derive simple forms for the eigen-
states of the Rabi Hamiltonian in the DSC limit. Then, we
will consider their coupling to external emitters, and write a
coarse-gained equation of motion for the density matrix of the
DSC bosons, and then solve it.

1. Eigenstates of the Rabi Hamiltonian

In what follows, we will take ω0 = ω (resonant) and λ =
0. In later subsections we will analytically and numerically
consider the case of a finite λ, which is found to preserve our
main findings.

In the DSC regime we can treat the matter term in the
Rabi Hamiltonian as a perturbation to the remainder of the
Hamiltonian. The remainder of the Hamiltonian (divided by
h̄), which we call HDSC is

HDSC = ωa†a + g̃σx(a + a†) = ω(a† + gσx )(a + gσx ) − ωg2,

(A3)

where g ≡ g̃/ω is a dimensionless measure of the coupling
strength. Introducing the displacement operator D(gσx ) =
exp[gσx(a† − a)], where we have taken g real without loss of
generality, we have

HDSC = ωD†(gσx )a†aD(gσx ), (A4)

where we have omitted the overall constant −ωg2. From here
we can easily see that the eigenstates of this Hamiltonian
are of the form D†(±g) |±x, n〉, where |x〉 denotes the x-spin
basis, and n is a Fock state. In other words, the eigenstates
involve the spin being x-polarized (rather than z polarization),

and the photon being in a displaced Fock state (rather than
just a Fock state). Clearly,

HDSCD†(±g) |±x, n〉 = nωD†(±g) |±x, n〉 . (A5)

Clearly then, in this limit, the eigenstates are evenly spaced,
and doubly degenerate. In fact, it can be seen as a system
of two noninteracting bosons (“DSC photons”). Introducing
bσ = a + gσx we can write the Hamiltonian as

HDSC = ωb†b. (A6)

It can also be easily seen that [b, b†] = 1.
The degeneracy of the DSC Hamiltonian is split by the

matter Hamiltonian. We can find the resulting eigenstates and
eigenenergies using degenerate first-order perturbation theory.
The “good” eigenbasis of the problem is

|n, σ 〉 = 1√
2

(D† |+x, n〉 + σD |−x, n〉), (A7)

where σ = ±1, and a displacement operator without an ar-
gument implies that the argument is g. The energies of the
resulting states are

Enσ = ω

2
〈n, σ | σz |n, σ 〉

= ω

4
(〈+x, n| D + σ 〈−x, n| D†)

× σz(D† |+x, n〉 + σD |−x, n〉)

= σ
ω

4
(〈n| D2 |n〉 + 〈n| D†2 |n〉)

= σ
ω

2
〈n| D2 |n〉 ≡ σ

ω

2
Dn, (A8)

where Dn = 〈n| D2(g) |n〉 = 〈n| D(2g) |n〉. These eigenstates
and energies are sufficiently accurate, even for g = 2 or g = 3.
The quantity Dn is found to be

Dn(2g) = e−2|g|2 Ln(4|g|2), (A9)

and so the eigenenergies follow as

Enσ = nω + σ
ω

2
e−2|g|2 Ln(4|g|2). (A10)

2. Time evolution of the coupled system

With the approximate eigenstates of the Rabi Hamiltonian,
we now want to understand the full dynamics of H . We will
take advantage of the fact that for a laser, ε is small, and in
particular, ε � ω, so that the rotating-wave approximation
(RWA) is valid. In this system, the RWA consists of only
considering the dynamics within degenerate subspaces of the
unperturbed Hamiltonian

H0 = ω0

2
σz,em + HRabi. (A11)

The eigenstates of the problem are |k〉 |nσ 〉, where now k =
0, 1 denotes emitter states (ground is zero, excited is one). The
energies of such states are (up to a shift)

Eknσ = [n + k(1 + δ)]ω + σ
ω

2
Dn, (A12)

where we have taken ω0 = (1 + δ)ω. From here on out, let us
assume δ � ω. In that case, it is easy to see that the following
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FIG. 5. Matrix elements of a†a, b†b and a, b, showing that b
counts excitations of the DSC system over the full range of eigen-
states. However, up to nc, a and b act similarly.

four states form our nearly degenerate subspace:

{|1, n − 1,+〉 , |0, n,+〉 , |1, n − 1,−〉 , |0, n,−〉}. (A13)

We now need to understand the action of the interaction
Hamiltonian V ≡ εσx,em(b + b†) on this subspace. First of all,

〈k′n′σ ′|V |knσ 〉 = 0 if k = k′. (A14)

For k = −k′, we have

〈−kn′σ ′|V |knσ 〉 = ε
1 + σσ ′

2
(
√

nδn′,n−1 + √
n + 1δn′,n+1).

(A15)

From these matrix elements, we see that: if the pseu-
dospin (σ ) is conserved, then a nonzero matrix element
occurs only when the boson number changes by 1. Noting
that b = a + gσx, we can also readily describe interactions
using a as 〈n′σ ′|a + a†|nσ 〉 = √

nδn′,n−1 + √
n + 1δn′,n+1 −

2g1−σσ ′
2 δnn′ , such that: when the pseudospin changes, nonzero

matrix elements occur only when the boson number is con-
served. When the spin is conserved, the matrix elements are
the same as for b + b†. Since only states with different photon
number differ appreciably in frequency (and in particular, will
be resonant with the emitter we introduce), the interactions
are effectively the same whether we describe a or b. This
is also to say that any modification in the coefficient of the
dipole-dipole interaction between emitter and qubit will lead
to the same result insofar as DSC photon dynamics are con-
cerned. In Fig. 5 we show the matrix elements of a and b
between adjacent states of the same spin, as well as a†a and
b†b. For n < nc ∼ g2, they behave as one might expect for an
oscillator.

We should note that beyond nc, these states and matrix
elements that we calculate based on degenerate perturbation
theory are expected to change significantly. However, the
approximate result turns out to describe the system well be-
cause the probabilities to find photon numbers beyond nc are
strongly suppressed in the Fock laser, rendering the descrip-
tion relatively insensitive to these details.

Based on these considerations, we see that the Hamiltonian
in the degenerate subspace may be written as

H =
(
δω + ω

2
Dn−1

)
|1, n − 1,+〉 〈1, n − 1,+|

+
(ω

2
Dn

)
|0, n,+〉 〈1, n,+|

+ ε
√

n |1, n − 1,+〉 〈0, n,+| + H.c.

+
(
δω − ω

2
Dn−1

)
|1, n − 1,−〉 〈1, n − 1,−|

+
(
−ω

2
Dn

)
|0, n,−〉 〈0, n,−|

+ ε
√

n |1, n − 1,−〉 〈0, n,−| + H.c. (A16)

As we can see here, there are two independent blocks of the
Hamiltonian (for each pseudospin) and we can thus study
them separately. Let us assume that we’re at zero temperature,
and so the ground state has the minus pseudospin, which we
assume to be conserved for all times. In that case, we can work
with the simple two-state Hamiltonian

Heff = ω
(
δ − 1

2 Dn−1
) |1, n − 1〉 〈1, n − 1|

− 1
2ωDn |0, n〉 〈0, n|

+ ε
√

n |1, n − 1〉 〈0, n| + H.c., (A17)

where the pseudospin label has been dropped. This can be
written in terms of Pauli matrices as

Hn = ω

2

(
δ − 1

2
[Dn−1 + Dn

)
]I

+ ω

2

(
δ − 1

2
[Dn−1 − Dn

)
]σz + ε

√
nσx. (A18)

Introducing En = ω
2 (δ − 1

2 [Dn−1 + Dn)], �n = ω
2 (δ −

1
2 [Dn−1 − Dn)], we have very simply

Hn = EnI + �nσz + ε
√

nσx. (A19)

As we will see in the next Appendix, we need to know how
states of the form |1, n − 1〉 evolve over time. Thus we need

e−it (�nσz+ε
√

nσx ) ≡ e−i|Un|t (Ûn·σ ), (A20)

with Ûn = (�n,0,ε
√

n)√
�2

n+nε2
and |Un| = √

�2
n + nε2. Since |Ûn| = 1,

we have

e−i|Un|t (Ûn·σ ) = cos(|Un|t ) − i(Ûn · σ ) sin(|Un|t ). (A21)

Therefore

e−iHt/h̄ |1, n − 1〉 = [cos(|Un|t ) − iÛnz sin(|Un|t )] |1, n − 1〉
− iÛnx sin(|Un|t )|0, n〉. (A22)

So the probability of remaining in the same state is

P(1, n − 1) = cos2(|Un|t ) + �2
n

�2
n + nε2

sin2(|Un|t )

= 1 − nε2

�2
n + nε2

sin2(|Un|t ), (A23)

while the probability of transitioning is

P(0, n) = nε2

�2
n + nε2

sin2(|Un|t ). (A24)

APPENDIX B: EQUATION OF MOTION
FOR DSC PHOTONS

Now we consider the description of laser action. To do
so, we formulate an equation for how the density matrix of
the DSC photon changes due to stimulated emission by the
emitter. The method of analysis presented closely follows
the coarse-grained density matrix technique used to describe
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conventional lasers. It is described in many books, such as
[18,21]. Suppose we have our emitter coupled to the light-
matter (DSC) system. The emitter unit starts in the state |i〉 and
the DSC system is taken to have a density matrix ρDSC, so that
the initial density matrix of the total system ρtot is given by
ρtot(t ) = |i〉〈i|ρDSC(t ). Let us look for an equation describing
only the evolution of the DSC system. Assuming the interac-
tion over a time T corresponds to the evolution operator U ,
we have that

ρtot(t + T ) = U |i〉〈i|ρDSC(t )U †. (B1)

The DSC photon density matrix, ρDSC = tremρtot (where “em”
denotes emitter) can then be expressed as

ρDSC(t + T ) =
∑

k,mm′,nn′
ρDSC,nn′ (t )Ukm,inU

∗
km′,in′ |m〉〈m′|,

(B2)

where Ukm,in = 〈k, m|U |i, n〉, with |i〉, |k〉 denoting emitter
states and |m〉, |n〉 denoting DSC photon occupation states.
Meanwhile, ρDSC,nn′ refers to the nn′ matrix element of the
DSC photon reduced density matrix.

From here a number of approaches can be followed. If
there is no loss in the system, then the density matrix of the
total system upon the next iteration is simply ρDSC(t + T ) =
|i〉〈i|ρDSC(t + T ) and this procedure can be iterated in a dis-
crete fashion. The evolution can also be seen as continuous if,
over time T , the change in the density matrix is small. This
does not describe the early stages of the evolution, but it can
describe later stages once there are many bosons in the system.
If there is a steady state, then the continuous evolution must
describe the run-up to the steady state, as changes get smaller
over time. In such a case, we have

ρ̇mm′ = r

⎛
⎝∑

k,nn′
Ukm,inU ∗

km′,in′ − δn,mδn′,m′

⎞
⎠ρnn′ , (B3)

where r = N/T is the number of excited emitters introduced
into the system in time T . We have also dropped the “DSC”
subscript for the DSC photon for brevity. These terms in
the evolution of the density matrix describe the gain in the
system. In addition, since there are losses associated with
the cavity, the emitter, and the matter coupled to the cavity,
we need to describe those. For simplicity, we will assume
the emitter has loss, and so does the DSC photon, but not
the matter (qualitatively similar results arise if the matter
has loss).

1. Lindblad terms

Here we describe the effect of dissipation of the DSC
photon on the equation of motion for its density matrix. Let
us assume for simplicity that the cavity loss the primary
source of dissipation in the problem. For weak coupling, the
standard prescription is to add a Lindblad term to the Liou-
villian which prescribes the evolution of the density matrix.
The Lindblad term would be (at zero temperature) D[a]ρ ≡
− κ

2 (a†aρ + ρa†a − 2aρa†). As is well known from studies of
dissipation in ultrastrong coupling of light and matter, the use
of the standard Lindblad term leads to unphysical excitations
(in the energy eigenbasis), even at zero temperature, and zero

pumping [48]. Part of the issue is that in the USC regime,
the a operator can create excitations in the eigenbasis, clearly
not representing dissipation. Framed in terms of the standard
derivation, the issue could be said that the interaction picture
a operator has negative frequencies, and the use of white
noise (with frequencies −∞ to ∞) introduces contributions
from these negative frequencies [1,32]. The issue can be rec-
tified by keeping in mind the positive-frequency nature of the
reservoir.

We now use this procedure to describe dissipation in the
DSC regime. Although the technique has been worked out for
ultrastrong coupling, there is a commonly used assumption in
the final result that all transitions have different frequencies,
which does not necessarily hold in DSC, when the energy
ladder is quasiharmonic. Interestingly, as we will show from
a physical dissipator, the issues described above create much
less error in the DSC regime, and the use of an operator like
a or b produces a similar result to a proper positive-frequency
jump operator, as their negative frequency parts get exponen-
tially suppressed.

Let us consider the Lindblad term arising from a system-
bath coupling of the form

V = J
∑

k

(Vkbk + V ∗
k b†

k ), (B4)

where J is a DSC system operator (e.g., a + a† or b + b†),
and the bk are the bath operators, satisfying [bk, b†

k′ ] = δkk′ .
The couplings Vk between system and bath are weak. To
isolate the positive-frequency parts of J , we express it in
its energy eigenbasis as J = ∑

n>m JmnTmn +∑
m>n JmnTmn +∑

n JnnTnn ≡ J+ + J− + J0, with Jmn = 〈m|J|n〉 and Tmn =
|m〉〈n|.

In what follows, we will consider the bath to be concen-
trated around ω, but broadband enough that the white-noise
approximation may be made for any transitions we consider.
For example, a bath with a half-bandwidth of 10% of ω would
be sufficient for the values of g,Vk we consider. It would
include all active transitions of the form n → n + 1, but would
not include higher transitions (though the matrix elements for
them are small anyway), and in the presence of a λ term, it
would also not include transitions that only change spin (for
λ = 0, the two spins are very nearly degenerate and so the
argument should be treated with more care). Therefore, we
may describe the interaction of Eq. (B4) within the RWA,
instead considering

V ≈
∑

k

(VkbkJ+ + V ∗
k b†

kJ−). (B5)

We note that it is not necessary to take the RWA at this stage,
but it makes the subsequent manipulations simpler.

Thus, we may approximate the evolution of the reduced
density matrix of the DSC system (in the interaction picture)
to second order in time-dependent perturbation theory, as

ρ̇DSC,I = − itrb([VI (t ), ρ(0)])

−
∫ t

0
dt ′ trb([VI (t ), [VI (t ′), ρI (t ′)]]), (B6)

where ρI is the system-bath density matrix, ρDSC,I is the
system density matrix, VI is the system-bath coupling in the

043240-10



NONPERTURBATIVE ELECTROMAGNETIC … PHYSICAL REVIEW RESEARCH 5, 043240 (2023)

interaction picture, and trb denotes the partial trace with re-
spect to the bath. For simplicity, we will consider the bath
at zero temperature. Upon taking the trace with respect to
the bath, the term which is linear in VI will vanish, and the
equation of motion becomes

ρ̇DSC,I = −
∫ t

0
dt ′ trb[VI (t )VI (t ′)ρI (t ′) + ρI (t ′)VI (t ′)VI (t )

− VI (t )ρI (t ′)VI (t ′) − VI (t ′)ρI (t ′)VI (t )]. (B7)

The first term may be simplified, taking the trace with respect
to the bath variables, as

−
∫ t

0
dt ′
∫ ∞

0
dω D(ω)|V (ω)|2eiω(t ′−t )J−

I (t )J+
I (t ′)ρDSC(t ′),

(B8)

where D(ω) is the density of bath states, and we have replaced
the sum over k by an integral over bath frequencies. Since
an operator of the form J+ is a pure de-excitation operator,
no spurious excitations are introduced, and the integration
limits may be extended to −∞. Doing so, and making the
white noise approximation, one immediately finds that the
term evaluates to − κ

2 J−
I (t )J+

I (t )ρDSC(t ), where κ = 2πρ|V |2.
A similar manipulation for the remaining terms yields that
the free dissipation dynamics of the DSC Hamiltonian are
governed by

ρ̇DSC,I = −κ

2
(J−

I J+
I ρDSC + ρDSCJ−

I J+
I − 2J+

I ρDSCJ−
I ).

(B9)

Let us use this to find the contribution of dissipation to
the equation of motion for the populations, ρnn. From here on
out, we will suppress the “DSC” subscript. We will ignore the
spin degree of freedom (and restrict the dynamics to a single
spin ladder). Although this is not rigorous, one expects this to
capture well the dynamics of the DSC photon number as, for
λ = 0, one will just expect the nearly degenerate spins to be
mixed, with little change of the oscillator quantum numbers.
We validate this numerically. For finite λ the spin ladders
can be split appreciably, and so they will decouple. Consider
a J of the form b + b†. As discussed in the main text, b
is a pure de-excitation operator, and b† is a pure creation
operator. Therefore, J+ = b. Using the fact that 〈n′σ |b|nσ 〉 =√

nδn′,n−1 and b†b|nσ 〉 = n|nσ 〉, one immediately
arrives at

ρ̇nn = −κnρnn + κ (n + 1)ρn+1,n+1, (B10)

which is similar to the form one would expect for damping of
a conventional photon. This is perhaps unsurprising in light
of the fact that the DSC photon is essentially harmonic up to
nc ∼ g2. It is worth noting that the matrix elements derived for
a, b in Eq. (24) are based on first-order degenerate perturba-
tion theory. Beyond nc, these approximations do not hold up
and the states and matrix elements change significantly. How-
ever, the approximate result turns out to describe the system
well because the probabilities to find photon numbers beyond
nc are strongly suppressed. It is also worth noting that if we
chose a instead of b as the jump operator, when we neglect
spin, the matrix elements are the same. Numerically, we find
that whether we choose a or b as the jump operator, negligible

levels of excitations are created in the ground state, and the
steady state of the Fock laser we describe is not qualitatively
changed. These numerics are shown in the last section.

a. Rate equations

We will now obtain a closed set of equations for the di-
agonals of the DSC density matrix, to get the probability of
different Fock state occupations of the DSC photons. Setting
m = m′, we have

ρ̇mm = r

⎛
⎝∑

k,nn′
Ukm,inU

∗
km,in′ρnn′ − δn,mδn′,mρnn′

⎞
⎠. (B11)

The set of equations for the coarse grained density matrix is
closed only when Ukm,inU ∗

km,in′ is zero unless n = n′. In that
case we have

ρ̇mm = r

⎛
⎝∑

k,n

|Ukm,in|2ρnn − ρmm

⎞
⎠. (B12)

We can now note the conditions under which the equations for
the populations become closed. We require Ukm,inU ∗

km,in′ is
zero unless n = n′. This is equivalent to saying that a transi-
tion in → km and in′ → km are not simultaneously possible.
Supposing i is also an eigenstate of the light-matter system,
and that we are in the RWA, this statement appears to amount
to energy conservation, as transitions are assumed to be only
efficient if they are resonant, so that Ei + En = Ek + Em.
Therefore the condition that Ukm,inU ∗

km,in′ �= 0 for n �= n′ re-
quires En = En′ , which, for a single oscillator, requires n = n′.

In the weak coupling regime then, we have (adding in the
photon losses)

ρ̇mm = r
∑
k,n

|Ukm,in|2ρnn − rρmm

+ κ (m + 1)ρm+1,m+1 − κmρmm. (B13)

Let is now consider the case of the emitter coupled to our
light-matter system. Since we inject emitters in the excited
state, we have i = 1. The state 1n couples only to 1n and
0(n + 1). So the sum over probabilities leaves only the scatter-
ing matrix coefficients U1m,1m and U0m,1(m−1). Therefore, the
coarse-grained equation simplifies to

ρ̇mm = r(|U0m,1(m−1)|2ρm−1,m−1 + |U1m,1m|2ρmm) − rρmm

+ κ (m + 1)ρm+1,m+1 − κmρmm. (B14)

We found these probability coefficients when studying the
dynamics of the Hamiltonian in the degenerate subspace of
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fixed pseudospin. Plugging in the results there, we have4.

ρ̇nn = rnε2

�2
n + nε2

sin2(|Un|T )ρn−1,n−1

− r(n + 1)ε2

�2
n+1 + (n + 1)ε2

sin2(|Un+1|T )ρnn

+ κnρnn + κ (n + 1)ρn+1,n+1. (B15)

To proceed, we must the emitter loss (T1 and T2 decay)
into account. Assuming that the emitter loss manifests as
exponential decay with rate , the effect is to average the
probability coefficients over T with probability distribution
P(T ) = e−T . Noting that



∫
dT e−T sin2(αT ) = 2α2

2 + 4α2
, (B16)

we have

ρ̇nn = r
nε2

�2
n + nε2

2U 2
n

2 + 4U 2
n

ρn−1,n−1

−
(

r
(n + 1)ε2

�2
n+1 + (n + 1)ε2

2U 2
n+1

2 + 4U 2
n+1

+ κn

)
ρnn

+ κ (n + 1)ρn+1,n+1. (B17)

Noting that U 2
n = �2

n + nε2, we have

ρ̇nn = r
2nε2

2 + 4
(
�2

n + nε2
)ρn−1,n−1

−
(

r
2(n + 1)ε2

2 + 4
[
�2

n+1 + (n + 1)ε2
] + κn

)
ρnn

+ κ (n + 1)ρn+1,n+1. (B18)

Assuming resonance between the emitter and the light-matter
system, we have finally

ρ̇nn = 2rnε2

2 + F (n)
ρn−1,n−1 −

(
2r(n + 1)ε2

2 + F (n + 1)
+ κn

)
ρnn

+ κ (n + 1)ρn+1,n+1, (B19)

with the nonlinearity, F (n) defined as

F (n) = 4nε2 + 1
4ω2e−4g2

[Ln(4g2) − Ln−1(4g2)]2. (B20)

4To check a limiting case, we set the detunings are zero. In
that case, |Un| = √

nε, and we have ρ̇nn = r sin2(εT
√

n)ρn−1,n−1 −
[r sin2(εT

√
n + 1) + κn]ρnn + κ (n + 1)ρn+1,n+1 This coincides ex-

actly with the equation of motion of the so-called micromaser, which
describes the interaction of injected two-level atoms interacting with
a cavity (in the perturbative coupling regime g � ω). This is quite
interesting as the micromaser equations assume g � 1, while here
we are starting from the limit g � 1. Moreover, by averaging over
decay times as we do in the next subsection, we will find exactly
the standard Scully-Lamb master equation for a conventional laser.
What’s happening here is that in the weak-coupling regime, assuming
the emitter is resonant, the detunings also approximately vanish be-
tween the nearly degenerate levels. And so we get a similar equation,
except that it the conventional case, it is in the photon basis, and here
it is in the DSC photon basis

Here we have used �n = ω
2 {δ − e−2g2

2 [Ln−1(4g2) − Ln(4g2)]}
with δ = 0.

2. Steady-state dynamics

Perhaps one of the most important results is the steady-
state dynamics of the system. Thus we want to solve ρ̇n =
0 with the constraint

∑
n ρn = 1 (introducing the short-

hand ρn = ρnn). Writing the steady-state equation as 0 =
Anρn−1 + Bnρn + Cnρn+1, we have the recursion relation
ρn+1 = −Bnρn+Anρn−1

Cn
, with ρ0 = 1 and ρ−1 = 0. Since any

scale multiple of ρ also solves this equation, we can normalize
the solution at the end to satisfy the normalization constraint.

This equation can be simplified by noting that Bn =
−(An+1 + Cn−1). We thus have Anρn−1 − An+1ρn − Cn−1ρn +
Cnρn+1 = 0 or alternatively

Anρn−1 − Cn−1ρn = An+1ρn − Cnρn+1. (B21)

Defining the difference Sn = Anρn−1 − Cn−1ρn, we see that
Sn = Sn+1. Since S0 = A0ρ−1 − C−1ρ0 = 0, we have that
Sn = 0 for all n, and thus the simpler recursion relation:

ρn+1 = An+1

Cn
ρn ⇒ ρn =

(
n∏

m=1

Am

Cm−1

)
ρ0. (B22)

The initial ρ0 is taken as 1 understanding that we must normal-
ize the probability distribution at the end of the calculation.
Plugging in the forms of the A and C coefficients, we have

ρn = 1

Z

n∏
m=1

2rε2/κ

2 + F (m)
≡ 1

Z

n∏
m=1

α

1 + G(m)
, (B23)

where we have introduced α = 2rε2

κ2 , G(m) = F (m)/2, and
Z = 1 +∑∞

n=1(
∏n

m=1
Am

Cm−1
), the normalization constant. We

note that the factor α[1 + G(n)]−1 essentially “propagates”
the probability distribution from n to n + 1. These results
underlie the results of Fig. 2 and Fig. 3.

In Fig. 6 we expand upon Fig. 2 by showing the statistics as
a function of pump for different coupling parameters, to give
the reader of a clearer sense of the transition from thermal to
coherent to Fock statistics.

3. Summary of changes with λ �= 0

In most of the discussion, we have assumed that λ = 0.
However, in many superconducting qubit systems, a nonzero
σx term is present due to an applied bias field which can tune
the system. Our main results of nonperbative nonlinearity, as
well as the Fock lasing action in these systems, are robust to
the addition of this term. We summarize the main changes
here.

We assume that the generalized Rabi Hamiltonian now
takes the full form

H = 1
2 (ωσz + λσx ) + ωa†a + g̃σx(a + a†). (B24)

The spectrum is now approximately given by

En,σ = nω + σ

2

√
(ωDn)2 + λ2, (B25)
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FIG. 6. Evolution of photon statistics with pumping: thermal, coherent, antithermal, and Fock states. Photon probability distributions as a
function for different pump strengths and different coupling strengths. For weak coupling, the statistics evolve from thermal to coherent with
increasing pump. For the largest couplings considered, the state evolves from thermal (for low pump) to coherent (for intermediate pump) to a
thermal state of negative temperature for higher pump. As the pump increases, the negative temperature state converges effectively to a Fock
state. Note that the bottom left panel overlaps with Fig. 2.

which corresponds to the eigenstates

|n,+〉 = cos(θ/2)D†(g) |+x, n〉 + sin(θ/2)D(g) |−x, n〉 ,

(B26)

|n,−〉 = sin(θ/2)D†(g) |+x, n〉 − cos(θ/2)D(g) |−x, n〉 ,

(B27)

where the mixing angle θ is defined by tan(θ ) = ωDn/λ.
In principle, the modifications to the analysis of the laser

action should follow through new additions to the matrix ele-
ments which couple these eigenstates. Specifically, we have

〈n′,+|(a + a†)|n,+〉 = (
√

nδn′,n−1 + √
n + 1δn′,n+1)

− 2gcos θδnn′ , (B28)

〈n′,−|(a + a†)|n,−〉 = (
√

nδn′,n−1 + √
n + 1δn′,n+1)

+ 2gcos θδnn′ , (B29)

〈n′,−|(a + a†)|n,+〉 = −2g sin θδnn′ . (B30)

However, we see that the only new terms are only nonzero
when the photon number stays the same. Thus, the only
modifications to the equations of motion come from the
eigenenergies. This means that the equations of motion de-
rived previously still hold valid, but with a new nonlinearity:

F (n) = 4nε2 + ω2

4

(√
D2

n + λ2 −
√

D2
n−1 + λ2

)2
. (B31)

4. Direct method for evolving the density matrix

In the previous section, we treated the emitter-field inter-
action as if excited two-level systems were being injected into
the system at rate r. We also treated the interaction with the
emitters as sequential: as if one emitter interacts with the field
at any given time, with probability coefficients averaged over
the emitter’s exponential decay probability. In this section, we
provide an alternative treatment of the problem in which we
consider the direct evolution of the density matrix in the pres-
ence of coherent emitter-field interaction, emitter pumping,
emitter decay, and field leakage. This approach, besides be-
ing in principle more rigorous, and besides providing further

corroboration of our results above, also allows us to consider
multilevel emitter systems, such as three- and four-level sys-
tems, which are more practical from the standpoint of lasers.
This method has been applied to describe conventional lasers
(see [21]), but due to its generality, can be used to describe the
Fock laser discussed in this paper.

The equation of motion for the density matrix is

ρ̇ = −i[H/h̄, ρ] +
∑

i

γi

2
(2JiρJ†

i − J†
i Jiρ − ρJ†

i Ji )

≡ −i[H, ρ] +
∑

i

Li[ρ], (B32)

where

H = HRabi +
N∑

i=1

Hem,i + h̄εi(|ai〉 〈bi| + |bi〉 〈ai|)(b + b†)

(B33)

is the Hamiltonian describing N multilevel emitters (with
Hamiltonian Hem,i) coupled to the electromagnetic field
associated with matter strongly coupled to a single electro-
magnetic field mode with coupling constant εi. The levels a
and b of the ith emitter are coupled to the field and com-
prise respectively the excited and ground levels of the lasing
transition. We have changed e, g → a, b as in what follows,
we will introduce more levels to incorporate realistic decay
channels. The terms on the right of the density matrix equa-
tion of motion are Lindblad terms with decay rates γi and
jump operators Ji. The index i enumerates over the possible
decay mechanisms, as well as all of the emitters. In what
follows, we review several (standard) simplifications of this
equation that render a readily solvable problem.

For simplicity, we will consider the case (as before) where
all emitters have the same energy levels (and thus the same
Hem,i) and coupling constant εi = ε (which is the average
coupling dictated by the emitter distribution and cavity mode
profile). Similarly, the decay constants of all atomic levels
are taken as the same. These simplifications do not negate
the effects reported here. Beyond these simplifications, a key
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simplification arises because the emitter-field coupling cou-
ples all of the emitters to a single quantum oscillator. In this
case, we can consider the problem as effectively a one-emitter
problem where

H = HRabi + h̄ε(|e〉 〈g| + |g〉 〈e|)(a + a†) ≡ H0 + V, (B34)

and the i in the Lindblad terms enumerates only over decay
channels. We have defined for simplicity H0 = HRabi + Hem

and V/h̄ = ε(|e〉 〈g| + |g〉 〈e|)(a + a†).
To start, we will consider decay channels for the emitter

only, and not the field, and include the field decay channels
at the end of the calculation. In what follows, we consider an
emitter system consisting of lasing levels a, b, ground level g,
and “bath levels” c, d for which a and b respectively decay
to. The pumping from g → a occurs with rate r, while the
a → c decay occurs with rate γa, the b → d decay occurs with
rate γb, the c → g decay occurs with rate γc, and the d → g
decay occurs with rate γd . Thus, the density matrix equation of
motion may be written as

ρ̇ = −i[H0/h̄, ρ] − i[V/h̄, ρ] +
∑

i=g,a,b,c,d

Li[ρ], (B35)

where the jump operators for g, a, b, c, d are, respec-
tively, |a〉 〈g| , |c〉 〈a| , |d〉 〈b| , |g〉 〈c| , |g〉 〈d| with correspond-
ing rates r, γa, γb, γc, γd .

Let us now write an equation of motion for the matrix
elements of the density matrix, ρβn′,αn, where α, β enumerate
over emitter states g, a − d and the n, n′ enumerate over the
eigenstates of the Rabi Hamiltonian (e.g., the Fock states of
DSC photons). We are considering the Hamiltonian only in
one spin projection, as in the previous treatment, since the
spins decouple, both in the conventional Rabi model, and
the generalized one (with λ �= 0). To proceed, we will need
the following matrix elements

〈β, n′| [H0/h̄, ρ] |α, n〉 = (ωβn′ − ωαn)ρβn′,αn,

〈b, n′|V ρ |α, n〉 = Vbn′,an′−1ρan′−1,αn,

〈a, n′|V ρ |α, n〉 = Van′,bn′+1ρbn′+1,αn,

〈β, n′| ρV |b, n〉 = ρβn′,an−1Van−1,bn,

〈β, n′| ρV |a, n〉 = ρβn′,bn+1Vbn+1,an. (B36)

For matrix elements of V ρ and ρV , we have used the structure
of the matrix elements in the section “Time evolution of the
coupled system,” where we showed that the effect of the cou-
pling is to change the emitter state, and to change the number
of field quanta by one.

We also need the matrix elements of the Lindblad terms.
Let us consider a generic Lindblad term of the form

〈β, n′|Li[ρ] |α, n〉
= γi

2
〈β, n′| 2TjiρT †

ji − T †
jiTjiρ − ρT †

jiTji|α, n〉, (B37)

where Tji = | j〉 〈i|. Ti j is simply Ji with the final-state index j
included for clarity. The matrix element follows as

〈β, n′|Li[ρ] |α, n〉
= γi

2
(2δ jβδ jαρin′,in − δiαρβn′,in − δiβρin′,αn). (B38)

With these matrix elements tabulated, we may write the
following set of equations for the matrix elements of the
density matrix:

ρ̇an′,an = −iωn′nρan′,an − γaρan′,an + rρgn′,gn

− i(Van′,bn′+1ρbn′+1,an − ρan′,bn+1Vbn+1,an),

ρ̇bn′+1,an =
[
−i(ωbn′+1 − ωan) − γa + γb

2

]
ρbn′+1,an

− i(Vbn′+1,an′ρan′,an − ρbn′+1,bn+1Vbn+1,an),

ρ̇an′,bn+1 =
[
−i(ωan′ − ωbn+1) − γa + γb

2

]
ρan′,bn+1

− i(Van′,bn′+1ρbn′+1,bn+1 − ρan′,anVan,bn+1),

ρ̇bn′+1,bn+1 = −iωn′+1,n+1ρbn′+1,bn+1 − γbρbn′+1,bn+1

− i(Vbn′+1,an′ρan′,bn+1 − ρbn′+1,anVan,bn+1),

ρ̇cn′,cn = (−iωn′n − γc)ρcn′,cn + γaρan′,an,

ρ̇dn′,dn = (−iωn′n − γd )ρdn′,dn + γbρbn′,bn,

ρ̇gn′,gn = (−iωn′n − r)ρgn′,gn + γcρcn′,cn + γdρdn′,dn.

(B39)

While these equations can be generally solved, we focus as
in the previous treatment on the steady-state dynamics. As
expected from conventional lasers, the steady-state density
matrix is diagonal due to decoherence. Numerically, for this
laser system, based on deep-strong light-matter coupling, we
also found that the steady state (found by the null eigenvector
of the Liouvillian (S such that ρ̇ = Sρ) is diagonal. Let us thus
focus on the steady-state equations for the “photon diagonals”
(n = n′), which are simply

0 = rρgn,gn − γaρbn,an − i(V ∗ρbn+1,an − ρan,bn+1V ),

0 =
[

i�n+1 − γa + γb

2

]
ρbn+1,an − i(V ρan,an − ρbn+1,bn+1V ),

0 =
[
−i�n+1 − γa + γb

2

]
ρan,bn+1

− i(V ∗ρbn+1,bn+1 − ρan,anV
∗),

0 = −γbρbn+1,bn+1 − i(V ρan,bn+1 − ρbn+1,anV
∗),

0 = −γcρcn,cn + γaρan,an,

0 = −γdρdn,dn + γbρbn,bn,

0 = −rρgn,gn + γcρcn,cn + γdρdn,dn, (B40)

where we have defined �n+1 = ωan − ωbn+1.
Immediately, we have γaρan,an = γcρcn,cn and γbρbn,bn =

γdρdn,dn. The equation for ρgn,gn then can be written as

rρgn = γaρan,an + γbρbn,bn. (B41)

For simplicity, let us take γa = γb = , so that

rρgn =(ρan,an + ρbn,bn) = (ρnn − ρcn,cn − ρdn,dn − ρgn,gn),
(B42)

where we have defined the photon populations ρnn =
(tremρ)nn in order to express everything in terms of these
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populations and arrive at a coarse-grained density matrix for
the field. Let us now consider the case where γc � γa and
γd � γb. In this case, we immediately see that ρcn,cn ≈ 0
and ρdn,dn ≈ 0. This is to say that these levels are depleted
immediately after they are populated by the lasing levels. In
this case, ρgn,gn = 

(r+)ρnn. The steady-state equations then
reduce to the simple inhomogeneous equation:⎡
⎢⎢⎣

 −iV iV ∗ 0
−iV ∗  + i�n+1 0 iV ∗

iV 0  − i�n+1 −iV
0 iV −iV ∗ 

⎤
⎥⎥⎦
⎡
⎢⎢⎣

ρan,an

ρan,bn+1

ρbn+1,an

ρbn+1,bn+1

⎤
⎥⎥⎦

= raρnn

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦, (B43)

where ra ≡ r
r+

. The solution of this equation yields
ρan,an, ρan,bn+1, ρbn+1,an, ρbn+1,bn+1 in terms of ρnn. To pro-
ceed most efficiently, we now connect these density matrix
elements to the equation of motion for the reduced density
matrix of the field. This equation of motion is

ρ̇nn = −i(ρan−1,bnVbn,an−1 + Van,bn+1ρbn+1,an

− ρbn,an−1Van−1,bn − Vbn+1,anρan,bn+1). (B44)

The coherences can be found from the matrix equation above,
which for brevity, we denote as MnPn = raρnne1 so that Pn =
raρnn(M−1

n e1). We may write this equation in a form similar
to that of the equation for the coarse-grained density matrix of
the previous treatment, i.e., as

0 = Anρn−1,n−1 − An+1ρn,n, (B45)

where An = −ira((eT
2 M−1

n−1e1)Vbn,an−1 −
(eT

3 M−1
n−1e1)Van−1,bn), and we have looked at the steady-state

limit. At this stage, we now add the Lindblad terms
corresponding to the cavity leakage. As per the discussion in
the section “Lindblad terms,” the resulting equation of motion
for the field density matrix is

ρ̇nn = Anρn−1,n−1 − (An+1 + κ|〈n − 1|a + a†|n〉|2)ρn,n

+ κ|〈n|a + a†|n + 1〉|2ρn+1,n+1. (B46)

Defining Bn = −(An+1 + κ|〈n − 1|a + a†|n〉|2) and Cn =
κ|〈n|a + a†|n + 1〉|2, we have as before An+1 + Bn + Cn−1 =
0, enabling us to immediately write

ρn+1 = An+1

Cn
ρn ⇒ ρn =

(
n∏

m=1

Am

Cm−1

)
ρ0 (B47)

with the initial ρ0 is taken as one with the understanding that
we must normalize the probability distribution at the end of
the calculation. Upon inversion of the matrix Mn, we immedi-
ately find

An = 2ra|Vbn,an−1|2
2 + 4|Vbn,an−1|2 + �2

n

. (B48)

Noting that |Vbn,an−1|2 = ε2|〈n − 1|a + a†|n〉|2, we can write
the overall equation as

ρn = 1

Z

(
n∏

m=1

2raε
2/κ2

1 + (
4ε2|〈m − 1|a + a†|m〉|2 + �2

m

)
/2

)

≡ αn

Z

(
n∏

m=1

1

1 + G(m)

)
, (B49)

where α = 2raε
2/κγ 2 and Z = 1 +∑∞

n=1(
∏n

m=1
Am

Cm−1
). Im-

mediately, we see that if we take |〈n − 1|a + a†|n〉|2 = n
and �2

n = 1
4ω2e−4g2

[Ln(4g2) − Ln−1(4g2)]2 (assuming ω0 =
ω) that we recover the results of the previous treatment. And
it may also be easily seen that this agreement persists if we
take the matrix elements and splitting to be governed by the
generalized Rabi model (with λ �= 0).

APPENDIX C: NUMERICAL CALCULATION OF THE
FOCK LASER STEADY STATE

In this Appendix we numerically validate the analytical
developments of the previous sections. Since the analytical
calculations make use of many approximations and assump-
tions, it is important to validate them in terms of a method
which is independent of these assumptions. In what follows,
we will use a method inspired by the observation that the
equation of motion for the laser density matrix effectively
describes the interaction of a single gain atom with a cavity,
even when the gain medium is composed of many atoms.
This is because the atoms only couple to each other through
the cavity field, as noted in [21]. Thus, it follows that laser
steady states can be understood through the steady state of the
Liouvillian operator describing a damped oscillator coupled to
a gain atom. By taking the partial trace of the null eigenvector
of the Liouvillian, one finds the steady-state probability dis-
tribution of DSC photons. Applied to conventional lasers, one
correctly finds the transition from thermal to coherent state
statistics above the laser threshold.

The Hamiltonian part of the Liouvillian is simply the
Hamiltonian of Eq. (2). Here we also consider two different
possible interaction terms: a + a† or b + b†. The steady states
are also insensitive to this. In these calculations, we include
a reservoir to describe pumping of the gain medium, as well
as its T1- and T2-relaxation (here T2 = 2T1). We also include
a reservoir to describe the decay of the DSC photon. We
take as the jump operator J+, where J = a + a† or b + b†

and the + superscript means “positive frequency,” mean-
ing that we project out all negative frequency components.
The steady state is insensitive to whether we use a or b (it
changes only slightly), indicating the relative unimportance
of the dipole-dipole interaction from the standpoint of the
photon probabilities. The overall Liouvillian is then the sum
of the Hamiltonian (commutator) part and three dissipators:
D[σ−

em],D[σ+
em] and D[J+] with respective rates r, , and κ ,

to describe gain pumping, gain decoherence, and DSC photon
decay. Note that D[O]ρ ≡ O†Oρ + ρO†O − 2OρO†.

In Fig. 7 we show the probability distribution of DSC
photons resulting from one of these steady-state calculations.
Because we have largely neglected spin in our analytical
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∆n = 1

FIG. 7. Steady state of the Fock laser, calculated numerically, by
finding the steady state of the Liouvillian operator. Plot shows the
unpolarized probability distribution for λ = 0. For ε = 10−5ω, κ =
10−8ω, and r = 10, such that the population inversion of the gain
is about 90%, the resulting state is nearly a Fock state of 100 DSC
photons, with a residual uncertainty of 1. This state has noise 99%
below the shot noise level. Moreover, this calculation shows that the
Hamiltonian of Eq. (3), coupled to damping, supports Fock states as
its steady state, from first principles.

discussions, we plot the “unpolarized” photon probability dis-
tribution, defined such that P(n) = P(n,−1) + P(n, 1). As
can be seen, above threshold, the state has very low num-
ber fluctuations, in this case, δn = 1, yielding a state very
close to a Fock state. Below threshold, a thermal state is
found. Around threshold, the quasi-uniform state of Fig. 3 is
found.

These results are insensitive to the presence of a λ-term,
as shown in Fig. 8. The presence of a λ term, all else
equal, slightly increases the photon noise. This is because the
presence of a λ softens the anharmonicity [which can be un-

derstood from the term
√

λ2 + ω2e−4g2 L2
n (4g2) in Eq. (60)].

The results are also insensitive to the exact form of in-
teraction and dissipator (provided that the dissipator doesn’t
create spurious excitations). In Fig. 9 we show the steady
state, computed using interaction terms based on a or b, as
well as dissipators based on a or b.

APPENDIX D: COHERENT PUMPING OF SHARP DSC
NONLINEARITY IN THE PRESENCE OF LOSS

In the main text we showed how coherently pumped DSC
bosons can show a striking effect of N-photon blockade due
to sharp anharmonicity, generating highly nonclassical states

λ = 0.1ωλ = 0
∆n = 0.83 ∆n = 0.93

FIG. 8. Steady state of the Liouvillian of the Fock laser with and
without the λ term of Eq. (1). λ = 0.1ω is sufficient to keep the two
spin ladders from interchanging and is not found to alter the steady
state appreciably. ε, , κ are the same as in Fig. 7.

(b)(a)

FIG. 9. Steady state of the Liouvillian of the Fock laser with
different choices for the interaction term and dissipator, showing
robustness to the exact magnitude of the dipole-dipole interaction
between the emitter and the qubit.

of light. For simplicity of discussion, the main text results
did not include the effects of loss. We report on the effects
of loss here, which were studied through solving the master
equation associated with coherently pumped DSC bosons in
the presence of damping.

To do so, we consider the equations of motion associated
with a coherently pumped nonlinear oscillator. We assume
that the driven nonlinear oscillator has a Hamiltonian

H/h̄ =
∑

n

ωn |n〉 〈n| + η cos(ωt )(a + a†), (D1)

where η is the drive strength, and ω is the drive frequency.
Additionally, ωn is the spectrum of the anharmonic oscillator,
which for the DSC system is computed using the methods
described in earlier sections of the paper. In a frame which
rotates with the frequency of the drive, and after making the
RWA, the pumped system has the time-independent Hamilto-
nian

H̃ =
∑

n

δn |n〉 〈n| + η

2
(a + a†). (D2)

Here δn is a detuning from the pump frequency defined as
ωn = nω + δn. In this sense, δn encodes the anharmonicity
of the spectrum with respect to the coherent driving fre-
quency. The time evolution in this rotating picture is given by
the density matrix equation ∂t ρ̃ = i[ρ̃, H̃ ] + L[ρ̃] =≡ L[ρ̃].
Here L[ρ̃] is the Liouvillian operator acting on the density
matrix. Additionally, L[ρ̃] is a standard Lindblad term which
performs linear damping on the a operator with a rate κ . From
this we can compute time evolution of the states, or solve the
steady-state condition L[ρ̃] = 0.

Although the Hamiltonian is not exactly the same as the
driven Hamiltonian presented in the main text in the absence
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FIG. 10. Deep-strong coupling bosons pumped by a coherent driving field. Coupling strength g = 5 is used across all panels. (a) Steady-
state mean excitation number 〈n〉 for various pump strength η and cavity damping factor κ . (b) Steady-state Fano factor f = 〈(�n)2〉/〈n〉 for the
same values of η and κ . For low pump strengths, f = 1, indicating typical coherent state pumping. For higher pump strengths, the steady-state
cavity statistics exhibit both sub-Poissonian ( f < 1) and super-Poissonian ( f > 1) behavior. (c) Steady-state probability distributions p(n)
for three chosen pump values η = {2 × 10−4, 5 × 10−4, 10−2} for a fixed damping rate κ = 10−4. The three pump rates respectively lead to
Poissonian, sub-Poissonian, and super-Poissonian steady-state statistics due to their varying interactions with the nonlinear cavity. (d) Transient
evolution of the probability distribution p(n) of the pumped system starting from the ground state at t = 0, with parameters η = 5 × 10−4,
κ = 10−4. (e) Transitent evolution of the excitation number mean and variance for the same pump parameters shown in (c). At any given time,
the Fano factor can be extracted by noting how the variance compares to the mean. Additionally, nonlinear oscillations between the mean and
variance are seen as system reaches steady state.

of loss, we find that the models behave nearly identically
in the limit of low loss, indicating that the simplified model
presented here provides a good description of the key physics.
The main advantage of this approach is that in the rotating
frame, the Hamiltonian becomes time independent, enabling
numerical solutions of the steady-state solution that do not
require time evolution of the density matrix.

Figure 10 shows both steady-state and transient behaviors
for DSC bosons pumped with coherent drive strength η and
loss rate κ . Evidence of the blockade effect can be seen in
Fig. 10(a), where increased pumping results in a minimal
increase in the mean occupation number. This occurs be-
cause states beyond the blockade number of N = g2 = 25
cannot be occupied. The higher the loss κ , the larger the
pump strength required to populate the states. Figure 10(b)
shows how the steady-state Fano factors behave as a function
of the same pump and loss values. We see that when the
loss is too high for a given pump, decoherence from dissi-
pation dominates the steady state, and a coherent state with
F = 1 is recovered. However, when the loss is sufficiently
low, both super-Poissonian and sub-Poissonian states can be
created. Interestingly, we find that higher pumps result in
super-Poissonian behavior, as more of the state is “reflected”
back toward lower photon numbers. Representative examples

of Poissonian, sub-Poissonian, and super-Poissonian behavior
are shown in Fig. 10(c).

We can also see how these states are created transiently.
Figure 10(d) shows how the representative sub-Poissonian
(green) state is created when pumped from the ground state,
in terms of its probability distribution. In the early stages of
time evolution, the mean photon number grows quadratically
in time, as it would for an ordinary harmonic oscillator. This
occurs since at early times, the pumped field only occupies
the parts of the DSC boson spectrum which are essentially
perfectly harmonic. However, once the tail of the probability
distribution approaches the blockade number N , nonlinear
oscillations begin to occur, as the state is reflected from
the boundary. Eventually, these oscillations damp out, and
a steady distribution is reached, corresponding to the green
curve in Fig. 10(c). We observe that in the presence of losses,
it appears that the minimum attainable Fano factor is around
0.5.

Figure 10(e) shows how the mean and variance evolve as a
function of time for the states shown in Fig. 10(c). We see that
the lowest pump level generates a coherent state in a manner
nearly identical to a linear cavity. The sub-Poissonian state
is generated with influence from the blockade, as described
above, and a few cycles of nonlinear oscillation are seen in the
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mean and variance as the steady state is approached. Finally,
the strongest coherent pump results in a super-Poissonian dis-
tribution, which is reached after rapid nonlinear oscillations.
We note that even though the mean photon number is only
marginally higher than that of the sub-Poissonian example
state, the variance is higher by more than a factor of 3.

We finally comment on the key differences between these
results and the lossless calculations shows in the main text.
One key difference is that the lossless calculations in the
main text exhibit a periodic “revival” behavior as the prob-
ability distribution oscillates between the ground state and
the blockade number. Instead of these huge oscillations, the

damped system exhibits oscillations as it finally settles into
a steady state. Relatedly, the presence of loss eliminates the
presence of fringes in the probability distribution as the state
hits the blockade number and squeezes. In this sense, the loss
has the effect of moderating the extent of quantum features
which can be realized in the state. This is entirely consistent
with the well-known fact that dissipation acts as a form of
decoherence which degrades quantum states. Nevertheless,
even in the presence of loss, this coherently pumped system
exhibits clear features of N-photon blockade, and can be used
to generate DSC boson quantum states with sub-Poissonian
character.
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